<table>
<thead>
<tr>
<th>Title</th>
<th>A doubly 2,6-pyridylene-bridged porphyrin-perylene-porphyrin triad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ikeda, Shin; Aratani, Naoki; Osuka, Atsuhiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Chemical communications (2012), 48(36): 4317-4319</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-03-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/172232</td>
</tr>
<tr>
<td>Rights</td>
<td>© The Royal Society of Chemistry 2012.; This is not the published version. Please cite only the published version.; この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
<tr>
<td>Institution</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
This journal and ring diameter. With this idea, we tried the synthesis of a modulation of molecular shape of aromatic spacer between 2 barrels, 2,6 which allowed us to synthesize doubly coupling of porphyrins and Suzuki
W conjugation between two porphyrins and 5,15 have developed porphyrins molecular wires, nonlinear optical (NLO) materials, and so on.
Covalently linked multiporphyrin arrays have been extensively explored for their applications in photosynthetic models, sensors, molecular wires, nonlinear optical (NLO) materials, and so on. Among these, we have recently explored iridium(I)-catalysed β-borylation reaction of porphyrins that provides β-borylated porphyrins selectively. Using these β-borylated porphyrins we have developed various functional oligomeric porphyrin arrays including doubly β-to-β bridged porphyrin arrays 1a, 1b, 1c-d and 1e that have butadiyne, 2,5-thiophene, 2,6-pyridylene, and 5,15-porphyrinylene-spacer, respectively. Interestingly, these porphyrin arrays (1a-d) displayed large two-photon absorption (TPA) cross-section values owing to the effective π-conjugation between two porphyrins.

We have also developed three-dimensional porphyrin ladders via combined reaction sequences of Ag(I)-promoted meso-meso coupling of porphyrins and Suzuki-Miyaura coupling. Furthermore, the similar strategy allowed us to synthesize doubly 2,6-pyridylene-bridged bent porphyrin belts which exhibited Cα-encapsulating ability. As an extension of this strategy, we envisioned that insertion of a large aromatic spacer between a 2-pyridyl spacer would lead to modulation of molecular shape of porphyrin arrays in curvature and ring diameter. With this idea, we tried the synthesis of a doubly 2,6-pyridylene-bridged porphyrin-perylene-porphyrin triad as a prototype. Perylene is important and potential functional organic molecules that have been used in various applications such as field effect transistors (FETs), electrical conductors, and organic electroluminescence (EL) devices. Interestingly, we have found that a triad zinc(II) complex can bind a tetrakis(3-pyridyl)porphyrin guest in a 2:1 manner, in which the efficient electron transfer takes place from the zinc(II) porphyrin host to the free base porphyrin guest.
The synthetic scheme of porphyrin-perylene-porphyrin triad 5 is shown in Scheme 1. 2,5,8,11-Tetraborylperylene 2\[20\] was coupled with an excess amount of 2,6-dibromopyridine under Suzuki–Miyaura cross-coupling conditions to afford 2,5,8,11-tetrakis(6-bromopyrid-2-yl)perylene 3 in 50% yield, which is practically insoluble in common organic solvents. 5,10,15-Triaryl-2,18-diborylporphyrin nickel(II) complex 4\[5\] was coupled with suspended 3. Separation by gel permeation chromatography (GPC) and silica gel chromatography afforded the triad 5Ni in 14% yield. High-resolution electrospray-ionization time-of-flight (HR-ESI-TOF) mass spectrum of the hybrid porphyrin dimer displayed the parent ion peak at \(m/z = 1209.0845\) (calcd. for \(\text{C}_{160}\text{H}_{160}\text{Ni}_2\text{N}_2 = 1209.0868\) [\(M^+\)]\)). The \(^1\)H-NMR spectrum of 5Ni in CDCl\(_3\) at room temperature was very broad but became sharpened at 60°C to exhibit one singlet peak and two doublet peaks for the \(\beta\)-protons at 9.78, 8.92 and 8.69 ppm, a singlet peak at 10.71 ppm for the \(\text{meso}\)-protons, two singlet peaks for the perylene protons at 8.69 and 8.41 ppm, and two doublets and one triplet for the pyridine protons at 8.09, 7.98 and 7.78 ppm. The structural assignment of perylene has been proved by \(^1\)H-\(^1\)H NOESY technique (see Figure S4 in Supplementary Information; SI†).

The single crystals of 5Ni suitable for X-ray diffraction analysis were grown by slow vapour diffusion of acetonitrile into its chloroform solution (Figure 1);† The crystallographic asymmetric unit of 5Ni contains two molecules (triads A and B) of different structures, both of which took belt-like syn conformations. The centre-to-centre distances between the nickel ions are 16.68 and 18.98 Å for triads A and B, respectively. The porphyrin moieties are tilted by 50.17, 59.43, 68.73 and 74.91\[\degree\] relative to the perylene mean planes. These facts indicate certain conformational flexibility for 5Ni. In the solid state, triads A and B are alternatively stacked with their facing perylene parts closer at a distance of ca. 3.6 Å;† Nickel complex was demetalated with H\(_2\)SO\(_4\)/TFA to give free base porphyrin dimer 5H, which was then converted into the corresponding zinc(II) complex 5Zn upon treatment with Zn(OAc)\(_2\). The UV/Vis absorption spectrum of 5Zn in CH\(_2\)Cl\(_2\) is shown in Figure 2. The 5Zn exhibits blue-shifted Soret band at 429 nm and Q bands at 554 and 596 nm as compared with those of reference 5,10,15-triaryl-2,18-dipyridylporphyrin zinc(II) complex 6Zn (Soret band; 433 nm, Q bands; 557 and 598 nm).† These phenomena suggest the weak but distinct excitonic interaction between the porphyrin and perylene units.\[11\]

The structural assignment of perylene has been proved by \(^1\)H-\(^1\)H NOESY technique (see Figure S4 in Supplementary Information; SI†).

The single crystals of 5Ni suitable for X-ray diffraction analysis were grown by slow vapour diffusion of acetonitrile into its chloroform solution (Figure 1);† The crystallographic asymmetric unit of 5Ni contains two molecules (triads A and B) of different structures, both of which took belt-like syn conformations. The centre-to-centre distances between the nickel ions are 16.68 and 18.98 Å for triads A and B, respectively. The porphyrin moieties are tilted by 50.17, 59.43, 68.73 and 74.91\[\degree\] relative to the perylene mean planes. These facts indicate certain conformational flexibility for 5Ni. In the solid state, triads A and B are alternatively stacked with their facing perylene parts closer at a distance of ca. 3.6 Å;† Nickel complex was demetalated with H\(_2\)SO\(_4\)/TFA to give free base porphyrin dimer 5H, which was then converted into the corresponding zinc(II) complex 5Zn upon treatment with Zn(OAc)\(_2\). The UV/Vis absorption spectrum of 5Zn in CH\(_2\)Cl\(_2\) is shown in Figure 2. The 5Zn exhibits blue-shifted Soret band at 429 nm and Q bands at 554 and 596 nm as compared with those of reference 5,10,15-triaryl-2,18-dipyridylporphyrin zinc(II) complex 6Zn (Soret band; 433 nm, Q bands; 557 and 598 nm).† These phenomena suggest the weak but distinct excitonic interaction between the porphyrin and perylene units.\[11\]

The bent structure of 5Ni and its conformational flexibility inspired us to examine the supramolecular interaction with tetrakis(3-pyridyl)porphyrin (mP)\[12,13\]. Photometric titration experiments were conducted to determine the stoichiometry between 5Zn and mP in CH\(_2\)Cl\(_2\). Upon the addition of mP to the 5Zn solution, the absorption intensities at 429 and 554 nm were found to decrease and that at 515 nm was seen to increase with isosbestic points at 437 and 562 nm. As shown in Figure S13,† a plot of the absorbance at 429 nm versus [mP] has an inflection point at \([\text{mP}]/[5\text{Zn}] = 0.5\). The Job’s plot clearly supported a 2:1 stoichiometry (Figure S12†). The ion peak of the complex was successfully detected by HR-ESI-MS in a positive mode at \(m/z = 2740.2713\) for \([\text{5Zn} \cdot \text{mP} + 2\text{H}]^{2+}\) (calcd for \([\text{C}_{160}\text{H}_{160}\text{Ni}_2\text{N}_2\text{Zn}]^{2+} = 2740.2639\) (Figure S11†). These phenomena explain that 5Zn and mP form a 2:1 complex. The \(^1\)H NMR spectrum of the 2:1 mixture of 5Zn and mP shows large complex-induced changes in chemical shifts for the signals corresponding to the pyridyl protons of mP as shown in Figure 3. These results clearly demonstrate the guest-binding ability of 5Zn.
The steady-state fluorescence spectra of 5Zn–mP are shown in the inset of Figure 2. Upon photoexcitation of 5Zn–mP at 437 nm that corresponded to selective excitation at the zinc(II) porphyrin moieties, the complex exhibited reduced fluorescence from 5Zn part. Importantly, the fluorescence from the mP was not detected. These data suggested the intracomplex electron transfer from the photoexcited 5Zn to mP, while the excitation energy transfer is the most common process for zinc(II) free-base hybrid porphyrin pairs. By cyclic and differential pulse voltammetry methods in CHCl₃, the first reduction potential of 6Zn were measured to be −1.40 and +0.39 V, respectively, with respect to the Ag/AgClO₄. The free energy calculated by the Rehm–Weller equation indicates that the electron transfer from 5Zn⁺ to mP is exothermic by −0.46 eV, while the free energy change associated with the excitation energy transfer is −0.15 eV. The coordination interactions between the pyridyl groups with the Zn(II) centres render the zinc(II) porphyrins more electron-donating and the pyridyl-appended free base porphyrin more electron-accepting, which makes the intracomplex electron transfer more feasible. In conclusion, we have synthesized the doubly 2,6-para-

This work was partly supported by Grants-in-Aid for Scientific Research (Nos. 19205006 (A), 23685020 for Young Scientists (A) and 20108006 ‘pi-Space’ from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by JST PRESTO program. The authors thank Prof. H. Maeda and Dr. Y. Haketa (Ritsumeikan University) for MALDI-TOF MS measurement.

Notes and references

1. Department of Chemistry, Graduate School of Science, Kyoto University, Sakyou-ku, Kyoto 606-8502, Japan. Fax: +81 75 753 3970; Tel: +81 75 733 4008; E-mail: aratani@kuchem.kyoto-u.ac.jp, osuka@kuchem.kyoto-u.ac.jp
2. PRESTO, Japan Science and Technology Agency, Japan.
3. Electronic Supplementary Information (ESI) available: Experimental details of the synthesis and spectroscopic analytical data of new compounds. See DOI: 10.1039/b000000x/
4. Crystallographic data for 5Ni: C₃₅H₃₆Ni₃Zn, M = 2416.46, triclinic, space group P-1 (No. 2), a = 20.6104(4), b = 28.4361(5), c = 32.8677(6) Å, α = 113.2820(8), β = 98.5654(9), γ = 95.3241(97), V = 17251.56(6) Å³, T = 93(2) K, Z = 4, reflections measured 165438, 49870 unique. The final R₁ was 0.0913 (<2o(I)), and the final R on F² was 0.2044 (all data), GOF = 0.974. CCDC 865051 contains the supplementary crystallographic data for this paper. The contributions to the scattering arising from the presence of the disordered solvents in the crystal were removed by use of the utility SQUEEZE in the PLATON software package.
15. Perfect overlapping of the absorption spectra and large deference of the molecular extinction coefficients for perylene and porphyrins make selective photo-excitation of the perylene difficult so that excitation energy and/or electron transfer from the perylene to the porphyrin was not clearly observed.