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Abstract

Recent stress tensor inversion methods for fault-slip analysis are used to distinguish multiple stress

states to elucidate spatiotemporal change of the earth’s crustal tectonics. An estimator named the

“stress difference” has been a practicable tool to measure the difference between stress solutions of

inversion analysis. This measure corresponds to the expected difference in shear stress direction on

a randomly oriented fault plane, which is, however, an approximation including several degrees of

deviation. This study investigated the formula of stress difference and found the exact physical mean-

ing, specifically the expected difference in shear stress vector which carries information on magnitude

as well as direction. The present discovery is based on the analytical proportionality between the

second invariant of stress tensor and the root mean square magnitude of shear stress for all orientation

of fault planes. The meaningless difference in non-dimensional shear stress magnitude was found to

be incorporated into the value of stress difference. This fact is not convenient for fault-slip analysis

dealing with only orientations.

KEY WORDS: Fault-slip analysis, Stress tensor inversion, Stress difference, Angular stress distance,

Second invariant.
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1 Introduction

Stress tensor inversion is a widespread technique to analyse fault-slip orientations for the purpose of

reconstructing (palaeo-)stress state in the earth’s crust. Various data sources are available; geological

outcrops, seismic focal mechanisms, boring core samples and underground faults imaged by seismic

surveys. Recent stress tensor inversion methods are expected to detect spatial and temporal changes

of stress state (e.g., Nemcok and Lisle 1995; Shan et al. 2003; Yamaji et al. 2006; Otsubo et al. 2008),

namely, detection of multiple solutions is one of the major problems in this field of methodology.

Then a measure of difference between stress solutions should have a significant role in objectively

distinguishing stress tensors or tectonic events. It has been difficult to define an appropriate measure

of difference as a scalar value because of the mathematical form of unknown stress tensor.

Since fault-slip analysis deals with directional information, one can determine only four of six

independent components of stress tensor described by a three-dimensional symmetric matrix. A stress

tensor with two normalisations is called reduced stress tensor (e.g., Angelier et al. 1982), which carries

orientations of three principal stress axes (σ1 ≥ σ2 ≥ σ3, where compression is positive) and a stress

ratio Φ = (σ2−σ3)/(σ1−σ3). Φ ranges from 0 to 1. Φ = 0 and Φ = 1 correspond to axial compressional

stress (σ1 > σ2 = σ3) and axial tensional stress (σ1 = σ2 > σ3), respectively. These parameters can

also be interpreted as orientation and shape of stress ellipsoid (Fig. 1). The difficulty of measuring

difference between two reduced stress tensors is in combining differences in orientation and stress ratio

into a scalar value. For example, given a small Φ, a rotation around σ3-axis should produce larger

change of stress state than that around σ1-axis even when the rotation angles are equal (black and

white arrows in Figure 1A).

To address such problem, Orife and Lisle (2003) proposed an measure named the “stress difference”,

of which definition was rewritten by Sato and Yamaji (2006a) as

D (σA,σB) =
√
JII (σA − σB), (1)
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where σA and σB are arbitrary reduced stress tensors. The tensors satisfy the following normalisation

conditions:

JI (σ) = σ1 + σ2 + σ3 = 0 (2)

and

JII (σ) = −σ1σ2 − σ2σ3 − σ3σ1 = 1. (3)

JI(σ) and JII(σ) are first and second basic invariants of an arbitrary stress tensor σ. The definition

of JII in Equation (3) is applicable only to deviatoric tensors which satisfy Equation (2). Stress

difference D ranges from 0 to 2. D = 0 for identical tensors and D = 2 for tensors with opposite

signs, i.e., σA = −σB. D satisfies the distance axioms, which was concisely proved by embedding

it in a parameter space as Euclidean geometrical distance (Sato and Yamaji 2006a). Some examples

of D values are shown in Figure 1. Rotations of σ1-axis of nearly axial compressional stress and

that of σ3-axis of nearly axial tensional stress give larger D than rotations of other axes. Exhaustive

examples of D values were provided by Orife and Lisle (2003) and Yamaji and Sato (2006). Since

the examples empirically demonstrated that the stress difference suitably combines the differences in

principal orientations and stress ratios, it has been utilised in studies of tectonics and methodology of

stress tensor inversion (e.g., Yamaji et al. 2005; Sato 2006).

However, the physical meaning of specific value of stress difference had remained unclear. As

is mentioned in the next section, Yamaji and Sato (2006) proposed an interpretation of D related

to difference in shear stress direction on fault surface, though their interpretation was empirical and

based on approximation. This study presents the alternative exact physical meaning of stress difference

without any approximation.

2 Conventional interpretation

Yamaji and Sato (2006) found an approximate monotonously-increasing relationship between the stress

difference D and the angular difference of shear stress directions exerted by two stresses in comparison
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averaged for randomly oriented fault planes. A Monte Carlo experiment was performed to examine

the approximate one-to-one correspondence. Two reduced stress tensors were randomly extracted

from a set of 60,000 tensors uniformly distributed in the parameter space where stress difference is

embedded as Euclidean distance (Sato and Yamaji 2006a,b). Then the stress difference between them

was calculated according to Equation (1). Given a randomly oriented fault plane of which unit normal

is −→n , Cauchy’s formula provides the shear stress vector exerted by a stress tensor σ as

−→τ (σ;−→n ) = σ−→n −−→n−→n Tσ−→n , (4)

where −→n is a columnar vector and the superscript T denotes the transpose of vector or matrix. Let

d be the angular difference between two shear stress vectors calculated from two stress tensors in

comparison (inset of Fig. 2A), i.e.,

d (σA,σB;
−→n ) = cos−1

[( −→τ A

|−→τ A|

)T( −→τ B

|−→τ B|

)]
, (5)

where −→τ A = −→τ (σA;
−→n ) and −→τ B = −→τ (σB;

−→n ). The expected value of d for a randomly oriented fault

plane is obtained by averaging it for all possible fault orientation:

d (σA,σB) =
1

4π

∫
−→n on S3

d (σA,σB;
−→n ) dA, (6)

where S3 is the unit sphere and dA is a small area element around the end point of −→n . An approximate

value of d was calculated by averaging d values evaluated at uniformly distributed 1,000 orientations

of fault normals generated by “spiral set” method (Rakhmanov et al. 1994). Small gray dots in

Figure 2A shows d (σA,σB) against Θ (σA,σB) for randomly extracted 10,000 pairs of σA and σB.

Θ denotes the angular stress distance (Yamaji and Sato 2006) which is simply related to D through

Θ = 2 sin−1
(
D
2

)
. The upper side of Figure 2A shows corresponding values of D. The small dots in

the figure are distributed in the vicinity of straight line d = Θ. This result successfully demonstrated

the approximate relationship d ≈ Θ, namely, the nearly one-to-one correspondence of D to d. We can

approximately regard Θ as the expected difference in shear stress direction on a randomly oriented

fault caused by the difference in stress state.
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The relationship d ≈ Θ is convenient for stress tensor inversion techniques based on the Wallace-

Bott hypothesis (Wallace 1951; Bott 1959) which assumes that a fault slips in the direction of shear

stress. The hypothesis arrows us to distinguish stress states by observing the directional differences

of fault displacements, and has been a practical principle of stress inversion methods since Carey and

Brunier (1974). According to Wallace-Bott hypothesis, we can measure the difference between stress

tensors in terms of expected difference in fault-slip direction.

Nevertheless, there still remains inaccuracy in the above-mentioned interpretation. Figure 2A

clearly shows deviation from the exact one-to-one correspondence (d = Θ) up to about 8◦ in d. What

causes this deviation and is there any other physical meaning of D without approximation? The next

section presents the solution for this problem.

3 Exact physical meaning

The stress difference between σA and σB is the square root of second invariant of the component-

wise difference tensor (σA − σB) (Eq. 1). The second invariant JII of a deviatoric tensor is closely

related to shear stress magnitudes. For example, it corresponds to octahedral shear stress through

τoct (σ) =
√

2
3JII (σ) (e.g., Fung 1965, p.80). Here the author took notice of the proportionality

between the spherical average of square shear stress magnitude and JII (e.g., Yang et al. 2005):

τ2 (σ) ≡ 1

4π

∫
−→n on S3

|−→τ (σ;−→n )|2 dA =
2

5
JII (σ) , (7)

where σ denotes an arbitrary deviatoric stress tensor (see Appendix for proof). τ2 is the square shear

stress magnitude averaged for all possible fault orientation. Figure 3 shows the shear stress magnitude

exerted by a deviatoric stress tensor on various orientations of fault planes. In this example, the second

invariant JII of stress tensor was normalised to be unity. Then Equation (7) says that the average of

square value on Figure 3 over the sphere is 0.4 irrespective of stress ratio Φ.

When both two stress tensors σA and σB are deviatoric, their component-wise difference (σA−σB)
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also satisfies the deviatoric condition, JI (σA − σB) = 0. Let ∆τ be the magnitude of difference vector

between two shear stress vectors (inset of Fig. 2B). The linearity of Equation (4) with respect to σ

brings

∆τ (σA,σB;
−→n ) = |−→τ (σA;

−→n )−−→τ (σB;
−→n )| = |−→τ (σA − σB;

−→n )| . (8)

Note that the shear stress exerted by (σA − σB) itself does not have an explicit physical meaning.

Equation (8) arrows us to substitute (σA − σB) for σ in Equation (7) to obtain

∆τ2 (σA,σB) =
1

4π

∫
−→n on S3

[∆τ (σA,σB;
−→n )]

2
dA =

2

5
JII (σA − σB) , (9)

where ∆τ2 is square of ∆τ averaged for all orientations. From Equations (1) and (9) we can derive

√
∆τ2 (σA,σB) =

√
2

5
D (σA,σB) ≈ 0.632D (σA,σB) . (10)

Here the stress difference D was found to be proportional to the root mean square of ∆τ . The same

Monte Carlo experiment as that in the previous section was performed to calculate ∆τ instead of d.

As the result shown in Figure 2B, the plotted points lie exactly on the straight line of Equation (10).

The root mean square of ∆τ multiplied by
√

5
2 was found to be the exact physical meaning of

stress difference D. In other words, the angular stress distance Θ is not exactly the expected angular

difference of shear stress directions (d), while D is the expected difference in shear stress vectors on a

randomly oriented fault surface. We should note that D carries differences not only in directions but

also in magnitudes of shear stress vectors.

Absolute magnitude of stress is actually beyond the scope of fault-slip analysis, and is non-

dimensional for reduced stress tensors. Under the two normalisations (Eqs. 2 and 3) shear stress

magnitude ranges from 0 to 1 (Figs. 3 and 4A), and the average magnitude is roughly 0.6. Suppose

D (σA,σB) = 2, which is the maximum of stress difference achieved by σA = −σB, Equation (10)

gives
√

∆τ2 ≈ 1.265. This value roughly coincides with twice the average magnitude, and is consistent

with the fact that two shear stress vectors calculated from negative tensors (σA = −σB) are opposite

directions to each other on all fault orientations.
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4 Discussion

The exact interpretation of stress difference D through non-dimensional shear stress magnitude is

not familiar to users of stress tensor inversion methods. Even if there is inaccuracy, stress inversion

methods based on Wallace-Bott hypothesis should prefer the conventional interpretation related only

to directional difference of shear stress vectors, because fault-slip directions, which are assumed to be

parallel to shear stress, are observable while shear stress magnitudes are not. What is the cause of the

unexpected deviation from d = Θ (Figure 2A)? Equation (10) clearly states that the deviation can

not occur without differences of lengths of shear stress vectors.

For the purpose of investigating the nature of deviation, the difference of shear stress magnitudes,

|−→τ A| − |−→τ B|, were also recorded and averaged for all orientations of 1,000 faults during the Monte

Carlo experiment mentioned in Section 2. As the result, the difference of shear stress magnitudes

was found to be single-peaked against D (Fig. 5A). It takes maximum at D =
√
2 or Θ = 90◦, and

seems to be 0 at both D = 0 and D = 2. This trend roughly coincides with the amount of deviation

from d = Θ (Fig. 2A). The deviation seems larger for moderate values of D than those for large and

small D. Moreover, the deviation itself was estimated as d−Θ and was plotted against the difference

of shear stress magnitudes (Fig. 5B). It was found that larger deviation emerges mainly when the

difference in shear stress magnitude is large.

Accordingly, the deviation from d = Θ coincides with the difference in shear stress magnitude.

Fortunately, the variation of orientational average of shear stress magnitude against the change of

stress ratio is not so large under the normalisation of the second invariant (Eq. 3) in comparison to

other way of normalisation (Fig. 4). This fact probably contributes to decrease the deviation, which

is actually less than 8◦ (Fig. 5B). In consequence, we can utilise the conventional interpretation of

stress difference as the expected difference in shear stress direction on a randomly oriented fault with

attention to the deviation caused by non-dimensional shear stress magnitude.

Meanwhile, we need not to cling to Orife and Lisle’s stress difference to quantifying differences of
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stress tensors. It may be better to search for an alternative measure which is more suitable for fault-

slip orientational analysis. The expected directional difference in shear stress, d, itself is a potential

estimator, although a concise and fast algorithm to calculate it is desired.

5 Conclusions

The second invariant of stress tensor is analytically proportional to the root mean square of shear stress

magnitude, where ‘mean’ designate the average for all orientation of fault plane. This relationship

leads to the exact physical meaning of stress difference as the expected length of difference vector

between shear stress vectors on a randomly oriented fault plane exerted by reduced stress tensors

in comparison. The stress difference was found to carry information not only on direction but also

on non-dimensional magnitude of shear stress. When we employ the interpretation by Yamaji and

Sato (2006) that the stress difference approximates the expected directional difference between shear

stresses, which is still convenient to fault-slip analysis, it should be noticed that there is some extent

of inaccuracy up to 8◦.
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Appendix Spherical integral of square magnitude of shear stress

This appendix presents a proof of Equation (7). We can write an arbitrary deviatoric stress tensor σ

in its principal coordinate system without loss of generality as

σ =


σ1 0 0

0 σ2 0

0 0 σ3

 , (11)

where JI (σ) = 0. Given a fault plane orientation of which unit normal is−→n = (sin θ cosψ, sin θ sinψ, cos θ)T

(0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π), the square magnitude of shear stress is expanded from Equation (4) to be

|−→τ (σ;−→n )|2 = n21n
2
2(σ1 − σ2)

2 + n22n
2
3(σ2 − σ3)

2 + n23n
2
1(σ3 − σ1)

2

= sin4 θ sin2 ψ cos2 ψ(σ1 − σ2)
2

+sin2 θ cos2 θ sin2 ψ(σ2 − σ3)
2

+sin2 θ cos2 θ cos2 ψ(σ3 − σ1)
2. (12)
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The orientational average becomes

τ2 (σ) =
1

4π

∫
−→n on S3

|−→τ (σ;−→n )|2 dA =
1

4π

∫ π

0

∫ 2π

0
|−→τ (σ;−→n )|2 sin θdφdθ

=
(σ1 − σ2)

2

4π

∫ π

0

∫ 2π

0
sin5 θ sin2 ψ cos2 ψdφdθ

+
(σ2 − σ3)

2

4π

∫ π

0

∫ 2π

0
sin3 θ cos2 θ sin2 ψdφdθ

+
(σ3 − σ1)

2

4π

∫ π

0

∫ 2π

0
sin3 θ cos2 θ cos2 ψdφdθ

=
1

15

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

=
2

5
(−σ1σ2 − σ2σ3 − σ3σ1) =

2

5
JII (σ) , (13)

where the deviatoric condition (JI (σ) = 0) was employed. Note that this equation does not require

the second normalisation condition (Eq. 3) for the deviatoric stress tensor.
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Figure captions

Figure 1

Stress differences arise from rotations of principal stress axes. Reduced stress tensors are represented

by stress ellipsoids. (A) A nearly axial compressional stress indicated by a low stress ratio (Φ = 0.1).

(B) A triaxial stress (Φ = 0.5). (C) A nearly axial tensional stress with a high stress ratio (Φ = 0.9).

All arrows drawn below the ellipsoids depict rotations by 90◦ around one of principal stress axes. The

attached D values are stress differences.

Figure 2

The result of Monte Carlo experiment to examine the correspondence between stress difference and

measures of shear stress differences. Gray small dots, of which number is 10,000 in each panel, shows

the values calculated from randomly chosen pairs of reduced stress tensors. (A) The vertical axis is

the angular difference d between shear stress directions averaged for all fault plane orientations. The

horizontal axis indicate angular stress distance Θ (lower side) and stress difference D (upper side).

Yamaji and Sato (2006) proposed the approximate correspondence d ≈ Θ. (B) The vertical axis is the

root mean square of the length of difference vector between two shear stress vectors. The proportional

relation ship (Eq. 10) was confirmed.

Figure 3

Theoretical orientational distribution of non-dimensional shear stress magnitudes which are plotted

at the pole of fault plane projected onto equal-area and lower-hemisphere stereograms. Note that the

stress tensor is normalised by Equations (2) and (3). Principal stress axes are fixed at σ1: 000/00, σ2:

090/00 and σ3: 000/90. Five stereograms corresponds to stress ratios of 0, 0.25, 0.5, 0.75 and 1.
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Figure 4

Non-dimensional magnitude of shear stress exerted by reduced stress tensor plotted against stress ratio.

Solid and broken lines show the average and the maximum of shear stress magnitudes calculated on

1,000 uniformly distributed fault planes, respectively. (A) Under the normalisation JII = 1. (B) Under

the normalisation σ1 − σ3 = 2. Note that the variation of averaged magnitude of (A) is smaller than

(B).

Figure 5

Relationship between difference in non-dimensional shear stress magnitude and deviation from the

conventional approximation d ≈ Θ, which were calculated during the Monte Carlo experiment shown

in Figure 2. Gray small dots, of which number is 10,000 in each panel, shows the values calculated

from randomly chosen pairs of reduced stress tensors. (A) The vertical axis is the difference between

shear stress magnitudes averaged for all fault plane orientations. The horizontal axis indicate angular

stress distance Θ (lower side) and stress difference D (upper side). (B) The vertical axis is same as

(A). The horizontal axis is the deviation d−Θ, which is the vertical distance from the line represented

by d = Θ in Figure 2A.
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