On local connectivity of boundaries of CAT(0) spaces

静岡大学理学部
保坂 哲也 (Tetsuya Hosaka)

We introduce (non-)local connectivity of boundaries of CAT(0) spaces and hyperbolic CAT(0) spaces.

Definitions and basic properties of CAT(0) spaces, hyperbolic spaces and their boundaries are found in [3], [10] and [11].

A metric space X is said to be proper if every closed metric ball is compact. A group G is called a \textit{CAT(0) group} if G acts geometrically (i.e. properly and cocompactly by isometries) on some CAT(0) space. It is known that a CAT(0) space on which a CAT(0) group acts geometrically is proper. A boundary ∂X of a CAT(0) space X on which a CAT(0) group G acts geometrically is called a \textit{boundary} of the CAT(0) group G. It is known that in general a CAT(0) group G does not determine its boundary [5]. If G is a hyperbolic group then G determines its boundary up to homeomorphisms (cf. [3], [10] and [11]).

The following problems are open.

\textbf{Problem.} When is a boundary of a CAT(0) group (non-)locally connected?

\textbf{Problem.} If G is a hyperbolic CAT(0) group whose boundary is connected then is the boundary locally connected?

\textbf{Problem.} For a CAT(0) group G and CAT(0) spaces X and Y on which G acts geometrically, is it the case that the boundary ∂X is locally connected if and only if the boundary ∂Y is locally connected?

There is a research on (local) n-connectivity of boundaries of hyperbolic Coxeter groups by A. N. Dranishnikov in [8], and there are some research on (non-)local connectivity of boundaries of CAT(0) groups and Coxeter groups by M. Mihalik, K. Ruane and S. Tschantz in [17] and [18].
The purpose of this paper is to introduce sufficient conditions of

(i) a hyperbolic CAT(0) group whose boundary is locally n-connected by using reflections, and

(ii) a CAT(0) space whose boundary is non-locally connected by using a hyperbolic isometry and a reflection.

Local n-connectivity of boundaries of hyperbolic CAT(0) spaces

We define a reflection of a geodesic space as follows: An isometry r of a geodesic space X is called a reflection of X, if

1. r^2 is the identity of X,
2. $X \setminus F_r$ has exactly two convex connected components X^+_r and X^-_r and
3. $rX^+_r = X^-_r$,

where F_r is the fixed-points set of r. We note that “reflections” in this paper need not satisfy the condition (4) $\text{Int} F_r = \emptyset$ in [15].

Theorem 1. Suppose that a group G acts geometrically (i.e. properly and cocompactly by isometries) on a hyperbolic CAT(0) space X. If

1. there exist some reflections $r_1, \ldots, r_n \in G$ of X such that $G = \langle r_1, \ldots, r_n \rangle$
2. the boundary ∂X of X is n-connected,

then the boundary ∂X is locally n-connected.

Corollary 2. Suppose that a hyperbolic Coxeter group W acts geometrically on a hyperbolic CAT(0) space X. If the boundary ∂X of X is n-connected then ∂X is locally n-connected.

From [8], we also obtain a corollary.

Corollary 3. Let (W, S) be a hyperbolic Coxeter system and let $L = L(W, S)$ be the nerve of the Coxeter system (W, S). For any hyperbolic CAT(0) space X on which the hyperbolic Coxeter group W acts geometrically, the following statements are equivalent:

1. L is connected and $L - \sigma$ is connected for any simplex σ of L,
2. $\check{H}^0(\partial X) = 0$ where \check{H}^* denote the reduced Čech cohomology,
(iii) the boundary ∂X of X is connected, and
(iv) the boundary ∂X of X is locally connected.

Here the following problems are open.

Problem. If G is a hyperbolic CAT(0) group whose boundary is n-connected then is the boundary locally n-connected?

Problem. For a non-elementary hyperbolic Coxeter group W on which acts geometrically on a CAT(0) space X, is it the case that the following statements are equivalent?

(i) $\check{H}^i(\partial X) = 0$ for any $0 \leq i \leq n$,
(ii) L is n-connected and $L - \sigma$ is n-connected for any simplex σ of L,
(iii) the boundary ∂X of X is n-connected, and
(iv) the boundary ∂X of X is locally n-connected.

Non-local connectivity of boundaries of CAT(0) spaces

Let X be a proper CAT(0) space and let g be an isometry of X. The translation length of g is the number $|g| := \inf\{d(x, gx) \mid x \in X\}$, and the minimal set of g is defined as $\text{Min}(g) = \{x \in X \mid d(x, gx) = |g|\}$. An isometry g of X is said to be hyperbolic, if $\text{Min}(g) \neq \emptyset$ and $|g| > 0$ (cf. [3, p.229]). For a hyperbolic isometry g of a proper CAT(0) space X, g^∞ is the limit point of the boundary ∂X to which the sequence $\{g^ix_0\}_i$ converges, where x_0 is a point of X. Here we note that the limit point g^∞ is not depend on the point x_0.

A CAT(0) space X is said to be almost geodesically complete, if there exists a constant $M > 0$ such that for each pair of points $x, y \in X$, there is a geodesic ray $\zeta : [0, \infty) \to X$ such that $\zeta(0) = x$ and ζ passes within M of y. In [9, Corollary 3], R. Geoghegan and P. Ontaneda have proved that every non-compact cocompact proper CAT(0) space is almost geodesically complete. Here a CAT(0) space X is said to be cocompact, if some group acts cocompactly by isometries on X.

On non-local connectivity of CAT(0) spaces, we obtained the following.

Theorem 4. Let X be a proper and almost geodesically complete CAT(0) space, let g be a hyperbolic isometry of X and let r be a reflection of X. If
\begin{enumerate}
 \item $g^\infty \not\in \partial F_r$,
 \item $g(\partial F_r) \subset \partial F_r$ and
 \item $\operatorname{Min}(g) \cap F_r = \emptyset$,
\end{enumerate}
then the boundary ∂X of X is non-locally connected.

Here we note that the action of the group G on the CAT(0) space X in Theorem 4 need not be proper and cocompact.

The conditions in Theorem 4 are rather technical. We introduce some remarks.

First, every CAT(0) space on which some group acts geometrically (i.e. properly and cocompactly by isometries) is proper ([3, p.132]) and almost geodesically complete ([9], [20]).

Also, in [22], Ruane has proved that $\partial \operatorname{Min}(g)$ is the fixed-points set of g in ∂X, i.e.,

$$\partial \operatorname{Min}(g) = \{ \alpha \in \partial X \mid g\alpha = \alpha \}.$$

Hence, for example, if $\partial F_r \subset \partial \operatorname{Min}(g)$ then $g(\partial F_r) = \partial F_r$ and the condition (2) in Theorem 4 holds.

As an example of CAT(0) spaces on which some reflections act, there is the Davis complex of a Coxeter system. A Coxeter system (W, S) determines the Davis complex $\Sigma(W, S)$ which is a CAT(0) space ([6], [19]). Then the Coxeter group W acts geometrically on $\Sigma(W, S)$ and each $s \in S$ is a reflection of $\Sigma(W, S)$.

\section*{References}

