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A variety of statistically steady energy spectra in elastic wave turbulence have been reported in

numerical simulations, experiments, and theoretical studies. Focusing on the energy levels of the system,

we perform direct numerical simulations according to the Föppl-von Kármán equation, and successfully

reproduce the variability of the energy spectra by changing the magnitude of external force systematically.

When the total energies in wave fields are small, the energy spectra are close to a statistically steady

solution of the kinetic equation in the weak turbulence theory. On the other hand, in large-energy wave

fields, another self-similar spectrum is found. The coexistence of the weakly nonlinear spectrum in large

wave numbers and the strongly nonlinear spectrum in small wave numbers is also found in moderate

energy wave fields.
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There exist two types of ‘‘turbulence theories’’ started
by Kolmogorov and Zakharov. The first, based on the self-
similarity and the dimensional analysis, is applied on
vortical flows governed by the Navier-Stokes equation.
The second, based on the random phase approximation,
is applied on wave fields, and is called the weak turbulence
theory (WTT) [1]. While Kolmogorov’s turbulence theory
is applicable to strongly nonlinear turbulence, WTT, which
is mathematically sophisticated, is applicable to weakly
nonlinear wave fields [2,3].

Elastic waves propagating in thin elastic plates are con-
sidered a testing ground for numerical or experimental
verification of the applicability of WTT. The kinetic equa-
tion obtained in WTT has two statistically steady solutions
[4]. One is in a nonequilibrium state, where the azimuthally
integrated energy spectrum EðkÞ as a function of wave

numbers k is given as EðkÞ / k½logðk�=kÞ�1=3. The other
is in a thermal equilibrium state, where EðkÞ / k. The
function form of the nonequilibrium solution is determined
so that the energy flux is constant, but the large cutoff wave
number k� is indeterminate in the framework of WTT.
Additionally, WTT cannot determine the direction of the
energy flux in the nonequilibrium state in the elastic wave
turbulence [1]. In these respects, the elastic wave turbu-
lence is atypical as a weak turbulence system.

Düring et al. [4] obtained the energy spectrum corre-

sponding to EðkÞ / k½logðk�=kÞ�1=3 by a direct numerical
simulation (DNS). On the other hand, energy spectra close
to EðkÞ / k�0:2 are reported in experiments using thin
elastic steel plates [5,6]. The difference in the energy
spectra is explained in terms of the anisotropy of the
system in Ref. [7], and the discreteness of the numerical
simulation in Ref. [8]. Moreover, dimensional analysis
based on the self-similarity predicts energy spectra

corresponding to the energy cascade, EðkÞ / k�1, and to

the wave action cascade, EðkÞ / k�1=3 [9].
We optimistically believe that there should exist a simple

unified explanation for the variability of the energy spectra
including the theoretically predicted spectra. In this work, a
series of DNS is performed according to a basic equation.
Nonequilibrium steadywave turbulent states are obtained by
adding external forces to small wave numbers and dissipa-
tion to large wave numbers. The numerical results provide a
unified perspective on the variability of the spectra.
The governing equation for the lateral displacement �

and the momentum p in a thin elastic plate is called the
Föppl-von Kármán (FvK) equation [10],

@tp ¼ � Eh2

12ð1� �2Þ�
2� þ f�; �g; @t� ¼ p

�
; (1a)

�2� ¼ �E

2
f�; �g; (1b)

where � is the Airy stress potential. The Laplace operator
and the Monge-Ampère operator are expressed as � and
ff; gg ¼ @xxf@yygþ @yyf@xxg� 2@xyf@xyg, respectively.

The Young’s modulus E, the Poisson ratio �, and the
density � are the physical properties of the plate. The
thickness of the plate is expressed by h. The FvK equation
(1) holds even for large displacements when the gradient of
the displacement is smaller than unity.
The linear dispersion relation between a wave number

vector k and the corresponding frequency !k is given as

!k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eh2

12ð1� �2Þ�

s
k2; (2)
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where k ¼ jkj. The complex amplitude ak ¼ ð�!k
~�k þ

i~pkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
2�!k

p
represents an elementary wave, where ~pk and

~�k are the Fourier components of p and � , respectively.
The governing equation can be rewritten as

_a k ¼ �i!kak þN k; (3)

where N k symbolically expresses the four-wave nonlin-
ear interaction terms. Note that no three-wave interactions
exist in this system. (See Ref. [4] for the nonlinear terms.)
This equation can also be written in Hamiltonian form,
i _ak ¼ �H =�a�k, where �=�a�k denotes the functional

derivative with respect to the complex conjugate of ak.
WTT can be applied to the elastic wave turbulence, if the

nonlinear interactions among ak are weak and the random
phase approximation is valid. The wave action nk is
defined as haka�k0 i ¼ nk�kk0 , where h� � �i expresses the

ensemble average, and �kk0 is Kronecker’s delta. When
the system is statistically isotropic, we obtain the relation
EðkÞ / k!knk. WTT considers the energy transfer due to
the weakly nonlinear resonant interactions among four
wave numbers. We have confirmed that this system has a
huge number of the quartets which exactly satisfy the four-
wave resonant conditions. Then, the system is little
affected by the numerical discretization and it never goes
into the frozen turbulence [11].

To investigate the statistically steady states, the follow-
ing forcing and dissipative mechanisms are added to
Eq. (3) as is usually done in turbulence simulations.
Energy is input at small wave numbers and dissipated at
large ones. In the forced wave numbers jkj � 8�, the
absolute value of the complex amplitude jakj is kept con-
stant as C by multiplying the factor C=jakj at each time
step to control the energy of the system easily. In spite of
fixing the absolute value, the phase of each mode evolves
according to Eq. (3). The artificial eighth-order hypervis-
cosity ��ðjkj=kdÞ8ak is added to the right-hand side of
Eq. (3), where � is a dissipation coefficient and kd is a
dissipation wave number. The periodic boundary condition
is adopted to match the assumptions in turbulence theory.
The pseudospectral method with the aliasing removal by
the 4=2 law is employed to obtain the nonlinear terms. The
fourth-order Runge-Kutta method is employed for the time
integration, and the linear dispersive term and dissipative
term are implicitly solved to improve numerical stability.
Independently of the initial conditions, the system is
attracted to a statistically steady state where the external
force and the dissipation balance.

The material properties in the experiment with steel
by Boudaoud et al. [5] are adopted in the present
numerical simulations. Namely, � ¼ 7:8� 103 kg=m3,
E ¼ 2:0� 1011 Pa, � ¼ 0:30, and h ¼ 5:0� 10�4 m,
respectively. The plate is supposed to have the periodic
boundary 1 m� 1 m.

A series of DNS with 5122 (2562 alias-free) modes [12]
is performed in nine energy levels E1–E9. The energy

levels are set by doubling the constant C in the forcing
term. The ratio of the stretching energy, which is the non-
linear part of the Hamiltonian, to the bending energy,
which is the linear part of the Hamiltonian, represents the
level of the nonlinearity that the entire wave field has. The
ratios are on average 1=600 in E1, 1=20 in E5, and 1=4 in
E9. Note that the FvK equation is justified since the root
mean squares of the gradients of the displacements

hjr�j2i1=2 are, respectively, 5:0�10�3 in E1, 4:3� 10�2

inE5, and 4:8� 10�1 in E9. The standard deviations of the

lateral displacements, h�2i1=2, are 1:9� 10�4 m in E1,
1:4� 10�3 m in E5, and 1:4� 10�2 m in E9. The energy
spectra for E1–E9 are drawn in Fig. 1. These spectra are
time averaged during the statistically steady states, and the
fluctuations are too small to affect the power-law expo-
nents. Note that all the spectra in jkj � 8� are proportional
to k3 owing to the forcing term.
We observe the spectral similarity in the low energy

levels, i.e., in E1–E3. In the small energies, that is, when
the nonlinearity is weak, the energy spectra approach the

spectrum predicted by WTT, EðkÞ / k½logðk�=kÞ�1=3,
which fits the spectra by choosing kd ¼ 144� as k�. As
the energy levels get elevated, i.e., in E4–E6, the
downward-sloping spectrum spreads from the range with
smaller wave numbers. We observe another spectral simi-
larity in the high energy levels, i.e., in E7–E9, where the
nonlinearity is relatively strong. The energy spectra are
estimated as EðkÞ / k�0:30�0:04 by the method of least
squares. From now on, for simplicity we use the expression
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FIG. 1 (color online). Variability of the energy spectra due to
energy levels. The energy levels are numbered from bottom to
top. The dash-dotted line and the broken curve, respectively,
show k and k½logðk�=kÞ�1=3, where k� ¼ 144�.
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‘‘strongly nonlinear’’ for the relatively strongly nonlinear
regime where WTT is not justified. For a wave field with
the energy between E6 and E7, one may observe EðkÞ /
k�0:2 as in Refs. [5,6], if one forcibly fit the spectra to a
single self-similar spectrum. Though their experimental
energy spectra appear to collapse to a similar function
form, the change of the energies is as small as one or two
decades. In the experiment on decaying turbulence where
the change of the energies is relatively large [7], the energy
spectra approach the prediction of WTT as the energy
decays. Our simulations reproduce all these experimental
results by changing the magnitude of the external force as
shown in Fig. 1. Note that this reproducibility supports the
applicability of the FvK equation in all these energy levels
in addition to the spectral similarities mentioned above.

To investigate the nonlinearities in each scale, the time
evolutions of the magnitudes of elementary waves, jakj,
which would remain constant in the absence of the non-
linear interactions, are shown in Fig. 2. We select k ¼
ð16�; 0Þ, (32�, 0), (64�, 0), and (128�, 0) as the repre-
sentatives in each scale. Each evolution is drawn for three
periods determined by the linear dispersion, 3Tk ¼
6�=!k. As the energy becomes larger from E1 to E9,
the fluctuations of jakj’s become larger and faster as the
overall trend. In Fig. 2(a), i.e., in the large energy E9, all
jakj’s are far from constant. The nonlinear interactions are
active in all the scales. On the other hand, in Fig. 2(c), i.e.,
in the small energy E1, all jakj’s are almost constant in
time. The nonlinearity at each wave number is uniformly

weak. Then, WTT is applicable for E1, but not for E9.
In Fig. 2(b), i.e., in the moderate energy E5, the waves with
smaller wave numbers have larger and faster fluctuations.
It suggests that the failure of WTT, which appears at the
wave numbers where the linear and nonlinear time scales
are comparable [13], arises in the range with smaller wave
numbers.
In Fig. 3, we examine the frequency spectrum j~akð�Þj2

of akðtÞ at each wave number, where � is the angular
frequency. The frequency spectra give the conjugate prop-
erties with the time evolution of jakðtÞj shown in Fig. 2.
Note that if the nonlinear terms were neglected in Eq. (3),
the frequency spectra would be the line segment at
�=!k ¼ �1. As shown in Figs. 3(a) and 3(b), for the
higher energy levels and for the smaller wave numbers,
the frequency spectra become broader, and the peaks of the
frequency spectrum distribution shift more to the (nega-
tively) larger frequencies from the linear dispersion rela-
tion [14]. For the strongly nonlinear waves, the linear
dispersion relation does not characterize the system.
When the energy is small, in Fig. 3(c), the peak frequencies
almost coincide with those given by the linear dispersion
relation. Even in this case the frequency shift to the larger
frequencies in the small wave numbers is found in the
inset. It is consistent with the observations in the experi-
ments [15], though the boundary conditions may slightly
affect the deviation as they described.
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FIG. 2 (color online). The absolute values of the complex
amplitudes jakj during three periods. (a) Large energy E9,
(b) moderate energy E5, (c) small energy E1.
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FIG. 3 (color online). The frequency spectrum j~akð�Þj2 at
each wave number. (a) Large energy E9, (b) moderate energy
E5, (c) small energy E1, and the spectrum around �=!k ¼ �1
is enlarged in the inset. Each spectrum is normalized for visi-
bility so that its maximum is unity.
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The mean frequency shift is estimated by self-nonlinear
interactions, which act as the dispersive term [3]. Then,
Eq. (3) can be rewritten as _ak ¼ �ið!k þ �!kÞak þN 0

k,

where N 0
k expresses the nonself-nonlinear interactions.

The mean frequency shift due to the self-nonlinear inter-
actions is given as

�!k ¼
X

k0

E

4�2!k!k0

jk� k0j4
jk� k0j4 ðjak0 j

2 þ ja�k0 j2Þ:

Suppose that the energy spectrum is self-similar as EðkÞ /
k� and therefore jakj2 / k��3. Then, the summation
converges if �1<�< 3, and the mean frequency shift
is proportional to k��1. For both the weak turbulence
spectrum (� ¼ 1) and the strongly nonlinear spectrum
(� ¼ �0:3 shown in Fig. 1), the mean frequency shift is
relatively large in the small wave numbers compared with
the linear dispersion, !k / k2. The large mean frequency
shift in the small wave numbers is consistent with the
appearance of the strongly nonlinear spectra in the small
wave numbers in Fig. 1.

We also examine the isotropy of the system by dividing
the wave number plane azimuthally into eight regions. The
maximal difference between the energy in one of the
regions and the mean energy in the eight regions is used
as a measure of isotropy. Even in the highest energy level
E9, the instantaneous relative difference is smaller than
10%, and the time or ensemble averaging would make the
difference smaller. Therefore, the wave field in E9 is
statistically isotropic. The isotropy is validated also by
the two-dimensional energy spectrum. The isotropy in
other energy levels is similarly confirmed. While the de-
viation of the power-law exponents observed in the earlier
studies from the prediction of WTT is accounted for by the
anisotropy in Ref. [7], the isotropy is maintained in all of
our simulations. We therefore give an alternative mecha-
nism for the deviation, which is accounted for by the
nonlinearity.

In this Letter, focusing on energy levels, we have shown
that the level of the nonlinearity provides the unified
perspective on the variability of the spectra in the earlier
studies [4–9]. The energy spectra in the low energy levels

agree with the weak turbulence spectrum EðkÞ /
k½logðk�=kÞ�1=3. Less dissipative plates must be more
weakly forced to reproduce the weak turbulence spectrum
in experiments. The simulations also show another self-
similar spectrum whose power-law exponent is approxi-
mately �0:30 in the high energy levels. The power-law
exponent reminds us of�1=3 for the ‘‘inverse wave action
cascade spectrum [16],’’ which follows from the dimen-
sional analysis, in Ref. [9]. Note that the physical picture of
the wave action is unclear in strongly nonlinear wave
turbulence and the wave action is not conserved even under
the kinetic equation in WTTof the present system owing to
the 1 ! 3 and 3 ! 1 asymmetric resonant interactions.

Therefore, it is still an open question how the energy
spectra in the high energy levels are created.
Moreover, in the moderate energy levels, the coexistence

of the strongly nonlinear spectrum in the small wave
numbers and the weakly nonlinear spectrum in the large
wave numbers is found. The coexistence of the weakly and
strongly nonlinear turbulence is predicted in several
anisotropic wave turbulence systems [17]. In addition,
the energy equipartition in the small wave numbers and
the weak turbulence spectrum in the large wave numbers
are simultaneously observed in a one-dimensional mathe-
matical model of wave turbulence [18]. Since the FvK
equation describes real physical dynamics, it is our future
work to clarify the relation between real-space structures
and the fluxes of conserved quantities.
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