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1. INTRODUCTION

This article is a survey of the paper [17]. In this article, we consider the Cauchy
problem for the first-order linear symmetric hyperbolic system of equations with
relaxation:

(1.1) $A^{0}u_{t}+ \sum_{j=1}^{n}A^{j}u_{x_{j}}+Lu=0$

with

(1.2) $u|_{t=0}=u_{0}$ .

Here $u=u(t, x)\in \mathbb{R}^{m}$ over $t>0,$ $x\in \mathbb{R}^{n}$ is an unknown function, $u_{0}=u_{0}(x)\in \mathbb{R}^{m}$

over $x\in \mathbb{R}^{n}$ is a given function, and $A^{j}(j=0,1, \cdots, n)$ and $L$ are $m\cross m$ real
constant matrices, where integers $m\geq 1,$ $n\geq 1$ denote dimensions. Throughout
this paper, it is assumed that all $A^{j}(j=0,1, \cdots, n)$ are symmetric, $A^{0}$ is positive
definite and $L$ is nonnegative definite with a nontrivial kernel. Notice that $L$ is not
necessarily symmetric. For this general linear degenerately dissipative system it is
interesting to study its decay structure under additional conditions on the coefficient
matrices and further investigate the corresponding time-decay property of solutions
to the Cauchy problem.

When the degenerate relaxation matrix $L$ is symmetric, Umeda-Kawashima-Shizuta
[20] proved the large-time asymptotic stability of solutions for a class of equations of
hyperbolic-parabolic type with applications to both electro-magneto-fluid dynamics
and magnetohydrodynamics. The key idea in [20] and the later generalized work
[15] that first introduced the so-called Kawashima-Shizuta condition is to design the
compensating matrix to capture the dissipation of systems over the degenerate kernel
space of $L$ . The typical feature of the time-decay property of solutions established
in those work is that the high frequency part decays exponentially while the low
frequency part decays polynomially with the rate of the heat kernel.

For clearness and for later use let us precisely recall the results in [20, 15] mentioned
above. Taking the Fourier transform of (1.1) with respect to $x$ yields

(1.3) $A^{0}\hat{u}_{t}+i|\xi|A(\omega)\hat{u}+L\hat{u}=0$ .

Here and hereafter, $\xi\in \mathbb{R}^{n}$ denotes the Fourier variable, $\omega=\xi/|\xi|\in S^{n-1}$ is the unit
vector whenever $\xi\neq 0$ , and we define $A(\omega)$ $:= \sum_{j=1}^{n}A^{j}\omega_{j}$ with $\omega=(\omega_{1}, \cdots, \omega_{n})\in$

$S^{n-1}$ . The following two conditions for the coefficient matrices are needed:
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Condition $(A)_{0}:A^{0}$ is real symmetric and positive definite, $A^{j}(j=1, \cdots, n)$ are
real symmetric, and $L$ is real symmetric and nonnegative definite with the nontrivial
kernel.

Namely, we assume that
$(A^{j})^{T}=A^{j}$ for $j=0,1,$ $\cdots,$ $n$ , $L^{T}=L$ ,

$A^{0}>0$ , $L\geq 0$ on $\mathbb{C}^{m}$ , $Ker(L)\neq\{0\}$ .

Here and in the sequel, the superscript $T$ stands for the transpose of matrices, and
given a matrix $X,$ $X\geq 0$ means that ${\rm Re}\langle Xz,$ $z\}\geq 0$ for any $z\in \mathbb{C}^{m}$ , while $X>0$

means that ${\rm Re}$ {$Xz,$ $z\rangle>0$ for any $z\in \mathbb{C}^{m}$ with $z\neq 0$ , where $\langle\cdot,$ $\cdot$ } denotes the
standard complex inner product in $\mathbb{C}^{m}$ . Also, for simplicity of notations, given a real
matrix $X$ , we use $X_{1}$ and $X_{2}$ to denote the symmetric and skew-symmetric parts of
$X$ , respectively, namely, $X_{1}=(X+X^{T})/2$ and $X_{2}=(X-X^{T})/2$ .

Condition (K): There is a real compensating matrix $K(\omega)\in C^{\infty}(S^{n-1})$ with the
following properties: $K(-\omega)=-K(\omega),$ $(K(\omega)A^{0})^{T}=-K(\omega)A^{0}$ and

(1.4) $(K(\omega)A(\omega))_{1}>0$ on $Ker(L)$

for each $\omega\in S^{n-1}$ .

Remark 1. Under the condition $(A)_{0}$ , the positivity (1.4) in the condition (K) holds
if and only if

$\alpha(K(\omega)A(\omega))_{1}+L>0$ on $\mathbb{C}^{m}$

for each $\omega\in S^{n-1}$ , where $\alpha$ is a suitably small positive constant.

Under the conditions $(A)_{0}$ and (K) one has:

Theorem 1.1 (Decay property of the standard type ([20, 15])). Assume that both
the conditions $(A)_{0}$ and (K) hold. Then the Fourier image $\hat{u}$ of the solution $u$ to the
Cauchy problem $(1.1)-(1.2)$ satisfies the pointwise estimate:

(1.5) $|\hat{u}(t, \xi)|\leq Ce^{-c\rho(\xi)t}|\hat{u}_{0}(\xi)|$ ,

where $\rho(\xi)$ $:=|\xi|^{2}/(1+|\xi|^{2})$ . Furthe,more, let $s\geq 0$ be an integer and suppose that
the initial data $u_{0}$ belong to $H^{s}\cap L^{1}$ . Then the solution $u$ satisfies the decay estimate:

(1.6) $\Vert\partial_{x}^{k}u(t)\Vert_{L^{2}}\leq C(1+t)^{-n/4-k/2}\Vert u_{0}\Vert_{L^{1}}+Ce^{-ct}\Vert\partial_{x}^{k}u_{0}\Vert_{L^{2}}$

for $k\leq s$ . Here $C$ and $c$ are positive constants.

Unfortunately, when the degenerate relaxation matrix $L$ is not symmetric, Theorem
1.1 can not be applied any longer. In fact, this is the case for some concrete systems,
for example, the Timoshenko system [6, 7] and the Euler-Maxwell system [3, 19, 18],
where the linearized relaxation matrix $L$ indeed has a nonzero skew-symmetric part
while it was still proved that solutions decay in time in some different way that we
shall point out later on. Therefore, our purpose of this article is to formulate some
new structural conditions in order to extend Theorem 1.1 to the general system (1.1)
when $L$ is not symmetric, which can include both the Timoshenko system and the
Euler-Maxwell system.
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More precisely, we introduce a constant matrix $S$ which satisfies some properties
in Condition (S) in Section 2. When the relaxation matrix $L$ is not symmetric, we
have a partial positivity on $Ker(L_{1})^{\perp}$ only. In this situation, we try finding a real
compensating matrix $S$ to make a positivity on $Ker(L)^{\perp}$ . Then, employing further
the condition (K), we can construct a full positivity on $\mathbb{C}^{m}$ . As the consequence, we
can show the following weaker estimates:
(1.7) $|\hat{u}(t, \xi)|\leq Ce^{-c\eta(\xi)t}|\hat{u}_{0}(\xi)|$ ,

where $\eta(\xi)$ $:=|\xi|^{2}/(1+|\xi|^{2})^{2}$ , and
(1.8) $\Vert\partial_{x}^{k}u(t)\Vert_{L^{2}}\leq C(1+t)^{-n/4-k/2}\Vert u_{0}\Vert_{L^{1}}+C(1+t)^{-\ell/2}\Vert\partial_{x}^{k+\ell}u_{0}\Vert_{L^{2}}$

for $k+\ell\leq s$ . See Theorem 2.1 for the details. We note that these estimates (1.7) and
(1.8) are weaker than (1.5) and (1.6), respectively. In particular, the decay estimate
(1.7) is of the regularity-loss type.

Similar decay properties of the regularity-loss type have been recently observed
for several interesting systems. We refer the reader to [6, 7, 12] (cf. [1, 14]) for
the dissipative Timoshenko system, [3, 19, 18] for the Euler-Maxwell system, [5, 8]
for a hyperbolic-elliptic system in radiation gas dynamics, [9, 10, 11, 13, 16] for a
dissipative plate equation, and [2, 4] for the Vlasov-Maxwell-Boltzmann system.

Notations. For a nonnegative integer $k$ , we denote by $\partial_{x}^{k}$ the totality of all the k-th
order derivatives with respect to $x=(x_{1}, \cdots, x_{n})$ .

Let $1\leq p\leq\infty$ . Then $U=U(\mathbb{R}^{n})$ denotes the usual Lebesgue space over $\mathbb{R}^{n}$ with
the norm $\Vert\cdot\Vert_{L^{p}}$ . For a nonnegative integer $s,$ $H^{s}=H^{s}(\mathbb{R}^{n})$ denotes the s-th order
Sobolev space over $\mathbb{R}^{n}$ in the $L^{2}$ sense, equipped with the norm $\Vert\cdot\Vert_{H^{s}}$ . We note that
$L^{2}=H^{0}$ .

Finally, in this paper, we use $C$ or $c$ to denote various positive constants without
confusion.

2. MAIN RESULTS

In this section we shall introduce new structural conditions to investigate the decay
structure and time-decay property for the system (1.1) when $L$ is not necessarily
symmetric, and then state under those conditions the main results which are the
generalization of Theorem 1.1. Our structural conditions are formulated as follows.
Condition (A): $A^{0}$ is real symmetric and positive definite, $A^{j}(j=1, --, n)$ are
real symmetric, while $L$ is not necessarily real symmetric but is nonnegative definite
with the nontrivial kernel.
Namely, it is assumed that

$(A^{j})^{T}=A^{j}$ for $j=0,1,$ $\cdots,$ $n$ ,

$A^{0}>0$ , $L\geq 0$ on $\mathbb{C}^{m}$ , $Ker(L)\neq\{0\}$ .

Condition (S): There is a real constant matrix $S$ with the following properties:
$(SA^{0})^{T}=SA^{0}$ and
(2.1) $(SL)_{1}+L_{1}\geq 0$ on $\mathbb{C}^{m}$ , $Ker((SL)_{1}+L_{1})=Ker(L)$ .
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Remark 2. Under the conditions (A) and (S), the positivity (1.4) in the condition
(K) holds if and only if
(2.2) $\alpha(K(\omega)A(\omega))_{1}+(SL)_{1}+L_{1}>0$ $on$ $\mathbb{C}^{m}$

for each $\omega\in S^{n-1}$ , where $\alpha$ is a suitably small positive constant.

When we use the condition (S), we additionally assume either the condition $(S)_{1}$

or $(S)_{2}$ below.

Condition $(S)_{1}$ : For each $\omega\in S^{n-1}$ , the matrix $S$ in the condition (S) satisfies

$i(SA(\omega))_{2}\geq 0$ on $Ker(L_{1})$ .

Condition $(S)_{2}$ : For each $\omega\in S^{n-1}$ , the matrix $S$ in the condition (S) satisfies

(2.3) $i(SA(\omega))_{2}\geq 0$ on $\mathbb{C}^{m}$ .

Under the above structural conditions, we can state our main results on the decay
property for the system (1.1). The first one uses the condition $(S)_{1}$ .

Theorem 2.1 (Decay property of the regularity-loss type). Assume that the condi-
tions (A), (S), $(S)_{1}$ and (K) hold. Then the Fourier image $\hat{u}$ of the solution $u$ to the
Cauchy problem $(1.1)-(1.2)$ satisfies the pointwise estimate:

(2.4) $|\hat{u}(t, \xi)|\leq Ce^{-c\eta(\xi)t}|\hat{u}_{0}(\xi)|$ ,

where $\eta(\xi)$ $:=|\xi|^{2}/(1+|\xi|^{2})^{2}$ . Moreover, let $s\geq 0$ be an integer and suppose that the
initial data $u_{0}$ belong to $H^{s}\cap L^{1}$ . Then the solution $u$ satisfies the decay estimate;

(2.5) $\Vert\partial_{x}^{k}u(t)\Vert_{L^{2}}\leq C(1+t)^{-n/4-k/2}\Vert u_{0}\Vert_{L^{1}}+C(1+t)^{-\ell/2}\Vert\partial_{x}^{k+\ell}u_{0}\Vert_{L^{2}}$

for $k+P\leq s$ . Here $C$ and $c$ are positive constants.

Remark 3. The decay esiimate (2.5) is of the regulari ty-loss type because we have
the decay rate $(1+t)^{-l/2}$ only by assuming the additional l-th order regularity on the
initial data.

Our second main result uses the stronger condition $(S)_{2}$ instead of $(S)_{1}$ and gives
the decay estimate of the standard type.

Theorem 2.2 (Decay property of the standard type). If the condition $(S)_{1}$ in The-
orem 2.1 is replaced by the stronger condition $(S)_{2}$ , then the pointwise estimate (2.4)
and the decay estimate (2.5) in Theorem 2.1 can be refined as (1.5) and (1.6) in
Theorem 1.1, respectively.

It should be pointed out that Theorem 2.2 is a direct extension of Theorem 1.1 and
is applicable to the system (1.1) with a non-symmetric relaxation matrix $L$ . More
specifically, we have:

Claim 2.3. Theorem 1.1 holds as a corollary of Theorem 2.2. In other words, when
$L$ is real symmetric, Theorem 2.2 is reduced to Theorem 1.1.
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In fact, when $L$ is real symmetric, the condition (A) is reduced to $(A)_{0}$ . Moreover,
in this caise, we have $L=L_{1}$ so that the conditions (S) and $(S)_{2}$ are satisfied trivially
with $S=0$ . This shows that Theorem 2.2 implies Theorem 1.1.

In Theorems 2.1 and 2.2, the decay estimates (2.5) and (1.6) can be derived by
using the pointwise estimates (2.4) and (1.5), respectively. Before closing this section,
we prove this fact.

Proof of the decay estimates in Theorems 2.1 and 2.2. We first prove (2.5) in
Theorem 2.1. By virtue of the Plancherel theorem and the pointwise estimate (2.4),
we obtain

(2.6) $\Vert\partial_{x}^{k}u(t)\Vert_{L^{2}}^{2}=\int_{\mathbb{R}^{n}}|\xi|^{2k}|\hat{u}(t, \xi)|^{2}d\xi\leq C\int_{\mathbb{R}^{n}}|\xi|^{2k}e^{-c\eta(\xi)t}|\hat{u}_{0}(\xi)|^{2}d\xi$.

We divide the integral on the right-hand side of (2.6) into two parts $I_{1}$ and $I_{2}$ according
to the low frequency region $|\xi|\leq 1$ and the high frequency region $|\xi|\geq 1$ , respectively.
Since $\eta(\xi)\geq c|\xi|^{2}$ for $|\xi|\leq 1$ , we see that

$I_{1} \leq C\sup_{|\xi|\leq 1}|\hat{u}_{0}(\xi)|^{2}\int_{|\xi|\leq 1}|\xi|^{2k}e^{-c|\xi|^{2}}{}^{t}d\xi\leq C(1+t)^{-n/2-k}\Vert u_{0}\Vert_{L^{1}}^{2}$ .

On the other hand, we have $\eta(\xi)\geq c|\xi|^{-2}$ in the region $|\xi|\geq 1$ . Consequently, we
obtain

$I_{2} \leq C\sup_{|\xi|\geq 1}\frac{e^{-ct/|\xi|^{2}}}{|\xi|^{2p}}\int_{|\xi|\geq 1}|\xi|^{2(k+p)}|\hat{u}_{0}(\xi)|^{2}d\xi\leq C(1+t)^{-\ell}\Vert\partial_{x}^{k+l}u_{0}\Vert_{L^{2}}^{2}$ .

Therefore, substituting these estimates into (2.6), we get the desired decay estimate
(2.5).

To prove (1.6) in Theorem 2.2, we make use of the pointwise estimate (1.5). Since
$\rho(\xi)\geq c|\xi|^{2}$ for $|\xi|\leq 1$ and $\rho(\xi)\geq c$ for $|\xi|\geq 1$ , a similar computation as in the proof
of (2.5) yields the decay estimate (1.6). Thus we got the desired decay estimates and
this completes the proof. $\square$

3. ENERGY METHOD IN THE FOURIER SPACE

The aim of this section is to prove the pointwise estimates stated in Theorems 2.1
and 2.2 by employing the energy method in the Fourier space.

Proof of the pointwise estimate in Theorem 2.1. We derive the energy estimate
for the system (1.3) in the Fourier space. Taking the inner product of (1.3) with $\hat{u}$ ,
we have

$\langle A^{0}\hat{u}_{t},\hat{u}\}+i|\xi|\{A(\omega)\hat{u},\hat{u}\}+\{L\hat{u},\hat{u}\rangle=0$ .
Taking the real part, we get the basic energy equality

(3.1) $\frac{1}{2}\frac{d}{dt}E_{0}+\langle L_{1}\hat{u},\hat{u}\rangle=0$ ,

where $E_{0}$ $:=\langle A^{0}\hat{u},\hat{u}\rangle$ . Next we create the dissipation terms. For this purpose, we
multiply (1.3) by the matrix $S$ in the condition (S) and take the inner product with
$\hat{u}$ . This yields

$\{SA^{0}\hat{u}_{t},\hat{u}\}+i|\xi|\langle SA(\omega)\hat{u},\hat{u}\rangle+\{SL\hat{u},\hat{u}\}=0$ .
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Taking the real part of this equality, we get

(3.2) $\frac{1}{2}\frac{d}{dt}E_{1}+|\xi|\langle i(SA(\omega))_{2}\hat{u},\hat{u}\}+\{(SL)_{1}\hat{u},\hat{u}\}=0$ ,

where $E_{1}$ $:=\langle SA^{0}\hat{u},\hat{u}\rangle$ . Moreover, letting $K(\omega)$ be the compensating matrix in the
condition (K), we multiply (1.3) by $-i|\xi|K(\omega)$ and take the inner product with $\hat{u}$ .
Then we have

$-i|\xi|\langle K(\omega)A^{0}\hat{u}_{t},\hat{u}\}+|\xi|^{2}\langle K(\omega)A(\omega)\hat{u},\hat{u}\}-i|\xi|\{K(\omega)L\hat{u},\hat{u}\}=0$ .

Taking the real part of the above equality, we obtain

(3.3) $- \frac{1}{2}|\xi|\frac{d}{dt}E_{2}+|\xi|^{2}\{(K(\omega)A(\omega))_{1}\hat{u},\hat{u}\}-|\xi|\{i(K(\omega)L)_{2}\hat{u},\hat{u}\}=0$ ,

where $E_{2}:=\langle iK(\omega)A^{0}\hat{u},\hat{u}\}$ .
Now we combine the energy equalities (3.1), (3.2) and (3.3). First, letting $\alpha$ be

the positive number in Remark 2, we multiply (3.2) and (3.3) by $1+|\xi|^{2}$ and $\alpha_{2}\alpha$ ,
respectively, and add these two equalities, where $\alpha_{2}$ is a positive constant to be
determined. This yields

$\frac{1}{2}(1+|\xi|^{2})\frac{d}{dt}\mathcal{E}+(1+|\xi|^{2})\{(SL)_{1}\hat{u},\hat{u}\rangle+\alpha_{2}|\xi|^{2}\{\alpha(K(\omega)A(\omega))_{1}\hat{u},\hat{u}\}$

(3.4)
$=-|\xi|(1+|\xi|^{2})\{i(SA(\omega))_{2}\hat{u},\hat{u}\rangle+\alpha_{2}|\xi|\{i\alpha(K(\omega)L)_{2}\hat{u},\hat{u})$ ,

where $\mathcal{E}$

$:=E_{1}- \frac{\alpha_{2}|\xi|}{1+|\xi|^{2}}\alpha E_{2}$ . Furthermore, we multiply (3.1) and (3.4) by $(1+|\xi|^{2})^{2}$ and
$\alpha_{1}$ , respectively, and add the resulting two equalities, where $\alpha_{1}$ is a positive constant
to be determined. This yields
(3.5)

$\frac{1}{2}(1+|\xi|^{2})^{2}\frac{d}{dt}(E_{0}+\frac{\alpha_{1}}{1+|\xi|^{2}}\mathcal{E})$

$+(1+|\xi|^{2})^{2}\{L_{1}\hat{u},\hat{u}\rangle+\alpha_{1}\{(1+|\xi|^{2})\{(SL)_{1}\hat{u},\hat{u}\rangle+\alpha_{2}|\xi|^{2}\{\alpha(K(\omega)A(\omega))_{1}\hat{u},\hat{u}\rangle\}$

$=\alpha_{1}\{-|\xi|(1+|\xi|^{2})\langle i(SA(\omega))_{2}\hat{u},\hat{u}\}+\alpha_{2}|\xi|\langle i\alpha(K(\omega)L)_{2}\hat{u},\hat{u}\}\}$ .
We write the equality (3.5) as

(3.6) $\frac{1}{2}\frac{d}{dt}E+D_{1}+D_{2}=G$ ,

where we define $E,$ $D_{1},$ $D_{2}$ and $G$ as

$E:=E_{0}+ \frac{\alpha_{1}}{1+|\xi|^{2}}\mathcal{E}=E_{0}+\frac{\alpha_{1}}{1+|\xi|^{2}}(E_{1}+\frac{\alpha_{2}|\xi|}{1+|\xi|^{2}}\alpha E_{2})$,

$(1+|\xi|^{2})^{2}D_{1}$ $:=(1+|\xi|^{2})^{2}\{L_{1}\hat{u},\hat{u}\rangle$

$+\alpha_{1}\{(1+|\xi|^{2})\langle(SL)_{1}\hat{u},\hat{u}\rangle+\alpha_{2}|\xi|^{2}\{\alpha(K(\omega)A(\omega))_{1}\hat{u},\hat{u}\}\}$ ,

$(1+|\xi|^{2})^{2}D_{2}$ $:=\alpha_{1}|\xi|(1+|\xi|^{2})\langle i(SA(\omega))_{2}P_{1}\hat{u},$ $P_{1}\hat{u}\rangle$ ,

$(1+|\xi|^{2})^{2}G$ $:=\alpha_{1}\alpha_{2}|\xi|\langle i\alpha(K(\omega)L)_{2}\hat{u},\hat{u}\}$

$-\alpha_{1}|\xi|(1+|\xi|^{2})\{\langle i(SA(\omega))_{2}\hat{u},\hat{u}\rangle-\langle i(SA(\omega))_{2}P_{1}\hat{u}, P_{1}\hat{u}\rangle\}$ .
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We estimate each term in (3.6). Because of the positivity of $A^{0}$ , for suitably small
$\alpha_{1}>0$ and $\alpha_{2}>0$ , we see that

(3.7) $c_{0}|\hat{u}|^{2}\leq E\leq C_{0}|\hat{u}|^{2}$ ,

where $c_{0}$ and $C_{0}$ are positive constants not depending on $(\alpha_{1}, \alpha_{2})$ . On the other hand,
we can rewrite $D_{1}$ as

$(1+|\xi|^{2})^{2}D_{1}=\alpha_{1}\alpha_{2}|\xi|^{2}\langle(\alpha(K(\omega)A(\omega))_{1}+(SL)_{1}+L_{1})\hat{u},\hat{u}\}$

$+\alpha_{1}((1+|\xi|^{2})-\alpha_{2}|\xi|^{2})\langle((SL)_{1}+L_{1})\hat{u},\hat{u}\rangle$

$+(1+|\xi|^{2})((1+|\xi|^{2})-\alpha_{1})\langle L_{1}\hat{u},\hat{u}\}$ .

Here, using the positivity (2.2) which is based on the condition (K), we have

(3.8) $\langle(\alpha(K(\omega)A(\omega))_{1}+(SL)_{1}+L_{1})\hat{u},\hat{u}\}\geq c_{1}|\hat{u}|^{2}$ ,

where $c_{1}$ is a positive constant. Therefore we can estimate $D_{1}$ as

(3.9) $(1+|\xi|^{2})^{2}D_{1}\geq\alpha_{1}\alpha_{2}c_{1}|\xi|^{2}|\hat{u}|^{2}+\alpha_{1}c_{2}(1+|\xi|^{2})|(I-P)\hat{u}|^{2}+c_{3}(1+|\xi|^{2})^{2}|(I-P_{1})\hat{u}|^{2}$ ,

where $c_{1}$ is the constant in (3.8), $c_{2}$ and $c_{3}$ are positive constants not depending on
$(\alpha_{1)}\alpha_{2})$ , and $P$ and $P_{1}$ denote the orthogonal projections onto $Ker(L)$ and $Ker(L_{1})$ ,
respectively. Here we have used (2.1) in the condition (S) and the fact that $L_{1}\geq 0$

on $\mathbb{C}^{m}$ which is due to the condition (A). Also we see that $D_{2}\geq 0$ by the condition
(S).

Finally, we estimate each term in $G$ . Note that

$\{i(K(\omega)L)_{2}\hat{u},\hat{u}\}={\rm Re}\{iK(\omega)L\hat{u},\hat{u}\rangle={\rm Re}\langle iK(\omega)L(I-P)\hat{u},\hat{u}\}$,

where we used $LP=0$ . Thus we have

(3.10) $|\xi||\langle i\alpha(K(\omega)L)_{2}\hat{u},\hat{u}\rangle|\leq C|\xi||(I-P)\hat{u}||\hat{u}|\leq\epsilon|\xi|^{2}|\hat{u}|^{2}+C_{\epsilon}|(I-P)\hat{u}|^{2}$

for any $\epsilon>0$ , where $C_{\epsilon}$ is a constant depending on $\epsilon$ . For the remaining term in $G$ ,
by using the equality

$\langle i(SA(\omega))_{2}\hat{u},\hat{u}\}-\langle i(SA(\omega))_{2}P_{1}\hat{u},$ $P_{1}\hat{u}\}$

$=\langle i(SA(\omega)){}_{2}P_{1}\hat{u},$ $(I-P_{1})\hat{u}\rangle+\{i(SA(\omega))_{2}(I-P_{1})\hat{u},\hat{u}\}$ ,

we estimate as
$|\xi|(1+|\xi|^{2})|\{i(SA(\omega))_{2}\hat{u},\hat{u}\}-\langle i(SA(\omega))_{2}P_{1}\hat{u},$ $P_{1}\hat{u}\rangle|$

(3.11) $\leq C|\xi|(1+|\xi|^{2})|(I-P_{1})\hat{u}||\hat{u}|$

$\leq\delta|\xi|^{2}|\hat{u}|^{2}+C_{\delta}(1+|\xi|^{2})^{2}|(I-P_{1})\hat{u}|^{2}$

for any $\delta>0$ , where $C_{\delta}$ is a constant depending on $\delta$ . Consequently, we obtain

$(1+|\xi|^{2})^{2}|G|\leq\alpha_{1}(\alpha_{2}\epsilon+\delta)|\xi|^{2}|\hat{u}|^{2}$

$+\alpha_{1}\alpha_{2}C_{\epsilon}|(I-P)\hat{u}|^{2}+\alpha_{1}C_{\delta}(1+|\xi|^{2})^{2}|(I-P_{1})\hat{u}|^{2}$ .
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We choose $\epsilon>0$ and $\delta>0$ such that $\epsilon=c_{1}/4$ and $\delta=\alpha_{2}c_{1}/4$ . For this choice of
$(\epsilon, \delta)$ , we take $\alpha_{2}>0$ and $\alpha_{1}>0$ so small that $\alpha_{2}C_{\epsilon}\leq c_{2}/2$ and $\alpha_{1}C_{\delta}\leq c_{3}/2$ . Then,
by using (3.9), (3.10) and (3.11), we conclude that $|G|\leq D_{1}/2$ and

(3.12) $D_{1} \geq c\{\frac{|\xi|^{2}}{(1+|\xi|^{2})^{2}}|\hat{u}|^{2}+\frac{1}{1+|\xi|^{2}}|(I-P)\hat{u}|^{2}+|(I-P_{1})\hat{u}|^{2}\}$,

where $c$ is a positive constant. Consequently, (3.6) becomes

(3.13) $\frac{d}{dt}E+D_{1}+2D_{2}\leq 0$ .

Moreover, it follows from (3.7) and (3.12) that $D_{1}\geq c\eta(\xi)E$ , where $\eta(\xi)=|\xi|^{2}/(1+$

$|\xi|^{2})^{2}$ , and $c$ is a positive constant. Also we have $D_{2}\geq 0$ . Thus (3.13) leads the
estimate

$\frac{d}{dt}E+c\eta(\xi)E\leq 0$ .

Solving this differential inequality, we get $E(t, \xi)\leq e^{-c\eta(\xi)t}E(0, \xi)$ , which together
with (3.7) gives the desired pointwise estimate (2.4). This completes the proof of
Theorem 2.1. $\square$

When the condition $(S)_{1}$ is replaced by $(S)_{2}$ , the above computations can be sim-
plified and we obtain the better pointwise estimate (1.5).

Proof of the pointwise estimate in Theorem 2.2. Under the assumption (2.3)
in the condition $(S)_{2}$ , the first term on the right-hand side of (3.4) becomes a good
term and we obtain

$\frac{1}{2}(1+|\xi|^{2})\frac{d}{dt}\mathcal{E}+(1+|\xi|^{2})\langle(SL)_{1}\hat{u},\hat{u}\rangle+\alpha_{2}|\xi|^{2}\langle\alpha(K(\omega)A(\omega))_{1}\hat{u},\hat{u}\rangle$

(3.14)
$+|\xi|(1+|\xi|^{2})\{i(SA(\omega))_{2}\hat{u},\hat{u}\rangle=\alpha_{2}|\xi|\langle i\alpha(K(\omega)L)_{2}\hat{u},\hat{u}\rangle$.

In this case, we multiply (3.1) and (3.14) by $1+|\xi|^{2}$ and $\alpha_{1}$ , respectively, and combine
the resultant two equalities. This yields

(3.15) $\frac{1}{2}\frac{d}{dt}\tilde{E}+\tilde{D}_{1}+\tilde{D}_{2}=\tilde{G}$ ,

where we define as

$\tilde{E}:=E_{0}+\alpha_{1}\mathcal{E}=E_{0}+\alpha_{1}(E_{1}+\frac{\alpha_{2}|\xi|}{1+|\xi|^{2}}\alpha E_{2})$ ,

$(1+|\xi|^{2})\tilde{D}_{1}$ $:=(1+|\xi|^{2})\{L_{1}\hat{u},\hat{u}\rangle$

$+\alpha_{1}\{(1+|\xi|^{2})\langle(SL)_{1}\hat{u},\hat{u}\rangle+\alpha_{2}|\xi|^{2}\{\alpha(K(\omega)A(\omega))_{1}\hat{u},\hat{u}\rangle\}$ ,

$\tilde{D}_{2}$
$:=\alpha_{1}|\xi|\langle i(SA(\omega))_{2}\hat{u},\hat{u}\rangle$ , $(1+|\xi|^{2})\tilde{G}$ $:=\alpha_{1}\alpha_{2}|\xi|\langle i\alpha(K(\omega)L)_{2}\hat{u},\hat{u}\rangle$ .

Here, for suitably small $\alpha_{1}>0$ and $\alpha_{2}>0$ , we see that

(3.16) $c_{0}|\hat{u}|^{2}\leq\tilde{E}\leq C_{0}|\hat{u}|^{2}$ ,

92



where $c_{0}$ and $C_{0}$ are positive constants not depending on $(\alpha_{1}, \alpha_{2})$ . On the other hand,
we can rewrite $\tilde{D}_{1}$ as
$(1+|\xi|^{2})\tilde{D}_{1}=\alpha_{1}\alpha_{2}|\xi|^{2}\{(\alpha(K(\omega)A(\omega))_{1}+(SL)_{1}+L_{1})\hat{u},\hat{u}\}$

$+\alpha_{1}((1+|\xi|^{2})-\alpha_{2}|\xi|^{2})\langle((SL)_{1}+L_{1})\hat{u},\hat{u}\}+(1-\alpha_{1})(1+|\xi|^{2})\langle L_{1}\hat{u},\hat{u}\rangle$.

Then, as in the derivation of (3.9), for suitably small $\alpha_{1}>0$ and $\alpha_{2}>0$ , we can
estimate $\tilde{D}_{1}$ as

$(1+|\xi|^{2})\tilde{D}_{1}\geq\alpha_{1}\alpha_{2}c_{1}|\xi|^{2}|\hat{u}|^{2}+\alpha_{1}c_{2}(1+|\xi|^{2})|(I-P)\hat{u}|^{2}+c_{3}(1+|\xi|^{2})|(I-P_{1})\hat{u}|^{2}$ ,

where $c_{1},$ $c_{2}$ and $c_{3}$ are positive constants not depending on $(\alpha_{1}, \alpha_{2})$ . Also, making
use of (3.10), we can estimate the term $\tilde{G}$ as

(3.17) $(1+|\xi|^{2})|\tilde{G}|\leq\alpha_{1}\alpha_{2}\epsilon|\xi|^{2}|\hat{u}|^{2}+\alpha_{1}\alpha_{2}C_{\epsilon}|(I-P)\hat{u}|^{2}$

for any $\epsilon>0$ , where $C_{\epsilon}$ is a constant depending on $\epsilon$ but not on $(\epsilon, \delta)$ .
We choose $\epsilon>0$ in (3.17) so small that $\epsilon=c_{1}/2$ . For this choice of $\epsilon$ , we take

$\alpha_{2}>0$ so small that $\alpha_{2}C_{\epsilon}\leq c_{2}/2$ . Then we obtain $|\tilde{G}|\leq\tilde{D}_{1}/2$ and

(3.18) $\tilde{D}_{1}\geq c\{\frac{|\xi|^{2}}{1+|\xi|^{2}}|\hat{u}|^{2}+|(I-P)\hat{u}|^{2}+|(I-P_{1})\hat{u}|^{2}\}$ ,

where $c$ is a positive constant. Consequently, (3.15) becomes

$\frac{d}{dt}\tilde{E}+\tilde{D}_{1}+2\tilde{D}_{2}\leq 0$ .

Here we note that $D_{2}\geq 0$ by (2.3) in the condition $(S)_{2}$ . Also we have from (3.16)
and (3.18) that $\tilde{D}_{1}\geq\rho(\xi)\tilde{E}$ , where $\rho(\xi)=|\xi|^{2}/(1+|\xi|^{2})$ , and $c$ is a positive constant.
Thus we obtain $\frac{d}{dt}$ E-f $c\rho(\xi)\tilde{E}\leq 0$ , which is solved as $\tilde{E}(t, \xi)\leq e^{-c\rho(\xi)t}\tilde{E}(0, \xi)$ . This
together with (3.16) gives the desired pointwise estimate (1.5). Thus the proof of
Theorem 2.2 is complete. 口

REFERENCES
[1] F. Ammar Khodja, A. Benabdallah, J.E. Munoz Rivera and R. Racke, Energy decay for Tim-

oshenko systems of memory type, J. Differential Equations, 194 (2003), 82-115.
[2] R.-J. Duan, Dissipative property of the Vlasov-Maxwell-Boltzmann System with a unifom ionic

background, preprint (2010).
[3] R.-J. Duan, Global smooth flows for the compressible Euler-Maxwell system: Relaxation case,

J. Hyperbolic Differential Equations, in press (2011).
[4] R.-J. Duan and R.M. Strain, Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann

system in the whole space, Comm. Pure Appl. Math., in press (2011).
[5] T. Hosono and S. Kawashima, Decay property of regularity-loss type and application to some

nonlinear hyperbolic-elliptic system, Math. Models Meth. Appl. Sci., 16 (2006), 1839-1859.
[6] K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative

Timoshenko system, Math. Models Meth. Appl. Sci., lS (2008), 647-667.
[7] K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dis-

sipative Timoshenko system, Math. Models Meth. Appl. Sci., lS (2008), 1001-1025.
[8] T. Kubo and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for

some hyperbolic-elliptic system, Kyushu J. Math., 63 (2009), 1-21.
[9] Y. Liu and S. Kawashima, Global existence and asymptotic behavior of solutions for quasi-linear

dissipative plate equation, Discrete Contin. Dyn. Syst., 29 (2011), 1113-1139.

93



[10] Y. Liu and S. Kawashima, Global existence and decay of solutions for a quasi-linear dissipative
plate equation, J. Hyperbolic Differential Equations, to appear.

[11] Y. Liu and S. Kawashima, Decay property for a plate equation with memory-type dissipation,
Kinetic and Related Models, 4 (2011), 531-547.

[12] Y. Liu and S. Kawashima, Decay property for the Timoshenko system with memory-type dissi-
pation, Math. Models Meth. Appl. Sci., to appear.

[13] C.R. da Luz and R.C. Charao, Asymptotic properties for a semilinear plate equation in un-
bounded domains, J. Hyperbolic Differential Equations, 6 (2009), 269-294.

[14] J.E. $Mu\tilde{n}oz$ Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete
Contin. Dyn. Syst., 9 (2003), 1625-1639.

[15] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applica-
tions to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.

[16] Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear dissipative plate
equation, J. Hyperbolic Differerential Equations, 7 (2010), 471-501.

[17] Y. Ueda, R. Duan and S. Kawashima, Decay structure for symmetric hyperbolic systems with
non-symmetric relaxation and its application, preprint.

[18] Y. Ueda and S. Kawashima, Decay property of regularity-loss type for the Euler-Maxwell system,
preprint.

[19] Y. Ueda, S. Wang and S. Kawashima, Dissipative structure of the regularity-loss type and time
asymptotic decay of solutions for the Euler-Maxwell system, preprint.

[20] T. Umeda, S. Kawashima and Y. Shizuta, On the devay of solutions to the linearized equations
of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 435-457.

(YU) FACULTY OF MARITIME SCIENCES, KOBE UNIVERSITY, KOBE 658-0022, JAPAN
E-mail address: ueda@maritime.kobe-u.ac.jp

(RJD) DEPARTMENT OF MATHEMATICS, THE CHINESE UNIVERSITY OF HONG KONG, SHATIN,
HONG KONG

E-mail address: rjduanQmath. cuhk. edu. hk

(SK) FACULTY OF MATHEMATICS, KYUSHU UNIVERSITY, FUKUOKA 819-0395, JAPAN
E-mail address: kawashimdmath. kyushu-u. ac. jp

94


