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This study is intended to investigate the feasibility of health monitoring of short span bridges based on 

modal parameter identification using the vibration data of the bridge induced by a moving vehicle. The 

idea of this study using the traffic-induced vibration of short span bridges which is a kind of non-stationary 

process is that the modal parameters identified repeatedly under a given moving vehicle provide a pattern 

which may provide useful information to decide current health condition of bridges. The autoregressive 

(AR) model is adopted for identifying modal parameters such as frequency and damping characteristics of 

the bridges. Mode shapes of bridges are obtained using multivariate AR model. Feasibility of the modal 

parameter identification for health monitoring of short span bridges is observed through a moving vehicle 

laboratory experiment. Pattern changes of identified parameters are observable by comparing the 

identification results between intact and damaged girders, which encourages the use of the method for long 

term health monitoring even for short span bridges. 

Keywords: Bridge health monitoring; Moving vehicle laboratory experiment; Modal parameter 
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1. Introduction 

Minimizing the safety risk of bridge structures has become an important technical issue. Bridge health 

monitoring (BHM) at a global level using dynamic system parameters thus has been one of the most 

important approaches, and also has been intensively studied (e.g. Doebling et al. 1996). The basic idea 

behind BHM using the dynamic system parameters is that frequency and damping characteristics as well 

as mode shapes may provide useful information for the current health condition of bridges. The 

fundamental concept of this technology is that modal parameters are functions of a structure’s physical 

properties. Therefore, a change in physical properties, such as reduced stiffness resulting from damage, 

will detectably change these modal properties (e.g. Friswell & Mottershead 1994). Of course, applying 

sensors around expected or suspected damage substructures is one of the best approaches to detect damage. 

This is only effective, however, if the bridge structure has well defined damage models. For real bridge 

structures it is difficult to define a damage model differently from other structures such as automobiles, 

aerial vehicles, etc. Therefore, most precedent studies focusing on bridge health monitoring have 

specifically examined the global change of modal properties and quantities of bridge structures. 

Since the 1970s, the use of state-space models for modal parameter identification in time-domain has 

been increasing and also has yielded new approaches. Gersch et al. (1973), for example, used the time 

series of an Autoregressive Moving Average (ARMA) process to describe the random response of a 

vibrating structure to a white noise excitation. Shinozuka et al. (1982) obtained a second-order ARMA 

model to represent a vibrating structure in order to identify the structural parameters directly. Hoshiya and 

Saito (1984) included the parameters to be identified as additional state variables in the state vector using 

extended Kalman filter. These approaches regard the ambient vibration responses as random process of 
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ARMA. Estimating the coefficients of ARMA model is a kind of nonlinear approach because both of the 

coefficients relating to AR and MA processes are unknown variables. Fortunately, the AR model with 

infinite order is equivalent to the ARMA model, which means that one can express the responses of a 

linear system subjected to white-noise input using the AR model with sufficient large order (Wang & Fang 

1986). 

All of the methods assume white noise excitations. In practice, however, ambient vibration responses 

observed in operation, which cannot be white noise excitations, are used in modal parameter identification 

(e.g., Hoshiya & Saito 1984, He & Roeck 1997). For long span bridges, wind and traffic-induced 

vibrations are operational dynamic sources. On the other hand, for short span bridges which are insensitive 

(or sometimes impassive) to the wind load, the normal traffic excitations are important dynamic sources. 

However, the traffic-induced vibration is a kind of non-stationary process (Kim et. al 2005, Kim & 

Kawatani 2008) that becomes stronger with decreasing span length. Despite of non-stationary 

characteristic of traffic-induced vibrations of short span bridges, the single or normal traffic excitations are 

still attractive dynamic sources if we can utilize them for health monitoring of short span bridges. 

The idea of this study even using the traffic-induced vibration of short span bridges for their modal 

identification is that the modal parameters identified repeatedly under a given moving vehicle can provide 

a pattern or even a statistical one, which may give useful information to decide current bridge condition. 

For the short span bridges in local areas where we cannot expect vibrations whenever we want because of 

their light traffic volumes, an inspection car may be a solution to excite the bridge. Cost-effectiveness is 

also an important factor to be considered in developing a health monitoring system for short span bridges 

because a large number of those short span bridges are located in local areas and applying health 

monitoring system even to the bridge on local areas needs a stupendous budget.  

This paper covers feasibility investigations for health monitoring of short span bridges by means of 

modal parameter identification using traffic-induced vibrations through a moving vehicle laboratory 

experiment. The experiment is conducted for both intact and damage girders. Considering cost-

effectiveness this study uses limited numbers of sensors. Moreover how vehicle speed and type affect 

identified results of modal parameters is an important matter to investigate feasibility of the inspection car 

for health monitoring of short span bridges, because dynamic responses of short span bridges are easily 

affected by vehicles’ dynamic characteristics as previously described. Therefore this study also examined 

effects of vehicle speed and type to the modal parameter identification. 

Modal parameters are identified using the autoregressive (AR) model derived from the state equation 

of a bridge structure. Usually, for an engineering decision, the more the data the better the results are, 

which is also true for deciding health condition of bridges. Therefore, both singlevariate autoregressive 

(SAR) and multivariate autoregressive (MAR) models are adopted in this study, because the SAR model 

provides more identified parameters than those by the MAR model: the SAR model identifies those modal 

parameters of every single sensor while the MAR model provides modal parameters of a system (or entire 

sensor group of a bridge). Noteworthy point is, on the other hand, that the SAR model is not applicable to 

estimating the mode vector which can be obtained by the MAR model. Therefore, a two-step approach is 

applied: the first step identifies modal frequencies and damping using a SAR model; and identifying mode 

shapes by means of MAR model is the second step. MATLAB (1997) is used to code the algorithm. 

2. Time-series model of a dynamic system 

The MAR model of a structural system is derived for a general form, because the same procedure is easily 

applicable to the derivation of the SAR model. 

2.1 State-space equation 

The equation of motion for a bridge is described as   

)()()()( tttt bbb fwkwcwm      (1) 
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where, 
nn

bbb

Rckm ,, respectively indicate the mass, damping, and stiffness matrices of the bridge. n 

denotes the degrees-of-freedom of the bridge model. nt Rw ∈)(  and nt Rf )(  denote the displacement and 

external force vectors respectively.  The state vector x(t) for the equation of motion of a bridge is definable 

as  
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If mt Ry )(  denotes output of the bridge structure taken from m observation points, then the 

corresponding state equation of a continuous-time system is described as 
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In Eqs.(3) and (4), nn 22∈ 
RA , nn2∈RB  and nm 2∈ 

RC  respectively denote system, input influence and 

output influence matrices. Especially, C is a transformation matrix mapping the position of system degrees 

of freedom with measured outputs which consists of zero or one. 
ln

f


RI ∈ is the index matrix for the 

location of l inputs. 
)(∈ lnn

f
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R0  denotes the null matrix. 

For gradual change of )(f  within a equally spaced time interval such as  )(1 tttt kkk   , )(f  is 

constant as 

)()( kff  , for 1 kk tt     (5) 

Then the discrete form solution is writable as 

)()()1( kkk fBxAx     (6) 
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The measurement (or observations) is shown in Eq. (7). 

)()( kk xCy     (7) 

where CC  . 

An important assumption that should be satisfied is the observability condition meaning that vibrations 

of bridge structures are completely observable. The observability condition of a system is considered using 

the observability matrix (Luenberger 1967), which is definable as  
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The observability condition is that the matrix in Eq.(8) should be a rank of )(2 pmn  . Therein p 

represents p time spans or p blocks. The discrete state variable in terms of the observability matrix L is 

rewritable as )(ˆ)( kk xLx  , and substituting into Eqs.(6) and (7). Then the state equation as a block 

companion form (Luenberger 1967) can be obtained as  

)(ˆ)(ˆˆ)1(ˆ kkk fBxAx     (9) 

)(ˆˆ)( kk xCy     (10) 
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where the state transition matrix Â , input influence matrix B̂  and output influence matrix Ĉ  through an 

observability transformation are described as 
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where 
mm

i

RG  for i=1, …,  p. 
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 00ILCC  1ˆ , for measuring velocities.   (13) 

If coefficient matrices from G1 to Gp of the system matrix Â  are known, then the eigenvalues and 

eigenvectors of the matrix Â  provide the modal information of the system. 

2.2 AR model 

The major purpose of this section is to derive a linear relationship of system outputs combining with the 

coefficient Gi matrices of Eq.(11). The derivation in the form of MAR model is summarized in this section. 

The discrete state variable )(ˆ kx , which has dimension of pm , can be divided into p time spans (p 

blocks) as shown in Eq. (14).  
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Equation (9), thus, is rewritable as Eq.(15) which is the block companion form. 
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From Eq.(9) (or Eq.(15)), Eq. (10) and Eq.(13), the following linear relationship can be obtained 
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Rearranging the Eq. (16) provides the following linear relationship at each time span. 
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Equation (17) is rewritable as 
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From Eq.(17), the following relationship can be obtained. 
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Substituting the linear relation for )1( kpx  of Eq. (15) into Eq.(19) provides  
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where  pGGG 1 . 

The following multivariate ARMA model is obtainable from Eq.(18) and  Eq.(20). 
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where the coefficient about input D1 ~ Dp can be described as 
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The AR model with infinite order is equivalent to the ARMA model, which means that one can 

approximate the responses of a linear system subjected to white-noise input using the AR model with large 

order (Wang & Fang 1986; He and De Roeck 1997). The ARMA model in Eq.(21c) can be approximated 

as AR model as Eq. (23).  

)()()(
1

kikk
u

i

i eyGy 


   (23) 

where e(k) denotes a white noise with zero mean and covariance as 
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Equation (23) is the MAR model derived from the equation of motion of a bridge structure. 

3. AR parameter identification 

Modal parameter identification using the AR model derived in Eq. (23) is possible after estimating AR 

parameters such as Gp. To estimate the AR parameter, firstly we assume the time series considering is a 

stationary random process, and then a linear equation for the unknown parameter derived from the 

covariance of the time series is used for estimating the AR parameter. 

If )(ky  is a measured signal vector obtained from m measured points, then covariance matrices of )(ky  

is obtainable by multiplying each term of Eq. (23) with Thk )( y  and taking mathematical expectation 

yields the following AR process for covariance matrix. 
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where E[ ] indicates the operator for mathematical expectation, and  )()(E)( hkkh T  yyR  is the 

covariance matrix of the signal.  

It is noteworthy that the white noise e(k) at the time k is independent with signal y(r) when r < k. 

Therefore Eq.(25) provides a set of linear equations for Gi during the time h>0. To estimate the coefficient 

matrices G1 to Gu of the system matrix based on the Eq. (25) it needs more than u linear equations. Let v is 

a number greater than u and start calculation from h=s+1 to h=s+v, then following linear equations are 

obtainable. 
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 uGGGg ;; 21    (27b) 

 )();();2();1( vsusss  RRRRr     (27c) 

The set of linear equations, called the Yule-Walker equations, can be solved for the AR parameter 

vector g. The estimated AR parameters from G1 to Gu, which are elements of coefficient matrix of Â , are 

used for identifying dynamic characteristics of a bridge. The least-squares algorithm is used to solve Eq. 

(26). 

4. Modal parameter estimation 

The system matrix Â  is linear transition of the matrix A  to satisfy the observability condition. It means 

that both matrices can be characterized by the same eigensystem. Therefore eigenvalues and vectors from 

the system matrix Â  provide modal information about the system A. Modal parameters of a structural 

system can be obtained solving following eigenvalue problem. 

0ΦΓA  )(    (28) 
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where,  and Φ  indicate eigenvalue and eigenvector respectively.  

Equation (28) also has following relationships. 
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where k, hk and k are the k-th order damped natural frequency (rad/s), damping constant and undamped 

natural frequency (rad/s), respectively. Therefore using the eigenvalue of A , the following relationships 

are obtainable. 
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Finally, the k-th order undamped natural frequency and damping constant are estimated from Eq.(33) and 

Eq.(34), respectively. 
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If  denotes the eigenvector of the observable state transition matrix Â , then the following 

relationship exists between Eq.(28) and the eigen equation for Â  using the observability matrix L. 

0ΦΓAΦLΓLLLAL   )ˆ()( 11     (35) 

Therefore, the eigenvector of Â  can be estimate using the following Eq.(36). 
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5. Experiments 

5.1 Laboratory moving vehicle experiment 

Laboratory experiments for bridge vibrations under a moving vehicle are performed to investigate 

feasibility of the proposed approach for bridge health monitoring. The experiment setup is shown in Figure 

1 with geometry of the girder model that is idealized from a real bridge. Details of the structural property 

of the girder are also summarized in Figure 1.  

Three points at 1/4, 1/2, and 3/4 of the span length are the observation points for acceleration responses. 

The damaged substructure shown in Figure 1 is realized by applying saw cuts at both sides of flanges. The 

saw cuts result in about 11% decrease of the bending rigidity of the beam in comparing with that of intact 
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beam, which is estimated from measured displacement responses. 

 

 

[Figure 1] 

 

 

[Table 1] 

 

 

As previously mentioned in Introduction, this study focuses on the use of traffic-induced vibrations of 

bridges even including short span bridges. Moreover, for health monitoring of short span bridges, use of 

the inspection car which can excite the bridge and process dynamic responses of the bridge while passing 

on the bridge is another idea of this study. It means that investigating effects of vehicle and vehicle speed 

are significant matters in health monitoring of short span bridges. Therefore two different vehicle speeds 

such as 0.93m/s and 1.63m/s, which approximate the vehicle speeds of 20km/h and 40km/h on the real 

bridge with span length of about 40m respectively using the speed parameter, are used in the experiment. 

Two types of vehicle models, which are different dynamic characteristics with each other, are also used in 

the experiment. The dynamic feature of the vehicle model is changeable using a different set of mass and 

spring of the vehicle model. Running scenarios of vehicles during the experiment are summarized in Table 

1. The fundamental frequencies and damping constants with and without damage are summarized in Table 

2. Those fundamental frequencies are obtained from free vibration experiments. On the other hand, 

damping constants are estimated from the free vibration time histories after the vehicle leaving the model 

girder because of their dependence on the amplitude. The sampling rate of signals is 100Hz. 

Examples of acceleration time histories of the bridge and their Fourier amplitude spectra before and 

after damage are shown in Figure 2. It shows that the amplitude of acceleration responses drastically 

decreases due to the damage. Increasing damping constant due to the saw cuts (see Table 2) may be a 

major reason of the decreasing of the acceleration amplitude. The appearance of relatively many peaks of 

dominant frequencies due to the saw cuts in comparison with those of the intact bridge is also observed. 

Another interesting point is that dominant frequencies near 2.5Hz and 23.4Hz appearing in the intact 

bridge are weakened by the damage. That aspect directly links with the identified result by the SAR model, 

which will be discussed in section 5.2.  

 

 

[Figure 2] 

 

 

[Table 2] 

 

 

[Table 3] 

 

 

5.2 Modal parameters of girders 

A two-step identification is conducted to identify modal parameters of the bridge model and to obtain 

information about a pattern change according to damage. The brief procedure is: 1) the modal parameters 

relating to dominant frequencies and damping constants are estimated by the SAR model; 2) then the 

modal parameters including mode vectors are estimated using the MAR model; and 3) select the mode 

vector of the frequency corresponding to the dominant frequency estimated by the SAR model.  
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Modal parameter identification by the SAR model is conducted using experimental data. Those 

scenarios considering in this study are summarized in Table 3. Dominant frequencies and system damping 

constants by the SAR model using the data under V1 vehicle running with different speed are summarized 

in Figure 3 and Figure 4 respectively. Those results under V2 vehicle running are respectively shown in 

Figures 5 and 6. In figures identified parameters in the left and right parts respectively indicate those 

parameters of intact and damaged girders. Mean and CV in figures denote the mean value and coefficient 

of variance respectively. Therein mean value and CV are basically used for examining statistical properties 

of the identified result. This study also adopts mean value and CV as parameters indicating change of 

bridges’ health condition. Data numbers of the second frequency missing correspond to observation data at 

the span center which seldom provides the second bending mode. 

 

 

[Figure 3] 

 

 

[Figure 4] 

 

 

[Figure 5] 

 

 

[Figure 6] 

 

 

Observations demonstrate that the lower speed scenarios give very similar results with those from free 

vibration experiment. The mean values of identified frequencies of the intact girder of SCN1 are 2.61Hz, 

9.76Hz and 23.4Hz (see the left part of Figure 3), which link with 2.6Hz, 10.6Hz and 23.3Hz for the first, 

second and third modes obtained from the free vibration respectively. Those frequencies after introducing 

the damage are 2.53Hz, 11.12Hz and 23.07Hz as shown in the right part of Figure 3, which are 

corresponding to 2.5Hz, 9.7Hz and 23.1Hz from the free vibration of the damage girder respectively. On 

the other hand, those identified results under vehicle of higher speed (SCN2) are greatly biased from 

parameters obtained from free vibrations as shown in Figure 4. Similar tendency is observed under V2 

vehicle running scenarios such as SCN3 and SCN4 respectively shown in Figures 5 and 6. The results 

demonstrate that the effect of the vehicle system to bridge vibrations, so called traffic-induced vibration of 

bridges or non-stationary vibration, increases with increasing speed, and as a result the identified results 

under higher vehicle speed yield more biased identification results than those of lower speed. For the first 

frequencies in any scenarios, however, mean values tend to decrease on the other hands CVs tend to 

increase due the damage. 

An interesting point is that the second frequency of the damaged girder is greater than that of the intact 

girder. This is different from the well known fact that decreasing stiffness results in lower frequencies. 

One of the reasons for the result is that the dominant frequency of the intact girder is disturbed by damages, 

and, as a result, the dominant frequencies both near 11Hz as well as 9.5Hz of the damaged girder are 

detected, which can be verified comparing the PSD curve of raw data and with that curve reconstructed by 

identified AR coefficient of the SAR model as shown in Figure 7. Therein, the B’ and C’ are identified 

dominant frequencies of the damaged girder, in which B and C are those frequencies of the intact girder. 

Similarly the damage gives additional dominant frequency near 20Hz except 23.2Hz that is about the third 

dominant frequency of the intact girder. 

 

 

[Figure 7] 
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Usually the damping constants derived from eigenvalue of system matrix A may be subject to 

appreciable error (Pappa & Ibrahim 1981), and as a result larger coefficient of variance than that of the 

identified frequency is observed. However, despite of their appreciable error the pattern change of 

identified damping constants due to the damage is very apparent comparing to that of the dominant 

frequency as shown in Figures 3, 4, 5 and 6. 

Observations from the identified results show that the damage causes disturbance, like mean value and 

CV, of identified dominant frequency and system damping constant regardless of vehicle speed and type. 

This is the reason why this study is even focusing on the pattern change of modal parameters to acquire 

additional information about current health condition of the bridge. 

For further information, identified results under both V1 and V2 vehicles running lower speed are 

summarized in Figure 8, which also demonstrates pattern change of identified modal parameters. Figure 9 

shows the plot of all the identified results. It also shows clear pattern change of identified modal 

parameters despite of their severe variation of identified parameters. It demonstrates that the identified 

system modal parameters using the traffic-induced vibration data under a given moving vehicle like an 

inspection car, which are usually affected by external dynamic sources such as vehicle’s dynamic system 

and as a result are not directly connected with natural modal parameters of the bridge itself, can provide 

information for bridge’s health condition. 

 

 

[Figure 8] 

 

 

[Figure 9] 

 

 

The identified mode shapes of the intact girder from the data under the vehicle moving with the low 

speed (SCN5) using the MAR model are shown in Figure 10a), in which the average mode vector at each 

observation point is compared with that obtained by the FE analysis. The correlation of mode shapes 

obtained from the MAR model and FE analysis is evaluated using the index of modal assurance criterion 

(MAC) (Allemang & Brown 1983). If two corresponding modes are well correlated the MAC value is 

close to one. The MAC is defined as  

iA

T

iAiI

T

iI

iA

T

iI

iiMAC
ΦΦΦΦ

ΦΦ
2

,     (37) 

where iIΦ and iAΦ  represents two mode vectors of the i-th mode estimated from different method. 

The MAC values of three modes shown in Figure 10a) are very close to one. It demonstrates that the 

identified mode shapes of the intact girder are well correlated with analytical ones. The mode shapes 

before and after the damage are shown in Figure 10b). MAC values of 0.98 and 0.97 respectively for the 

first and second modes indicate changes of bridge’s health condition.  

 

 

[Figure 10] 

 

 

[Table 4] 

 

 

[Table 5] 
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For information the modal parameters identified using the MAR model under vehicles running with 

lower speed (0.93m/s) are summarized in Table 4 and Table 5 with those taken from the SAR model. For 

identified frequencies, there is no great difference between SAR and MAR model. On the other hand 

relatively great difference is observed for identified system damping constants of the damaged girder 

between two models. 

Observations from the experimental investigation demonstrate the feasibility of the AR model for 

modal identification of short span bridges under a vehicle with a low speed. Moreover comparing the 

identification results between intact and damage girders such as pattern changes of identified parameters 

encourages the use of the method for long term health monitoring even for short span bridges. 

6. Conclusions 

In this study, feasibility of modal parameter identification for health monitoring of short span bridges from 

traffic-induced vibrations is investigated through a laboratory running vehicle experiment. A two-step 

identification is conducted in this study to identify modal parameters of the bridge model and to obtain 

information about a pattern change according to damage more clearly: the first step identifies modal 

frequencies and damping using a SAR model; and identifying mode shapes by means of MAR model is 

the second step. 

Observations demonstrate that the dominant frequency and damping constant of the bridge are well 

identified using the measurement data under vehicle running with lower speed. Reasonable identification 

results for mode vectors are also observed. Moreover comparing the identification results between intact 

and damage girders such as pattern change of identified parameters encourages the use of the method for 

long term health monitoring even for short span bridges. Among three modal parameters such as 

frequency, damping constant and mode vector, the damping constant is the most sensitive parameter to the 

damage. Therefore, the pattern change of the identified damping constant due to damage may act as a good 

indicator of bridge’s health condition despite of its appreciable error in identification. Moreover the 

change of mode vectors due to the damage is also observed despite of using limit numbers of sensors.  

The procedure or algorithm discussed in this study can be embedded in wireless sensor nodes, and 

those modal parameters automatically detected at each sensor node are applicable for monitoring bridges’ 

health condition. How to assess health condition of the bridges using the identified modal parameters 

quantitatively is a next step for this study.  
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a)  
 

b)  
 

c)  
 

d)  
 

Figure 1. Experimental setup: a) layout of experiment; b) cross section of experiment girder; c) roadway surface profile; d) 

damaged section. 
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a)    

 

b)  

 

Figure 2. Accelerations of the bridge under V1 vehicle with speed of 0.93m/s: a) Intact; and b) Damaged. 
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Figure 3. Identified frequencies and damping constants of intact and damaged girders under SCN1; V1 vehicle running with 

speed of 0.93m/s. 
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Figure 4. Identified frequencies and damping constants of intact and damaged girders under SCN2; V1 vehicle running with 

speed of 1.63m/s. 
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Figure 5. Identified frequencies and damping constants of intact and damaged girders under SCN3; V2 vehicle running with 

speed of 0.93m/s. 
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Figure 6. Identified frequencies and damping constants of intact and damaged girders under SCN4; V2 vehicle running with 

speed of 1.63m/s. 
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a)  

 

b)  

 

Figure 7 Identified pole plots of SCN1 on complex plane and PSD of Data No. 7; a) Intact; and b) damage 
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Figure 8. Identified frequencies and damping constants of intact and damaged girders under SCN5; both V1 and V2 vehicles 

running with speed of 0.93m/s. 
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Figure 9. Identified frequencies and damping constants of intact and damaged girders under SCN6; V1 and V2 vehicles running 

with speed of 0.93m/s and 1.63m/s. 
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a)        

 

b)  

 

Figure 10. Mode shapes of intact bridge: a) Averaged modes from measured data of intact girder with analytical results; and b) 

Averaged modes from the measured data of intact and damaged girders respectively. 
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Table 1. Vehicle running scenarios during experiment. 

 

 

 

 

Vehicle type Speed (m/s) Number of experiment (Intact) Number of experiment (damage) 

V1 
0.93 3 3 

1.63 3 3 

V2 
0.93 2 3 

1.63 3 2 

V1: vehicle with fundamental frequencies for bounce motion of 2.93Hz at front and rear axles 

V2: vehicle with fundamental frequencies for bounce motion of 3.71Hz and 3.81Hz at front and rear axles respectively. 
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Table 2. Fundamental frequencies and damping constants of the bridge model. 

Mode 
Intact Damage 

Frequency (Hz) Damping constant Frequency (Hz) Damping constant 

First 2.6 0.058 2.5 0.185 

Second 10.6 - 9.7 - 

Third 23.3 - 23.1 - 
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Table 3. Considered scenarios 

Scenario Remarks 

SCN1 V1 vehicle running with speed of 0.93m/s 

SCN2 V1 vehicle running with speed of 1.63m/s 

SCN3 V2 vehicle running with speed of 0.93m/s 

SCN4 V2 vehicle running with speed of 1.63m/s 

SCN5 Considering the all vehicle running scenario with speed of 0.93m/s (SCN1 and SCN3) 

SCN6 Considering all the running scenarios (from SCN1 to SCN4) 
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Table 4. Identified mean dominant frequencies by SAR and MAR model using the data of SCN5  

 Intact Damaged 

SAR MAR SAR MAR 

First 2.61 2.56 2.58 2.57 

Second 9.78 9.70 11.18 11.27 

Third 23.40 23.40 23.08 23.26 
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Table 5. Identified mean system damping constants by SAR and MAR model using the data of SCN5  

 Intact Damaged 

SAR MAR SAR MAR 

First 0.030 0.020 0.185 0.073 

Second 0.056 0.040 0.057 0.036 

Third 0.008 0.006 0.041 0.012 
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