<table>
<thead>
<tr>
<th>Title</th>
<th>Redox reaction in two-dimensional porous coordination polymers based on ferrocenedicarboxylates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hirai, Kenji; Uehara, Hiromitsu; Kitagawa, Susumu; Furukawa, Shuhei</td>
</tr>
<tr>
<td>Citation</td>
<td>Dalton transactions (2012), 41(14): 3924-3927</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-02-29</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/172095</td>
</tr>
<tr>
<td>Rights</td>
<td>© The Royal Society of Chemistry 2012. This is not the published version. Please cite only the published version.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
</tbody>
</table>

Kyoto University
Redox reaction in two-dimensional porous coordination polymers based on ferrocenedicarboxylates

Kenji Hirai, Hiromitsu Uehara, Susumu Kitagawa and Shuhei Furukawa*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

A series of 1,1'-ferrocenedicarboxylate-based two-dimensional porous coordination polymers were synthesized by incorporating different diamine coligands. These compounds immobilized on electrodes, exhibited reversible redox reactions, arising from ferrocenyl moiety.

Porous coordination polymers (PCPs), assembled from metal ions and organic ligands, are an interesting class of crystalline materials. They have been extensively studied for applications in gas storage, separation and chemical sensing. Compared with these porous properties, only a few studies on the electronic properties of the frameworks have been reported. The synergistic collaboration between the electronic properties of the framework and the intrinsic porous properties has led to new applications of PCPs in a wide range of important fields. In particular, a redox-active PCP may be useful material for electrochemical applications such as ion storage or electrocatalysis. The key to successful implementation is not only to construct the redox-active framework itself, but also to hybridize the framework with an electrode, which allows the investigation of redox process in the pores.

Although the judicious choice of metal ion and organic linker provides the redox activity within PCP frameworks, the redox reaction often changes the coordination environment of metal ions, thus leading to destruction of the framework. One way to overcome the issues is to construct the framework with stable ligands for the redox reaction. In this context, 1,1'-ferrocenedicarboxylate (Fcdc) is an excellent candidate because it contains the stable ferrocene moiety and two carboxylate coordination sites. Some research groups have reported on the syntheses of ferrocene-based coordination polymers, but there are only a few reports of the solid-state electrochemical properties of coordination polymers containing the Fcde ligand.

Recently we reported on a series of two-dimensional (2D) PCPs, so-called coordination polymers with an interdigitated structure (CID), of which the three components, namely the metal ions, V-shaped dicarboxylate ligands, and diamine pillar ligands, participate in the construction. Their porous properties and chemical functionalities can be easily modulated by varying the components. Although there is a limit to the angle of two carboxylates in the V-shaped ligand in the range 118°-152°, the rotational freedom of the ferrocenyl moiety enables the ligand to mimic the V-shape, thus providing CID frameworks with stable redox properties.

Here we report the rational synthesis of ferrocene-based CID frameworks by incorporating different diamine pillar ligands. The length of the pillar ligand determines the configuration of the 2D sheets, resulting in different thermal stabilities. The electrochemical properties were elucidated by the immobilization of these crystals on gold electrodes.

A coordination framework of \([\text{Zn(Fcdc)(bpy)}]_{n} \cdot (\text{DMF})_{0.5} \cdot (\text{MeOH})_{0.5}\) was synthesized via the reaction of \(\text{Zn(NO}_{3})_{2} \cdot 6\text{H}_{2}\text{O}, \text{H}_{2}\text{Fcdc and bpy in a DMF/MeOH solution at 353 K (bpy = 4,4'-bipyridyl). As shown in Fig. 1a and b, the Zn ion has a distorted octahedral N\text{2}O\text{4} geometry; it is coordinated by two bpy molecules at the axial positions, one chelating carboxylate of Fcdc and two other monodentate carboxylates of Fcdc in the equatorial plane. The coordination of Fcde ligands to the Zn ions constructed a one-dimensional (1D) chain structure as shown in Fig. 1a, followed by the linkage of the adjacent chains through bpy in the axial positions, leading to the formation of a 2D sheet. Alternatively assembled are two types of sheet structures, sheets A and B, which are mirror images of each other. It should be noted that the length of bpy (7.1 Å) is too short to form the interdigitation because of the bulkiness of the ferrocenyl moiety (the distance between cyclopentadienyl rings is 6.8 Å), compared with the phenyl ring, seen in the reported CID structure. Therefore, the noninterdigitation between the sheets provided 1D channels with a window size of 4.4 \times 6.0 \text{Å}^2 (Fig. 2a-b, Fig. S1).

Elongation of the pillar ligands from bpy to dpb or dpndi created a space between the 1D chains and allowed them to form

![Crystal structures of (a) the 1D chain structure composed of Zn ions and Fcdc, and (b) the sheet structure of 1. Gray, blue, red, orange, and purple are C, N, O, Fe and Zn, respectively. The hydrogen atoms and guest molecules are omitted for clarity.](image-url)

Fig. 1 Crystal structures of (a) the 1D chain structure composed of Zn ions and Fcdc, and (b) the sheet structure of 1. Gray, blue, red, orange, and purple are C, N, O, Fe and Zn, respectively. The hydrogen atoms and guest molecules are omitted for clarity.
Fig. 2 Crystal structures showing (a) the side view, (b) the top view of assembled structure of 1(solvents), (c) the side view, (d) the top view of assembled structure of 2(solvents), (e) the side view, (f) the top view of assembled structure of 3(solvents).

The interdigitation (dpb = 1,4-di(pyridin-4-yl)benzene, dpndi = N,N’-di(4-pyridyl)-1,4,5,8-naphthalenetetraoxydiimide).

These analogous frameworks were synthesized by the solvothermal reaction of Zn(NO$_3$)$_2$•6H$_2$O with H$_2$Fcdc and dpb or dpndi in a DMF/MeOH solution:

\[\{[\text{Zn}(\text{Fcdc})(\text{dpb})]_{n}(\text{DMF})_{0.5}(\text{MeOH})_{0.5}\} \] (2(solvents))
\[\{[\text{Zn}(\text{Fcdc})(\text{dpndi})]_{n}(\text{DMF})_{0.5}(\text{MeOH})_{0.5}\} \] (3(solvents)), respectively. Although the compound 2 formed the alternative assembly of sheet structures as seen in 1, only one type of 2D sheet (sheet A) was found in the compound 3. The expansion of the interchain distance in 2 and 3 resulting from the incorporation of the longer pillar ligands (dpb (11.4 Å) or dpndi (15.5 Å)) enables the 2D sheets to form the interdigitation. Whereas the 1D channels with a window size of 4.4 × 4.9 Å2 extend along the c axis in compound 2, the 1D channels with a window size of 4.8 × 4.5 Å2 runs along the a axis in compound 3 (Fig. S1-S3).

Thermogravimetric analysis indicated that 1, 2 and 3 released the guest molecules up to 200 °C (Fig. S4). Although 1 started to decompose around 250 °C, 2 and 3 were stable up to 350 °C. The difference in the collapse temperature between 1, 2 and 3 is probably because of the interdigitation of the 2D sheets in 2 and 3, which lends further thermal stability to the frameworks.

X-ray powder diffraction (XRD) analysis of the evacuated frameworks was carried out to confirm the stability of the open structures in the absence of guest molecules. All the compounds retained their crystallinity, as shown in Figs S5-7. Adsorption measurements of ferrocene-based PCPs were performed for CO$_2$, N$_2$, and O$_2$, as shown in Fig. S8-10. The adsorption isotherms of all compounds showed a Type I steep uptake for CO$_2$ at the low-pressure region, indicating the preservation of the ordered porous structure, but no eventual uptake for N$_2$ and O$_2$. Generally, PCPs preferentially adsorb CO$_2$ over other small gases because of its small kinetic diameter.13

To date, the redox properties of coordination polymers containing ferrocenes have been reported after either dissolving the crystals in solvent or by depositing the crystals on a working electrode. In both cases, however, it is very difficult to elucidate the redox property of the framework itself. These methods most likely led to the determination of the electrochemical activity of the solute species (soluble oligomers or metal complexes)14. To overcome this issue and to determine the redox properties of the PCPs themselves, we immobilized the crystals of ferrocene-based PCPs on gold electrodes.

A gold substrate was placed in the reaction solution for four days to grow the PCP crystals directly on the surface, in a perpendicular fashion to avoid coating by sedimentation.15 The

Fig. 3 SEM images of a) 1 b) 2, c) 3 on Au substrates
Fig. 4 XRD patterns of a) in-plane diffraction, b) out-of-plane diffraction of 1/Au, c) simulation of 1.

Fig. 5 (a) Cyclic voltammograms of H2Fcdc and 1 at 100mV/s scan rates. The dispersed H2Fcdc in CH2Cl2 was deposited onto the gold electrode. The current intensity of H2Fcdc is magnified twice for clarity. (b) Dependence of peak currents on scan rates. Closed and open circles show oxidation and reduction, respectively.

Table 1 Electrochemical data of 1 and Fcdc on an Au substrate at 100mV/s scan rates

<table>
<thead>
<tr>
<th>Compounds</th>
<th>E1/2 (^{[a]}) (V)</th>
<th>(\Delta E^{[b]}) (V)</th>
<th>(\Gamma^{[c]}) (mol cm(^{-2}))</th>
<th>Electrolytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2Fcdc</td>
<td>0.88</td>
<td>0.099</td>
<td>–</td>
<td>n-Bu4NBF4</td>
</tr>
<tr>
<td>1/Au</td>
<td>0.95</td>
<td>0.412</td>
<td>6.82 \times 10^{-10}</td>
<td>n-Bu4NBF4</td>
</tr>
<tr>
<td>1/Au</td>
<td>0.78</td>
<td>0.301</td>
<td>2.09 \times 10^{-9}</td>
<td>n-Bu4NNO3</td>
</tr>
</tbody>
</table>

[a] The half wave potential, \(E_{1/2} = (E_{ox} + E_{red})/2\). [b] The difference of the oxidation potential and reduction potential, \(\Delta E = E_{ox} - E_{red}\). [c] Surface concentration of redox active species.

Since the PCP crystals are immobilized on the electrode surface, the current is most likely limited by the diffusion of counteranions in the pores. The contribution of the solute species to the redox reaction could be ignored because there was no dissolution of the Fcdc ligands from the framework under the conditions used, as confirmed by the CV measurement of the residual solution. Therefore, the redox reaction observed here was subsequently attributed to the ferrocene moiety embedded into the framework.

In summary, we have demonstrated the redox reaction of ferrocene-based PCPs achieved by creating crystals on gold substrates. Although the crystals are immobilized on the substrate,
the redox process is controlled by the diffusion of charges. The CV results were interpreted as the diffusion of counteranions into the channels. This results indicates that Fcdc ligand allows for the incorporation of the redox activity into PCP frameworks and opens the way for a wide range of electrochemical applications.

Notes and references

1 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyushu University, Katsura, Nishi-ku, Fukuoka, Japan.

2 Crystal data for 1: solvents: C36H20FeN4O8Zn Mw = 493.61 g mol⁻¹, monoclinic, space group P2�/c (n=14), a = 11.367(5) Å, b = 24.599(5) Å, c = 9.050(4) Å, β = 112.970(5), V = 2330.0(16) Å³, Z = 4, T = 223 K, ρcalc = 1.407 g cm⁻³, 7192 reflections measured, 3822 observed (I > 2σ(I)), GOF 325 parameters; R1 = 0.0763, wR2 = 0.2108, GOF 0.914. CCDC 852944.

3 Crystal data for 2: solvents: C22H16FeN2O4Zn w = 493.61 g mol⁻¹, monoclinic, space group P21/c (n=14), a = 9.072(6) Å, b = 21.526(2) Å, c = 14.375(9) Å, β = 99.212(12), V = 2771(3) Å³, Z = 4, T = 223 K, ρcalc = 1.365 g cm⁻³, ρexp(K) = 1.422 cm⁻³, 6166 reflections measured, 3789 observed (I > 2σ(I)) 325 parameters; R1 = 0.0792, wR2 = 0.2253, GOF 0.106. CCDC 852945.

4 Crystal data for 3: solvents: C36H20FeN4O8Zn Mw = 493.61 g mol⁻¹, monoclinic, space group P-1, (n=2), a = 8.940(5) Å, b = 12.349(6) Å, c = 15.288(8) Å, α = 88.383(18), β = 87.636(18), γ = 87.59(2), V = 1650.91(15) Å³, Z = 2, T = 223 K, ρcalc = 1.524 g cm⁻³, ρexp(K) = 1.225 cm⁻³, 7192 reflections measured, 3822 observed (I > 2σ(I)) 451 parameters; R1 = 0.0731, wR2 = 0.1885, GOF 0.936. CCDC 852946.

Graphical Abstract
A series of ferrocene-based porous coordination polymers was synthesized. The electrochemical properties were elucidated by the immobilization of the crystals on gold electrodes.