システム/制御/情報, Vol. 55, No. 5, pp. 165-173, 2011

LMI に基づく制御系解析・設計

|制御系解析・設計における数値計算/数式処理

川田 昌克*·蛯原 義雄[†]

1. はじめに

近年の精力的な研究により、線形行列不等式 (LMI: Linear Matrix Inequality) に基づくロバスト制御系 や多目的制御系、ゲインスケジューリング制御系の解 析・設計の手法が確立された [1-7]. 従来, LMI の数値 解を得るために、商用の MATLAB ツールボックスであ る LMI Control Toolbox [8,9] (現在では Robust Control Toolbox に統合)が利用されることが多かった. このツー ルボックスには、半正定値計画問題 (SDP: Semidefinite Programming), すなわち, LMI を制約条件として線形 目的関数を最大化(最小化)する凸最適化問題のソル バ LMILAB が含まれているが、実行速度が速いとはい えず、サイズの大きい LMI を解く際に問題となる.ま た、そこで用いられる LMI の記述が煩雑であるという 欠点もある.それに対し,現在では,MATLAB 上で使 用可能なフリーウェアの SDP ソルバ SeDuMi [10] や SDPT3[11] などにより実行速度の問題に対処できる.ま た, ユーザフレンドリなフリーウェアの LMI パーサであ る YALMIP [12] や CVX [13] を併用することで、LMI の 記述が飛躍的に単純化される(本特集号の総説を参照).

本解説では、まず、LMI に基づく制御系解析・設計に ついて簡単に説明する.ついで、SDP ソルバ SeDuMi と LMI パーサ YALMIP のインストール方法について 説明した後、いくつかの例を通じ、制御系解析・設計に LMI を「ツールとして使う」という立場から、解説する.

記述の簡単化のため、本解説では、正方行列 M に対して、He $[M] := M + M^{T}$ と定義する.また、対称行列を以下のように記述する.

$$\begin{bmatrix} \boldsymbol{M}_{11} \ \boldsymbol{M}_{12} \\ \boldsymbol{M}_{12}^{\mathrm{T}} \ \boldsymbol{M}_{22} \end{bmatrix} = \begin{bmatrix} \boldsymbol{M}_{11} \ \boldsymbol{M}_{12} \\ * \ \boldsymbol{M}_{22} \end{bmatrix} \begin{pmatrix} = \begin{bmatrix} \boldsymbol{M}_{11} & * \\ \boldsymbol{M}_{12}^{\mathrm{T}} \ \boldsymbol{M}_{22} \end{bmatrix} \end{pmatrix}$$

2. LMI に基づく制御系解析・設計

2.1 LMI とは?

対称行列 M が正定であることを意味する " $M \succ 0$ " や負定であることを意味する " $M \prec 0$ "を行列不等 式とよぶ.とくに, M が定数行列と決定変数 ξ_i (i =

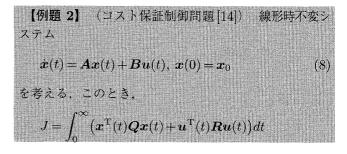
* 舞鶴工業高等専門学校 電子制御工学科

Key Words: linear matrix inequality, robust control, gain scheduling control, numerical computation.

1,…,k) に関して 1 次の行列の和で表された行列不等 式を,線形行列不等式 (LMI) とよぶ. つまり, LMI は 既知の行列 $M_i = M_i^{T}$ (i=0,...,k) と未知の決定変数 $\boldsymbol{\xi} = [\xi_1 \dots \xi_k]^{T}$ を用いて,次式のように記述できる.

$$\boldsymbol{M}(\boldsymbol{\xi}) := \boldsymbol{M}_0 + \sum_{i=1}^k \xi_i \boldsymbol{M}_i \succ 0 \quad (\breve{\boldsymbol{\sigma}} \, \breve{\boldsymbol{\sigma}} \, \lor \, \breve{\boldsymbol{\tau}} \, \prec \, 0) \quad (1)$$

【例題 1】 (安定解析問題) 零入力の線形時不変シス テム
$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t), \ \boldsymbol{x}(0) = \boldsymbol{x}_0 \tag{2}$
が安定であるための必要十分条件は, Lyapunov 不等式
$\boldsymbol{M} := \operatorname{He}[\boldsymbol{P}\boldsymbol{A}] \prec 0 \tag{3}$
を満足する正定対称解
$\boldsymbol{P} = \boldsymbol{P}^{\mathrm{T}} \succ \boldsymbol{0} \tag{4}$
(この条件も行列不等式である)が存在することである. P の要素を ξ_i とおけば, (3), (4) 式はともに (1) 式の 形式で記述でき,これらが LMI であることがいえる.

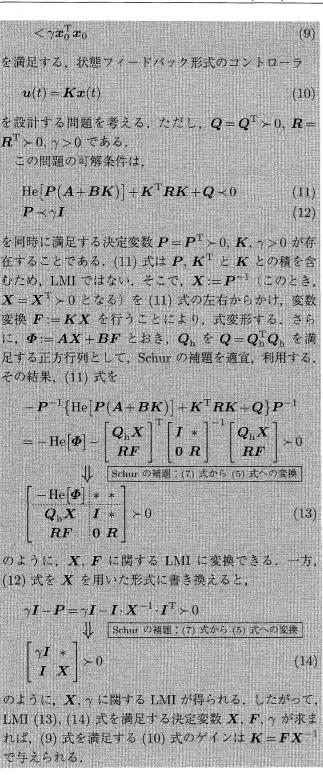

実際の制御系解析や設計における行列不等式条件は, そのままでは LMI ではないことも多い.しかし,多く の場合,変数変換や以下に示す Schur の補題を利用する ことで,LMI に変換することが可能である.

【補題 1】 (Schur の補題) 以下の条件 (A) ~ (C) は 等価である.

(A)
$$\begin{bmatrix} \boldsymbol{M}_{11} & \boldsymbol{M}_{12} \\ \boldsymbol{M}_{12}^{\mathrm{T}} & \boldsymbol{M}_{22} \end{bmatrix} \succ 0$$
(5)

(B)
$$M_{11} \succ 0 \; \mathcal{D} \supset M_{22} - M_{12}^{T} M_{11}^{-1} M_{12} \succ 0$$
 (6)

(C)
$$M_{22} \succ 0 \; \mathcal{D} \supset M_{11} - M_{12} M_{22}^{-1} M_{12}^{\mathrm{T}} \succ 0$$
 (7)



説

解

[†] 京都大学 大学院 工学研究科 電気工学専攻

システム/制御/情報 第55巻 第5号 (2011)

2.2 数值計算問題

MATLAB 上で動作する SDP ソルバを利用することで、以下の問題を効率よく数値的に解くことができる.

- (i) **凸可解問題:**LMI (1) 式を満足する決定変数 **ξ** = [*ξ*₁ … *ξ_k*]^T を求める.
- (ii) 凸最適化問題: c = [c₁ … c_k]^T が与えられたと
 き, LMI (1) 式を満足し,さらに,線形目的関数

 $E = \boldsymbol{c}^{\mathrm{T}}\boldsymbol{\xi} = c_1 \boldsymbol{\xi}_1 + \dots + c_k \boldsymbol{\xi}_k \tag{15}$

を最小化する決定変数 $\boldsymbol{\xi} = \begin{bmatrix} \xi_1 \cdots \xi_k \end{bmatrix}^T$ および E

の最小値を求める.

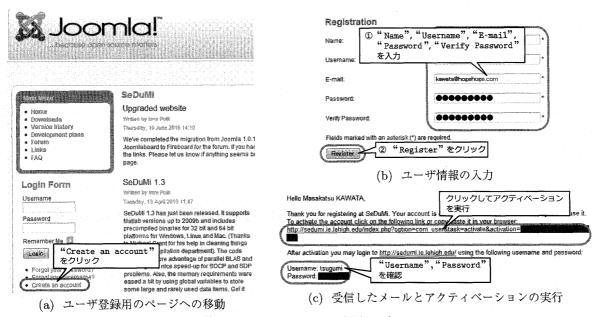
上記の問題設定は汎用性が高く,多くの制御系解析・ 設計問題がこれらに帰着できる.たとえば,**例題1**の 安定解析問題は,LMIを(3),(4)式,決定変数を**P**と した凸可解問題である.また,**例題2**において $\gamma > 0$ の最小化を行うコスト保証制御問題は,LMIを(13), (14)式,決定変数を**X**,**F**, γ ,線形目的関数を $E = \gamma$ とした凸最適化問題である.

2.3 LMI を利用した制御系解析・設計の利点 従来, Riccati 方程式などの方程式条件に基づく制御 系解析・設計が主流であった. それに比べて, LMI に基 づく制御系解析・設計は,以下のような利点がある.

- (i) 多目的制御[7,3,5]:複数の設計仕様を満足させる多目的制御の実現が容易である.たとえば、指定した極領域に閉ループ極を拘束したうえで、H_∞制御などにおける評価関数の最小化を行うことが可能である.
- (ii) ロバスト制御 [3,5]:線形パラメータ変動 (LPV: Linear Parameter Varying) モデルなどの多項式 型モデルやポリトープ型モデルで記述できる,不 確かな(あるいは時変)パラメータを含む制御対 象に対し,ロバスト制御系の解析や設計が容易で ある.
- (iii) ゲインスケジューリング制御[6,3,5]:上述の制御対象に対し、コントローラゲインをパラメータに応じて変化させることで、制御性能の向上を目指すゲインスケジューリング (GS: Gain Scheduling)制御系の設計が容易である。

3. SeDuMi/YALMIP のインストール

ここでは, Windows OS での使用を前提として, イン ストール方法を説明する.


3.1 SDP ソルバ SeDuMi

SeDuMi (Self-Dual-Minimisation Package) は, Jos F. Sturm により開発されたフリーウェアの SDP ソル バである [10]. 残念ながら彼は若くしてこの世を去った が,現在, Lehigh 大学のグループに開発が引き継がれ ている.

SeDuMi Ver.1.3 を入手したい場合,まず,

http://sedumi.ie.lehigh.edu/

にアクセスし,ユーザ登録を行う必要がある. 第1図に ユーザ登録の手順を示す. ユーザ登録が完了した後,ロ グインし, Main Menu から"Downloads"を選択して Downloadsページへ移動する. つぎに, Categories から "Official SeDuMi releases"を選択して Releases ページへ移動する. 最後に, Releases から"SeDuMi 1.3"を選択して Document license ページへ移動する. ライセンス内容を確認し,ページ最下部の"I agree." をチェックした後, "Click here to proceed"をク

第1図 SuDeMi のユーザ登録の手順

リックすることで, zip ファイル "SeDuMi_1_3.zip" をダウンロードする.

3.2 LMI パーサ YALMIP

YALMIP (Yet Another LMI Parser) とは, LMI を MATLAB 上の簡便な記述で表現し, しかも, SeDuMi, SDPT3, LMILAB などといったさまざまな SDP ソルバ を統一的に利用可能とする LMI パーサであり, Johan Löfberg により開発された [12].

YALMIPの最新バージョンを入手したい場合,まず, ● http://users.isy.liu.se/johanl/yalmip/

から, "Download" ページに移動する. そこで, Latest release の "YALMIP R*******" (******** にはリ リースされた年月日が入る) をクリックし, zip ファイ ル "YALMIP.zip" をダウンロードする.

3.3 パスの設定

ダウンロードした zip ファイル "SeDuMi_1_3.zip" および "YALMIP.zip"を適当なフォルダに解凍する.た とえば、C ドライブのフォルダ "hoge"の中にこれら のファイルが解凍され、"SeDuMi_1_3"、"yalmip"と いうフォルダが生成されているものとする.フォルダ内 のファイルを利用できるようにするには、M ファイル

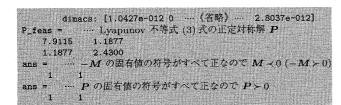
M ファイル"lmi_path.m":パスの設定 1 addpath(genpath('C:\hoge\SeDuMi_1_3')) 2 addpath(genpath('C:\hoge\yalmip'))

を実行して,これらフォルダにパスを通す必要がある. M ファイル"lmi_path.m"を実行した後,

>> path 🚽 ……… パスの確認

と入力することで,パスが通ったことを確認できる. また,ユーザが管理者権限をもっているのであれば, MATLAB の起動時にパスを自動的に通すことができ る.たとえば, MATLAB が C ドライブのフォルダ "MATLAB_R2010b" にインストールされているのであ れば、"C:\MATLAB_R2010b\toolbox\local"にある M ファイル "matlabrc.m"の最下部に M ファイル "lmi_path.m"の内容を追加すればよい.

4. SeDuMi/YALMIP を利用した LMI の 求解

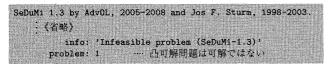

4.1 LMI 求解の手順

YALMIP を利用した LMI の記述と LMI の求解のた めの手順を以下に示す.

<u>ステップ1</u> システム行列(状態方程式(8)式にお
ける A, B など)や重み行列(評価関数 (9) 式
における Q , R など)を定義する.
<u>ステップ 2</u> 関数 "sdpvar" を利用して,決定変
数を定義する。たとえば、スカラーの決定変数
$\gamma \in \mathbb{R}$ を定義するには,
• gamma = sdpvar(1);
• gamma = sdpvar;
のいずれかを記述する.対称行列 $oldsymbol{X}{=}oldsymbol{X}^{\mathrm{T}}{\in}$
$\mathbb{R}^{n imes n}$ の決定変数を定義するには、
• X = sdpvar(n,n,'symmetric');
• X = sdpvar(n,n,'sy');
 X = sdpvar(n,n); X = sdpvar(n);
のいずれかを、対称とは限らない正方行列 Y∈
$\mathbb{R}^{n \times n}$ の決定変数を定義するには,
• Y = sdpvar(n,n,'full');
• $Y = sdpvar(n,n, f');$
のいずれかを、長方行列 $oldsymbol{Z} \in \mathbb{R}^{n imes m}$ の決定変数
を定義するには,以下のいずれかを記述する.
• Z = sdpvar(n,m,'full');
• $Z = sdpvar(n,m, 'f');$
• Z = sdpvar(n,m); $(n \neq m)$

168

また, $S_{11} = S_{11}^{T} \in \mathbb{R}^{n \times n}$, $S_{21} \in \mathbb{R}^{m \times n}$, $S_{22} \in \mathbb{R}^{m \times m}$ により構成される行列 $S = \begin{bmatrix} S_{11} & 0 \\ S_{21} & S_{22} \end{bmatrix}$ を定義するには、以下のように記述する. $\begin{cases} S11 = sdpvar(n,n,'sy'); \\ S21 = sdpvar(m,n,'f'); \end{cases}$	たい場合は、コマンドウィンドウで"help sdpvar"な どと入力するか、ホームページ [12] を参照されたい. 以上の説明を基に、 例題 1 の安定解析問題に対する M ファイルを作成する.(3) 式は定数行列項を含まない LMI であり、A が不安定行列の場合でも、 $P=0$ とす れば He[PA] =0 となる.したがって、このままでは、 正確な判定が期待できない.そこで、(4) 式の代わりに
• { S22 = sdpvar(m,m,'f'); S = [S11 zeros(n,m)	$\boldsymbol{P} \succ \boldsymbol{I} \ (\succ 0) \tag{16}$
S = [S11 Zeros(n,m) S21 S22];	を用いた M ファイルを以下に示す ¹ .
<pre>ステップ3 関数 "set"を利用して, LMI を定 義する.まず, LMI の定義を初期化するために • LMI = set([]); と記述する.そのうえで,たとえば, • {LMI = LMI + set(P*A + A'*P < 0); LMI = LMI + set(P > 0);</pre>	M ファイル "lyapunov.m":安定解析問題 1 clear; format compact … 初期化 2 $\chi = - \overline{\lambda \overline{\tau} \vee \overline{\tau}} 1$ … $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$ 4 $-2 & -3 \end{bmatrix};$ (A の固有値: -1, -2) 5 $\chi = - \overline{\lambda \overline{\tau} \vee \overline{\tau}} 2$ … $P = P^{T} = \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix}$
のように記述すると, LMI (3), (4) 式を定義す	8 LMI = set(日); LMI の初期化 9 M = P*A + A'*P; M := He[PA]
ることができる.	10 LMI = LMI + set(M < 0); … LMI (3) 式 11 LMI = LMI + set(P > eye(2)); … LMI (16) 式
ステップ4 関数 "solvesdp"を利用して,LMI の決定変数を求める.たとえば,定義された LMI に対して,デフォルトの SDP ソルバにより凸可解問題を解くには,	 12 % ステップ 4
• solvesdp(LMI)	19 sign(eig(double(P))') … P の固有値の符号を計算 20 end
と記述し、線形目的関数を $E = \gamma$ (gamma) とした凸最適化問題を解くには、	18, 19 行目では, LMI (3), (16) 式が可解であった場
 solvesdp(LMI,gamma) 	合, 関数"eig"により $oldsymbol{P},-oldsymbol{M}$ の固有値を求め,
と記述する. なお, SeDuMi がインストールされ ている場合, これがデフォルトの SDP ソルバと なる. SDP ソルバの種類, 反復計算の最大回数な どの設定を行いたい場合, 関数 "sdpsettings" を使用する. たとえば, SDP ソルバの種類を SeDuMi や LMILAB, 反復計算の最大回数を 1,000 とするには, (ops = sdpsettings;	関数"sign"でその符号を調べている. M ファイル "lyapunov.m"を実行した結果を以下に示す. SeDuMi 1.3 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003. … (省略) sol = yalmiptime: 0.2400 solvertime: 0.0680 info: 'No problems detected (SeDuMi-1.3)' problem: 0 … 凸可解問題は可解である
<pre>ops = supsettings; ops.solver = 'sedumi';</pre>	¹ 別の対処方法を以下に示す.まず,"lyapunov.m"の
ops.sedumi.maxiter = 1000;	11 行目の後に
<pre>• { ops = sdpsettings; ops.solver = 'lmilab';</pre>	LMI = LMI + set(trace(P) == 1); \cdots tr[P] = 1
ops.lmilab.maxiter = 1000;	を書き加え, 制約条件 tr[P] =1 を加えることで, P = 0
のように設定した後,凸可解問題の場合,	となることを回避する. つぎに,"lyapunov.m"の 10,11 行目を
 solvesdp(LMI,[],ops) と記述し、正是演化問題の提合。 	(ep. = 1e-7; $\cdots z = 10^{-7}$
と記述し,凸最適化問題の場合,	$\begin{array}{llllllllllllllllllllllllllllllllllll$
• solvesdp(LMI,gamma,ops)	と書き換えるか,あるいは,"lyapunov.m"の13行
と記述する. ステップ 5 関数 "double"を利用して,得られ	日を
た決定変数を倍精度に変換する.たとえば、関	<pre>ops = sdpsettings; ops.shift = 1e-7; colored (IMT_l_col)</pre>
数 "solvesdp" により得られた決定変数 P は	solvesdp(LMI,[],ops) と書き換える(関数"solvesdp"のオプション shift
• P_feas = double(P)	と書き換える () Solvesop のオフラヨン Shirt を設定する). このように記述すると、十分小さな正
のように入力することで,値を確認できる.	数 ε を用いて M や P の固有値をわずかにシフトさ
ここで示した関数について、さらに詳しい情報を知り	せることにより,数値計算による正定性や負定性の判 定誤差に対処することができる.



この例の場合, "info" に "No problems detected" ("problem" に "0") と表示される. これらのメッセー ジは, LMI (3), (4) 式を満足する解 P が得られ, シス テムが安定であることを示している. また, 得られた Pと -M = -He[PA] が正定であることは, これらの固 有値がすべて正であることから確認できる.

つぎに、"lyapunov.m"の 3,4 行目を

3 A = [0 1 …
$$A = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix}$$
; … $A = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix}$
(A の固有値: $(-3 \pm \sqrt{17})/2$)

に変更して実行すると、以下のようになる.

この例の場合, "info" に "Infeasible problem" ("problem" に "1") と表示される. これらのメッセー ジは, LMI (3), (4) 式を満足する解 **P** が存在せず, シ ステムが不安定であることを示している.

4.2 アーム型倒立振子の GS 制御

4.2.1 LPV モデル

第2図に示すアーム型倒立振子は,速度制御型モータ ドライバにより駆動されており,その非線形モデルは,

$$\begin{cases} \ddot{\theta}_{1} + a_{s}\dot{\theta}_{1} = b_{s}v \\ \alpha_{3}\cos\theta_{12}\ddot{\theta}_{1} + \alpha_{2}\ddot{\theta}_{2} \\ -\alpha_{3}\dot{\theta}_{1}^{2}\sin\theta_{12} - \alpha_{5}\sin\theta_{2} - c_{2}\dot{\theta}_{12} = 0 \end{cases}$$
(17)

となる. ただし, $\theta_{12} = \theta_1 - \theta_2$ であり, v は速度指令電圧 である. また,物理パラメータの意味については後述の M ファイル "adip.m" に示す. ここで,振子が倒立状 態 ($\theta_2 = 0$) の近傍で動作すると仮定し, $\cos\theta_{12} = \cos\theta_1$, $\sin\theta_2 = \theta_2$ のように近似する. さらに,遠心力・コリオ リカの項を無視し, $\rho(t) := 1 - \cos\theta_1(t)$ と定義すると, 状態変数を $\boldsymbol{x} = [\boldsymbol{\theta}^T \ \boldsymbol{\theta}^T]^T (\boldsymbol{\theta} = [\theta_1 \ \theta_2]^T)$,操作量を u = v,係数行列を

第2図 アーム型倒立振子

$$\begin{bmatrix} \boldsymbol{A}(\rho) \ \boldsymbol{B}(\rho) \end{bmatrix} = \begin{bmatrix} \boldsymbol{A}_{(0)} \ \boldsymbol{B}_{(0)} \end{bmatrix} + \rho \begin{bmatrix} \boldsymbol{A}_{(1)} \ \boldsymbol{B}_{(1)} \end{bmatrix}$$
$$= \begin{bmatrix} \boldsymbol{0} \ \boldsymbol{I} \\ \boldsymbol{A}_{21} \ \boldsymbol{A}_{22(0)} \end{bmatrix} \boldsymbol{B}_{2(0)} \end{bmatrix} + \rho \begin{bmatrix} \boldsymbol{0} \ \boldsymbol{0} \\ \boldsymbol{0} \ \boldsymbol{A}_{22(1)} \end{bmatrix} \boldsymbol{B}_{2(1)} \end{bmatrix}$$

とした LPV モデル

$$\dot{x}(t) = A(\rho(t))x(t) + B(\rho(t))u(t), \ x(0) = x_0$$
 (18)

が得られる.この LPV モデルの係数行列を定義した M ファイルを以下に示す.

\mathbf{M}	ファイル"adip.m":アーム型倒立振子のモデル
1	m1 = 3.06e-001; … m1:アームの質量
2	11 = 1.20e-001; … ℓ1: アームの軸から重心までの長さ
3	L1 = 2.27e-001; … L1:アームの長さ
4	J2 = 1.38e-003; … J2:振子の重心まわりの慣性モーメント
5	m2 = 1.04e-001; … m2:振子の質量
6	12 = 1.75e-001; … ℓ_2 :振子の軸から重心までの長さ
7	$c2 = 1.86e-004;$ … c_2 :振子の軸の粘性摩擦係数
8	g = 9.81e+000; … g:重力加速度 as = 6.25e+000; … a., b.: アーム、モータ、モータドライバ
9 10	as = 6.25e+000; a _s , b _s :アーム、モータ、モータドライバ bs = 1.56e+001; の特性より決まる定数
11	2
12	a2 = J2 + m2*12 ² ; $\cdots a_2 = J_2 + m_2 \ell_2^2$
13	$a_3 = m_2 * L_1 * 12; \qquad \cdots a_3 = m_2 L_1 \ell_2$
14	a4 = $(m1*l1 + m2*L1)*g;$ $a_4 = (m_1\ell_1 + m_2L_1)g$
15	a5 = m2*12*g; $\cdots a_5 = m_2 \ell_2 g$
16	×
17	$A21 = \begin{bmatrix} 0 & 0 & \cdots & A_{21} \end{bmatrix}$
18	0 a5/a2];
19	$A22_0 = [-as 0 \dots A_{22(0)}]$
20	(as*a3+c2)/a2 -c2/a2]; A22_1 = [0 0 $A_{22(1)}$
21 22	$A22_1 = \begin{bmatrix} 0 & 0 & \cdots & A_{22(1)} \\ -as*a3/a2 & 0 \end{bmatrix};$
23	$B_{2,0} = [bs \cdots B_{2(0)}]$
24	-bs*a3/a2]:
25	$B2_1 = [0 \cdots B_{2(1)}]$
26	bs*a3/a2];
27	×
28	$ \overset{"}{\mathbf{A}}_{0} = \begin{bmatrix} \operatorname{zeros}(2,2) & \operatorname{eye}(2) & \cdots & \mathbf{A}_{(0)} = \begin{bmatrix} 0 & \mathbf{I} \\ \mathbf{A}_{21} & \mathbf{A}_{22(0)} \end{bmatrix} $
29	
30	$\mathbf{A}_{-1} = \begin{bmatrix} 2 \cos(2,2) & 2 \cos(2,2) & \cdots & \mathbf{A}_{(1)} = \begin{bmatrix} 0 & 0 \\ 0 & \mathbf{A}_{22(1)} \end{bmatrix}$
31	$2 \operatorname{eros}(2,2) A22_1]; \qquad [0] A22_1];$
32 33	$ \begin{array}{c} 2 \operatorname{cros}(2,2) & A22_{-1} \\ B_{-}0 = \begin{bmatrix} 2 \operatorname{cros}(2,1) & \cdots & B_{(0)} \\ B_{2,0} \end{bmatrix} \\ B_{2,0} \end{bmatrix} $
33 34	$ \begin{array}{c} \mathbf{B}_{2} 0 \ \mathbf{i}; \\ \mathbf{B}_{-1} = \begin{bmatrix} \mathbf{z}_{\text{FOS}}(2, 1) \\ \mathbf{B}_{2} 1 \ 1 \end{bmatrix} \qquad \cdots \qquad \mathbf{B}_{(1)} = \begin{bmatrix} 0 \\ 0 \\ \mathbf{B}_{2(1)} \end{bmatrix} $
35	$ \begin{array}{c} \mathbf{B}_{21} = \begin{bmatrix} 2 \operatorname{Eros}(2,1) \\ \mathbf{B}_{21} \end{bmatrix} \\ \end{array} $

4.2.2 GS コントローラ設計

アーム角度が $|\theta_1(t)| \le \overline{\theta}_1$ で動作するとき,時変パラ メータ $\rho(t)$ の範囲は $0 \le \rho(t) \le \overline{\rho} := 1 - \cos \overline{\theta}_1$ となる. 同様に, $|\theta_1(0)| \le \overline{\theta}_{10}$ に対して,初期値 $\rho_0 := \rho(0)$ の範 囲は $0 \le \rho_0 \le \overline{\rho}_0 := 1 - \cos \overline{\theta}_{10}$ となる.また, $|\dot{\rho}(t)| \le \delta$ であるとする.このとき,LPV モデル (18) 式に対して, **例題 2** のコスト保証制御問題における有界条件 (9) 式を 満足する,状態フィードバック形式の GS コントローラ

$$u(t) = \boldsymbol{K}(\rho(t))\boldsymbol{x}(t) \tag{19}$$

を設計する問題を考える.

この問題の可解条件は,LMI (13),(14) 式をパラ メータに依存させた,パラメータ依存 LMI (PDLMI: Parameter Dependent LMI) に帰着できる.具体的に は、多項式の行列値関数

$$\boldsymbol{X}(\rho) = \sum_{i=0}^{k_1} \rho^i \boldsymbol{X}_{(i)}, \ \boldsymbol{F}(\rho) = \sum_{i=0}^{k_2} \rho^i \boldsymbol{F}_{(i)}$$
(20)

システム/制御/情報 第55巻 第5号 (2011)

に対して、PDLMI は,

170

$$\boldsymbol{M}_{1}(\boldsymbol{\xi},\rho,\rho^{2},\cdots,\rho^{k_{1}}) := \boldsymbol{X}(\rho) \succ 0 \tag{21}$$
$$\boldsymbol{M}_{2}(\boldsymbol{\xi},\rho,\rho^{2},\cdots,\rho^{k_{1}}\dot{\rho})$$

$$:= \begin{bmatrix} -(\operatorname{He}[\boldsymbol{\Phi}(\rho)] - \dot{\boldsymbol{X}}(\rho)) & * & * \\ \boldsymbol{Q}_{h}\boldsymbol{X}(\rho) & \boldsymbol{I} & * \\ R\boldsymbol{F}(\rho) & \boldsymbol{0} & R \end{bmatrix} \succ 0 \qquad (22)$$

$$\boldsymbol{M}_{3}(\boldsymbol{\xi},\rho_{0},\rho_{0}^{2},\cdots,\rho_{0}^{k_{1}}) := \begin{bmatrix} \gamma \boldsymbol{I} & \ast \\ \boldsymbol{I} & \boldsymbol{X}(\rho_{0}) \end{bmatrix} \succ 0 \qquad (23)$$

となる. ただし, k は k_1+1 , k_2+1 のうちで大きい方 の数,決定変数 $\boldsymbol{\xi}$ は $\boldsymbol{X}_{(i)}, \boldsymbol{F}_{(i)}$ の要素と γ である.と くに、 $k_1 = k_2 = 1$ とすると、PDLMI (21)-(23) 式は、

$$\boldsymbol{M}_{1}(\boldsymbol{\xi}, \boldsymbol{\rho}) = \boldsymbol{X}_{(0)} + \boldsymbol{\rho} \boldsymbol{X}_{(1)} \succ \boldsymbol{0}$$
(24)

$$\boldsymbol{M}_{2}(\boldsymbol{\xi},\rho,\rho^{2},\dot{\rho}) = \sum_{i=0}^{2} \rho^{i} \boldsymbol{M}_{2(i0)}(\boldsymbol{\xi}) + \dot{\rho} \boldsymbol{M}_{2(01)}(\boldsymbol{\xi}) \succ 0 \qquad (25)$$

$$\dot{
ho} \boldsymbol{M}_{2(01)}(\boldsymbol{\xi}) \succ 0$$
 (25)

$$\boldsymbol{M}_{3}(\boldsymbol{\xi},\rho_{0}) = \boldsymbol{M}_{3(0)}(\boldsymbol{\xi}) + \rho_{0} \boldsymbol{M}_{3(1)}(\boldsymbol{\xi}) \succ 0$$
(26)

という形式となる. ここで, PDLMI (24)-(26) 式はそ れぞれ, ρ , ρ , ρ_0 に関して1次であるから, これらは変 動 $0 \le \rho \le \overline{\rho}, -\delta \le \overline{\rho} \le \delta, 0 \le \rho_0 \le \overline{\rho}_0$ の端点条件

$$\boldsymbol{M}_1(\boldsymbol{\xi}, 0) \succ 0, \ \boldsymbol{M}_1(\boldsymbol{\xi}, \overline{\rho}) \succ 0$$
 (27)

$$\boldsymbol{M}_2(\boldsymbol{\xi},\rho,\rho^2,-\delta) \succ 0, \ \boldsymbol{M}_2(\boldsymbol{\xi},\rho,\rho^2,\delta) \succ 0$$
 (28)

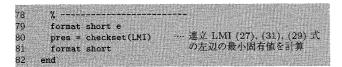
$$\boldsymbol{M}_{3}(\boldsymbol{\xi},0) \succ 0, \ \boldsymbol{M}_{3}(\boldsymbol{\xi},\overline{\rho}_{0}) \succ 0$$
 (29)

で置き換えることができる. さらに, PDLMI (28) 式は, パラメータρに関して2次であるが、以下の補題を利 用し,有限個の LMI に帰着できることが渡辺らにより 示されている [15,6].

【補題 2】 決定変数が *ξ*, パラメータ ρ の変動範囲 が $0 \le \rho \le \overline{\rho}$ であるような次式の PDLMI を考える.

$$\boldsymbol{M}(\boldsymbol{\xi}, \rho, \rho^2, \cdots, \rho^k) = \sum_{i=0}^k \rho^i \boldsymbol{M}_{(i)}(\boldsymbol{\xi}) \succ 0$$
(30)

このとき,変動 $\mathcal{U} = \{(\rho, \rho^2, \dots, \rho^k) \mid 0 \le \rho \le \overline{\rho}\}$ を囲む 凸多面体を T とすると, (30) 式の $(\rho, \rho^2, \dots, \rho^k)$ を Tのすべての頂点で置き換えた連立 LMI を同時に満足す る決定変数 & は, PDLMI (30) 式を満足する.

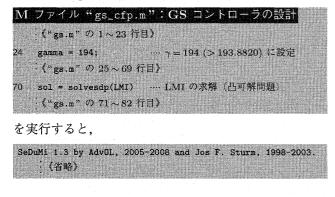

簡単のため,変動 $\mathcal{U} = \{(\rho, \rho^2) \mid 0 \le \rho \le \overline{\rho}\}$ を囲む凸 多面体 \mathcal{T} として,頂点を $(0,0), (\bar{\rho},0), (0,\bar{\rho}^2), (\bar{\rho},\bar{\rho}^2)$ とした長方形を考える. このとき, PDLMI (28) 式を解 く問題は、この長方形の頂点における連立 LMI

$$\begin{cases} \boldsymbol{M}_{2}(\boldsymbol{\xi},0,0,-\delta) \succ 0, \ \boldsymbol{M}_{2}(\boldsymbol{\xi},0,0,\delta) \succ 0\\ \boldsymbol{M}_{2}(\boldsymbol{\xi},\overline{\rho},0,-\delta) \succ 0, \ \boldsymbol{M}_{2}(\boldsymbol{\xi},\overline{\rho},0,\delta) \succ 0\\ \boldsymbol{M}_{2}(\boldsymbol{\xi},0,\overline{\rho}^{2},-\delta) \succ 0, \ \boldsymbol{M}_{2}(\boldsymbol{\xi},0,\overline{\rho}^{2},\delta) \succ 0\\ \boldsymbol{M}_{2}(\boldsymbol{\xi},\overline{\rho},\overline{\rho}^{2},-\delta) \succ 0, \ \boldsymbol{M}_{2}(\boldsymbol{\xi},\overline{\rho},\overline{\rho}^{2},\delta) \succ 0 \end{cases}$$
(31)

を解く問題に帰着される.

以上のことをまとめると、GS コントローラを設計す るための M ファイルは以下のようになる.

M	ファイル "gs.m":GS コン	トローラの設計
1 2 3	%	・初期化 ・ "adip.m"の実行
4 5	χ q1 = 5; ···	$q_1 > 0$ の設定
6 7 8	q3 = 0.01;	·· q2 ≥0 の設定 - q3 ≥0 の設定 q4 ≥0 の設定
9 10 11	<pre>R = 1; Qh = diag([sqrt(q1) sqrt(q2) sqrt(q2</pre>	 R>0の設定
12 13	% th1_max = 60*pi/180; ···	$\cdot \cdot \overline{\theta}_1$
14 15 16	A DECEMBER OF A	$\begin{array}{l} & \theta_{10} \\ & \delta \\ & \overline{\rho} = 1 - \cos \overline{\theta}_1 \end{array}$
17 18 19	<pre>rho0_max = 1 - cos(th10_max); %</pre>	$\cdots \overline{\rho}_0 = 1 - \cos\overline{\theta}_{10}$
20 21	$X_1 = sdpvar(n,n,'sy');$	n: xの次数, $p: u$ の次数 $X_{(0)} \in \mathbb{R}^{n \times n}$:対称行列 $X_{(1)} \in \mathbb{R}^{n \times n}$:対称行列
22 23 24	$F_1 = sdpvar(p,n,'f');$	$ \begin{array}{l} & \cdot \cdot F_{(0)} \in \mathbb{R}^{p \times n} \\ & \cdot \cdot F_{(1)} \in \mathbb{R}^{p \times n} \\ & \cdot \cdot \gamma \in \mathbb{R} \end{array} $
25 26 27	<pre>%</pre>	- LMI の初期化
28 29	rho = [0 1]*rho_max;	·· 端点:ρ=0, ρ
30 31 32	<pre>for i = 1:2 X = X_0 + rho(i)*X_1; M1 = X;</pre>	and the second
33 34 35	LMI = LMI + set(M1 > 0); end %	LMI (27) 式の追加
36 37	<pre>rho1 = [0 1 0 1]*rho_max; rho2 = [0 0 1 1]*rho_max²;</pre>	$(\overline{\rho}, 0), (0, \overline{\rho}^2), (\overline{\rho}, \overline{\rho}^2)$
38 39 40	drho = $[-1 \ 1] * drho_max;$ Phi_0 = A_0*X_0 + B_0*F_0;	$\cdot {oldsymbol{\Phi}}_{(0)}$
41 42 43	Phi_1 = A_1*X_0 + B_1*F_0 + A_0*X_1 + B_0*F_1; Phi_2 = A_1*X_1 + B_1*F_1;	$\cdots {oldsymbol{arPhi}}_{(1)}$ $\cdots {oldsymbol{arPhi}}_{(2)}$
44 45 46	for i = 1:4 for j = 1:2	
47 48 49	Phi = Phi_0 + rho1(i)*Phi_	$\psi \Phi(\alpha) = \nabla^2 - \alpha^i \Phi \psi$
50 51	$F = F_0 + rho1(1)*X_1;$ dX = drho(j)*X_1;	$\cdot \cdot \boldsymbol{F}(\rho) = \boldsymbol{F}_{(0)} + \rho \boldsymbol{F}_{(1)}$
52 53 54	M2 = [-(Phi+Phi'-dX) X*Q Qh*X eye(n F'*R a) zeros(n,p) (p,n) R];
55 56 57	R*F zeros LMI = LMI + set(M2 > 0); - end	
58 59 60	end % rho0 = [0 1]*rho0_max;	滞す・2、一0 2
61 62	for i = 1:2	
63 64 65	$X_rho0 = X_0 + rho0(1)*X_1;$ $M3 = [gamma*eye(n) eye(n)$	$\cdots \boldsymbol{X}(\rho_0) = \boldsymbol{X}_{(0)} + \rho_0 \boldsymbol{X}_{(1)}$
66 67 68	<pre>eye(n) X_rho0] LMI = LMI + set(M3 > 0); end</pre>	; … LMI (29) 式の追加
69 70 71	Xsol = solvesdp(LMI,gamma) .	… LMI の求解 (γ を線形目的 関数と1 たみ最適化期期)
72 73	<pre>'' if sol.problem ~= 1 gamma_opt = double(gamma) X_0_opt = double(X_0)</pre>	··· problem ≠1 であれば, ··· γ を倍精度で表示
74 75 76	$X_1_opt = double(X_1)$ $F_0_opt = double(F_0)$	… X ₍₁₎ を倍積度で表示 … F ₍₁₎ を倍精度で表示
77	F_1_opt = double(F_1)	… F ⁽¹⁾ , を倍精度で表示



M ファイル "gs.m"を実行すると,

《省略》	L, 2005-2008 and Jos F. Sturm, 1998-2003.
info: 'N problem: 4 :《省略》	umerical problems (SeDuMi-1.3), … 凸最適化問題の解は数値的な問題があるか もしれない
gamma_opt = 193.8820 《省略》	線形目的関数 γ の最小値 (γ=193.8820)
pres =	
7.5018e-003	···· M ₁ (ξ,0) の最小固有値
6.1005e-004	···· M1(E, p) の最小固有値
-8.8716e-010	… M ₂ (ξ,0,0,-δ)の最小固有値
4.8249e-009	M ₂ (ξ,0,0,δ)の最小固有値
-7.4369e-010	M ₂ (ξ, ρ, 0, -δ)の最小固有値
1.3066e-009	···· M ₂ (ξ, p, 0, δ) の最小固有値
2.8326e-009	… $M_2(\boldsymbol{\xi}, 0, \overline{ ho}^2, -\delta)$ の最小固有値
1.7832e-009	M ₂ (E,0, p ² , δ) の最小固有値
-5.1840e-010	… $M_2(\xi, \overline{\rho}, \overline{\rho}^2, -\delta)$ の最小固有値
-8.3788e-010	… $M_2(\xi, \overline{\rho}, \overline{\rho}^2, \delta)$ の最小固有値
2.3439e-003	···· M ₃ (£,0) の最小固有値
-1.3232e-009	… M ₃ (E,p ₀)の最小固有値

という結果が得られる. このように, SDP ソルバ SeDuMi を用いて規模の大きな凸最適化問題を解くと,可解で あるはずの問題であっても,"info"に"Numerical problems"("problem"に"4")と表示され,数値的 に問題がある可能性を指摘されることがある¹. 実際,上記 の実行結果より,連立 LMI (27), (31), (29) 式の左辺の中 で, $M_2(\xi, 0, 0, -\delta), M_2(\xi, \overline{\rho}, 0, -\delta), M_2(\xi, \overline{\rho}, \overline{\rho}^2, -\delta),$ $M_2(\xi, \overline{\rho}, \overline{\rho}^2, \delta), M_3(\xi, \overline{\rho}_0)$ の最小固有値は負であり,こ れらは正定ではない.

コスト保証制御問題において、このような結果に対処 するための一つの方法は、凸最適化問題で得られた最小 値 193.8820 よりも若干、大きな線形目的関数 γ の値を 与えて、再度、凸可解問題を解くというものである。M ファイル "gs.m"の 24,70 行目を書き換えた

¹LMILAB は実行速度が遅いという欠点はあるが, 信頼 性が高い. 実際, M ファイル "gs.m"の 70 行目を ops = sdpsettings; ops.solver = 'lmilab'; sol = solvesdp(LMI,gamma,ops)

と書き換えて実行すると, 連立 LMI (27), (31), (29) 式 の解が得られる. このときの γ の最小値は 193.9675 となり, SeDuMi による結果よりもわずかに大きい.

info: 'No problems detected (SeDuMi-1.3)' … 凸可解問題は可解である problem: 0 :《省略》 … 最小固有値はすべて正 pres = 《省略》

となり, 連立 LMI (27), (31), (29) 式の解が得られる. 別の対処方法としては, 先に説明した関数 "solvesdp" のオプション shift を設定し, 凸最適化問題を解くこ とが考えられる. たとえば, "gs.m"の 70 行目を

ops = sdpsettings; ops.shift = 1e-7; sol = solvesdp(LMI,gamma,ops)

に変更して実行すると, $\gamma = 193.8861$ が得られる. このとき, "info"に"Numerical problems"("problem" に"4")と表示されるが, presの値をみると, 最小固有値がすべて正であり, 連立 LMI (27), (31), (29) 式を満足する解が得られたことを確認できる.

4.2.3 非線形シミュレーション

Simulink を利用し,制御対象を非線形モデル(17)式, GS コントローラを M ファイル "gs_cfp.m"により設 計された(19)式とした非線形シミュレーションを行っ た.シミュレーション結果を,第3図に示す.第3図に は,比較のため,原点近傍における線形化モデル

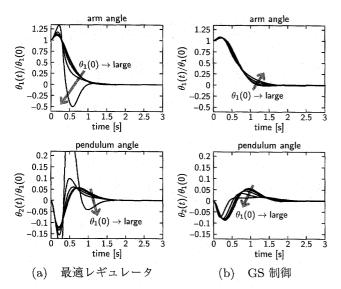
$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}_{(0)}\boldsymbol{x}(t) + \boldsymbol{B}_{(0)}\boldsymbol{u}(t)$$
(32)

に対して、最適レギュレータ理論により

	>> K_LQ = -lqr(A_0,B_0,Q,R) + K_LQ =	
- 33	2.2361 20.1077 1.8179 3.2024	

のように設計された,線形コントローラ

$$u(t) = \boldsymbol{K}_{\mathrm{LO}} \boldsymbol{x}(t) \tag{33}$$


を用いた結果も示している.

第3図 (a) に示すように,最適レギュレータでは, アームの初期角度 $\theta_1(0)$ が30 [deg] 程度までは応答波 形がほとんど変わらないが,40 [deg] を超えて50 [deg] に近づくと振動的な応答となり,制御性能が著しく劣化 する.それに対し,第3図 (b) に示すように,GS 制御 では,アームの初期角度 $\theta_1(0)$ が50 [deg] であっても制 御性能の劣化は抑えられている.

5. おわりに

本解説では、まず、制御理論の分野で広く普及してい る LMI に基づく制御系解析・設計の概要を説明した. つ いで、ユーザが実際に LMI を用いて制御系解析・設計を 行うためのソフトウェア環境について説明した. そこで は、数値計算ソフトウェア MATLAB 上で動作し、この 分野の研究者の間で最も使用されている、フリーウェア の SDP ソルバ SeDuMi や LMI パーサ YALMIP のイ ンストール手順を示した. また、安定性解析や GS 制御 系設計といった具体例を通じ、その活用の方法を示した. 172

システム/制御/情報 第55巻 第5号 (2011)

 第3図 シミュレーション結果(縦軸はアームの初期角度 (θ₁(0)=10,20,30,40,50 [deg])を基準に正規化)

本解説では,数値最適化の分野の基本的な事項のみ説明 したが,二乗和 (SOS: Sum of Squares) やランダマイ ズドアルゴリズムといった最近の結果と数値計算ソフト ウェアの活用については,本特集号の市原氏の解説[16] や,和田氏・藤崎氏の解説 [17] で説明されているので, そちらを参照されたい.

なお,本解説の脱稿後,YALMIP の開発者である Dr. Johan Löfberg より,関数 "set"を利用した LMI の 記述 (4.1 のステップ 3 を参照)が将来のバージョン では保証されない可能性があるとのご指摘をいただい た.新しい記述方法では,関数 "set"の代わりに,括 弧 "[","]"を利用し,第1表のように記述する.現 時点での最新バージョン (Ver.R20110318)では,関数 "set"を利用可能であり,本解説だけでなく本特集号 の総説および解説[16,17]における M ファイルは,LMI が古い記述形式で表現されていることを,念のため付記 しておく.

本解説で使用した MATLAB の M ファイルや Simulink モデルおよび補足事項は,

 http://www.maizuru-ct.ac.jp/control/kawata/iscie /iscie.html

で公開する.本解説が LMI に基づく制御系解析・設計 を導入するための一助となれば幸いである.

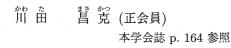
(2011年1月11日受付)

参考文献

 S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan: Linear Matrix Inequalities in System and Control Theory, SIAM (1998) (available from http://www. stanford.edu/~boyd/Imibook/Imibook.pdf)

[2] 岩崎:LMIと制御,昭晃堂 (1997)

- [3] 藤森:ロバスト制御,コロナ社 (2001)
- [4] 増淵, 小原:LMI によるシンセシスと半正定値計画問


題;計測と制御, Vol. 35, No. 10, pp. 743-750 (1996)

- [5] 浅井:リレー解説「ロバスト制御の基礎から最先端まで」第4回:線形行列不等式,第5回:線形 H_∞制御系設計,第6回:LMIに基づく線形ロバスト制御系解析・設計;計測と制御, Vol. 42, No. 10–12, pp. 859–866, 958–964, 1032–1038 (2003)
- [6] 渡辺,内田:ゲインスケジューリング 適応/非線形 制御への展開;システム/制御/情報, Vol. 42, No. 6, pp. 306-311 (1998)
- [7] C. Scherer, P. Gahinet and M. Chilali: Multiobjective output-feedback control via LMI optimization; *IEEE Transactions on Automatic Control*, Vol. 42, No. 7, pp. 896–911 (1997)
- [8] P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali (梶原 監訳): LMI Control Toolbox for Use with MATLAB, The MathWorks (1995)
- [9] 梶原:LMI ベース制御系 CAD とその応用;計測と制御, Vol. 35, No. 10, pp. 737-742 (1996)
- [10] J. F. Sturm: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones (Updated for Version 1.05); Optimization Methods and Software, Vol. 11, No. 1, pp. 625–653 (1999) (available from http://sedumi.ie.lehigh.edu/)
- [11] K. C. Toh, M. J. Todd and R. H. Tütüncü: SDPT3 — a MATLAB software package for semidefinite programming, version 1.3; Optimization Methods and Software, Vol. 11, No. 1, pp. 545–581 (1999) (available from http://www.math.nus.edu.sg/~mattohkc/ sdpt3.html)
- [12] J. Löfberg: YALMIP: a toolbox for modeling and optimization in MATLAB; Proceedings of 2004 IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289 (2004) (available from http://users.isy.liu.se/johanl/yalmip/)
- [13] M. Grant, S. Boyd and Y. Ye: Disciplined convex programming (Chapter in *Global Optimization: from Theory to Implementation*), Springer, pp. 155–210 (2006) (available from http://cvxr.com/cvx/)
- [14] Y. Fujisaki and Y. Oishi: Guaranteed cost regulator design: a probabilistic solution and a randomized algorithm; *Automatica*, Vol. 43, No. 2, pp. 317–324 (2007)
- [15] R. Watanabe, K. Uchida and M. Fujita: A new LMI approach to analysis of linear systems with scheduling parameter — reduction to finite number of LMI conditions—; Proceedings of the 35th IEEE Conference on Decision and Control, pp. 1663–1665 (1996)
- [16] 市原:二乗和に基づく制御系解析・設計;システム/制御/情報, Vol. 55, No. 5, pp. 174–180 (2011)
- [17] 和田,藤崎: ランダマイズドアルゴリズムによるロバスト制御系解析・設計;システム/制御/情報, Vol. 55, No. 5, pp. 181–188 (2011)

第1表 YALMIP における LMI の新しい記述形式

古い記述形式(関数 "set"を利用)	新しい記述形式(括弧"[","]"を利用)	備考
LMI = set([]);	LMI = [];	LMI の初期化
LMI = LMI + set(M1 > 0);	LMI = [LMI, M1 > 0];	LMI $\begin{cases} M_1 \succ 0\\ M_2 \prec 0 \end{cases}$ の追加
LMI = LMI + set(M2 < 0);	LMI = [LMI, M2 < 0];	$M_2 \prec 0 \qquad M_2 = 0$

著者略歴

越原 義雄(正会員)

2002 年 3 月京都大学大学院工学研究科 電気工学専攻博士後期課程修了.同年 4 月 より京都大学大学院工学研究科助手,同研 究科講師を経て,2010 年 3 月同研究科准 教授となり現在に至る.数値最適化手法を 用いた制御系の解析,設計に関する研究に (工学) 計測 自動制約学会 IEEE な

従事. 京都大学博士(工学). 計測自動制御学会, IEEE などの会員.