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Abstract 22 

 23 
Behavior of zircon at the schist/migmatite transition is investigated. Syn-metamorphic 24 

overgrowth is rare in zircon in schists, whereas zircon in migmatites has rims with low Th/U that 25 
give 90.3 ± 2.2 Ma U-Pb concordia age. Between inherited core and the metamorphic rim, a thin, 26 
dark-CL annulus containing melt inclusion is commonly developed, suggesting that it formed 27 
contemporaneous with the rim in the presence of melt. In diatexites, the annulus is further truncated 28 
by the brighter-CL overgrowth, suggesting the resorption and regrowth of the zircon after near-peak 29 
metamorphism. Part of the zircon rim crystallized during the solidification of the melt in migmatites.  30 
   Preservation of angular-shaped inherited core of 5-10 μm in zircon included in garnet suggests 31 
that zircon of this size did not experience resorption but developed overgrowths during near-peak 32 
metamorphism. The Ostwald ripening process consuming zircon less than 5-10 μm is required to 33 
form new overgrowths. Curved crystal size distribution pattern for fine-grained zircons in a diatexite 34 
sample may indicate the contribution of this process. Zircon less than 20 μm is confirmed to be an 35 
important sink of Zr in metatexites, and ca. 35 μm zircon without detrital core are common in 36 
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diatexites, supporting new nucleation of zircon in migmatites.  37 
In the Ryoke metamorphic belt at the Aoyama area, monazite from migmatites records the 38 

prograde growth age of 96.5 ± 1.9 Ma. Using the difference of growth timing of monazite and zircon, 39 
the duration of metamorphism higher than the amphibolite facies grade is estimated to be ca. 6 Myr.  40 
  41 
Keywords: zircon, migmatite, melt inclusion, glass, crystal size distribution, duration of 42 
metamorphism.  43 

 44 
Introduction 45 

 46 
Behavior of zircon during the metamorphism is a matter of great interest because zircon could 47 

grow during many stages of metamorphism and the U-Pb spot ages of this mineral could constrain 48 
the timing of its growth due to the sluggish nature of the Pb diffusion in it (e.g. Harley et al. 2007; 49 
Rubatto and Hermann 2007). Microstructural information gives significant constraints on the origin 50 
of zircon (Vavra et al. 1996; 1999; Schaltegger et al. 1999; Corfu et al. 2003; Geisler et al. 2007; 51 
Rubatto and Hermann 2007; Higashino et al. 2012), so understanding the mechanism of 52 
microstructure formation is of great importance. Above all, behavior of zircon at the amphibolite to 53 
granulite facies transition is important since the role of partial melting on the growth and 54 
microstructure formation of zircon can be understood from such studies (e.g. Schiøtte et al. 1989; 55 
Vavra et al. 1999; Bowman et al. 2011). In the polymetamorphic orthogneiss from northern Labrador, 56 
Canada, almost no zircon grows in the amphibolite facies gneisses, and it starts to grow near the 57 
amphibolite-granulite facies transition (Schiøtte et al. 1989). Vavra et al. (1999) described the zoning 58 
pattern of zircon from the amphibolite-granulite facies transition of the Ivrea Zone (Southern Alps) 59 
in detail. In the Ivrea Zone, this grade of metasediments accompanies partial melting, and all the 60 
zircon overgrowth was supposed to have formed entirely in an anatectic environment. They observed 61 
an angular shape of inherited core of zircon in metasediments and interpreted that it is not affected 62 
by the partial dissolution process. Since dust-like tiny zircons are abundant in the metasediments, 63 
they assumed the Ostwald ripening as a possible growth mechanism of zircon overgrowth, and 64 
considered that such a process took place during the prograde metamorphism. They recognized three 65 
patterns of zircon overgrowth based on morphology and internal structure as follows; (i) prismatic 66 
(prism-blocked) with low Th/U ratio and dark-cathodoluminescence (dark-CL), (ii) stubby with 67 
medium Th/U ratio, and (iii) isometric with high Th/U ratio and bright-CL. The former two were 68 
observed at amphibolite facies and the latter two was observed at granulite facies. They ascribed 69 
prismatic zoning to be due to the growth in amphibolite facies H2O saturated melt whereas isometric 70 
zoning to be due to the growth in granulite facies H2O undersaturated melt (Vavra et al. 1999).  71 

Recently, melt inclusions are found in migmatites and granulites (Cesare et al. 2003; 2009; 2011). 72 
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One of the important host minerals of the melt inclusions is zircon (Cesare et al. 2003). The melt 73 
inclusions are the direct evidence of the partial melting, and thus they enable to reliably constrain the 74 
timing and environment in which zircon grew. Cesare et al. (2009) reports a garnet porphyroblast 75 
that includes a monazite with melt inclusion and a zircon with an euhedral overgrowth. They 76 
interpret that zircon growth in an anatectic environment was almost simultaneous with the garnet 77 
growth, and occurred early in the melting process (Cesare et al. 2009). However, systematic 78 
evaluation of zircon microstructure formed under the amphibolite to granulite facies metamorphism 79 
that utilizes melt inclusions to constrain the timing of zircon microstructure formation is not 80 
sufficiently available yet.  81 

In this study, zircon in the upper-amphibolite to granulite facies pelitic and psammitic 82 
metamorphic rocks of the Ryoke metamorphic belt at the Aoyama area are studied in detail in order 83 
to understand the behavior of zircon in the anatectic migmatite front. The presence of melt inclusions 84 
in the zircon rims, resorption microstructure of near-peak overgrowth truncated by the later 85 
overgrowth, and the result of laser ablation inductively coupled plasma mass spectrometry 86 
(LA-ICP-MS) U-Pb dating of zircon in combination with X-ray fluorescence (XRF) and modal 87 
analyses show that the zircon rims of the Aoyama area partly grew during the near-peak 88 
metamorphism in the presence of melt, and after partial resorption, further overgrowth developed 89 
during the retrograde, melt crystallization stage.  90 

Mineral abbreviations are after Kretz (1983).   91 
 92 

Geological outline of the Aoyama area 93 
 94 
The Ryoke metamorphic belt shows an elongated distribution over 800 km in SW Japan (Fig. 1a), 95 
and is one of the most famous high-temperature, low-pressure type metamorphic belts in the world 96 
(Miyashiro 1965; Okudaira et al. 1993; Okudaira 1996; Ikeda 1998a, b; Brown 1998; Nakajima 97 
1994; Suzuki and Adachi 1998; Kawakami and Ikeda 2003; Kawakami 2004). It is mainly composed 98 
of pelitic and psammitic metamorphic rocks and metacherts, and the highest grade zones are 99 
considered to have reached granulite facies conditions at the metamorphic peak (e.g. Ikeda 2002). 100 
The metamorphic belt grades into the unmetamorphosed sedimentary complex of the Mino-Tanba 101 
terrane to the north that is mainly made up of Middle to Late Jurassic turbidites and shales (e.g., 102 
Wakita 1987).  103 

The Aoyama area is one of the well-studied areas in the Ryoke metamorphic belt, where 104 
high-grade metasedimentary rocks are widely exposed (Yoshizawa et al. 1966; Hayama et al. 1982; 105 
Takahashi and Nishioka 1994; Kawakami 2001a; Kawakami and Nishioka 2012) (Fig. 1b). The rock 106 
facies of the pelitic-psammitic rocks are the schists in the northern half of the area (white part of Fig. 107 
1b), and are anatectic migmatites in the southern half of the area (gray part of Fig. 1b). Migmatites 108 
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are mostly metatexite, but diatexite is also common in the southwestern part of the migmatite 109 
dominant zone. The chemical Th–U-total Pb isochron method (CHIME) dating of monazite from the 110 
migmatites records the prograde monazite growth age of 96.5 ± 1.9 Ma during the regional, Ryoke 111 
metamorphism (Kawakami and Suzuki 2011). This is similar to the CHIME monazite age of the 112 
Ryoke metamorphic rocks reported from other areas where contact metamorphism by granite 113 
intrusion is not significant (e.g. Suzuki and Adachi 1998).  114 

The Kabuto granodiorite and the Ao granite that postdate regional metamorphism intrude 115 
discordantly to the foliations of metamorphic rocks in the Aoyama area (Yoshida et al. 1995). The 116 
Kabuto granodiorite gives the Rb-Sr-whole-rock age of 79.2 ± 10.2 Ma (Tainosho et al. 1999) and 117 
accompanies a contact aureole. The Ao granite gives the CHIME monazite age of 79.8 ± 3.9 Ma 118 
(Kawakami and Suzuki 2011). Monazite from the migmatite zone widely records 83.5 ± 2.4 Ma 119 
thermal event in addition to the 96.5 ± 1.9 Ma age (Kawakami and Suzuki 2011) although the 120 
contact aureole is not evident from the major metamorphic mineral assemblage (Takahashi and 121 
Nishioka 1994). Kawakami and Suzuki (2011) attributed 83.5 ± 2.4 Ma overprint to the thermal 122 
effect and monazite-fluid interaction caused by the intrusion of the Ao granite and the Kabuto 123 
granodiorite. 124 

The Aoyama area is previously divided into two regional metamorphic zones and one contact 125 
metamorphic zone, utilizing mineral assemblages in pelitic lithology (Kawakami 2001a). The 126 
regional metamorphic zones in the order of increasing metamorphic grade are (i) Sil-Kfs zone, 127 
where Ms + Qtz is unstable and Sil + Kfs + Bt is stable, and (ii) Grt-Crd zone, where Grt + Crd + Bt 128 
± Sil is stable. The contact metamorphic zone is recognized by the occurrence of Grt + Crd 129 
assemblage in the granodiorite side (Fig. 1b). The peak pressure-temperature (P-T) conditions are 130 
estimated to be 3.0-4.0 kbar, 615-670 oC for the Sil-Kfs zone, and 4.5-6.0 kbar, 650-800 oC for the 131 
Grt-Crd zone (Kawakami 2001a). These estimates are based on the Grt-Bt geothermometers and 132 
GASP geobarometers, possibly giving the lowest temperature estimates due to the retrograde 133 
re-equilibrium between garnet and biotite. High spessartine content in the garnet from the 134 
schist-dominant part of the Grt-Crd zone suggests that introduction of MnO into garnet stabilized the 135 
Grt + Crd assemblage even under the lower temperature condition than the petrogenetic grid for the 136 
KFMASH system predicts (Kawakami, 2001b). A pseudosection of Wei et al. (2004) constructed for 137 
KMnFMASH + quartz system using typical pelite composition (MMn = Mn/(Mn+Fe+Mg) = 0.007) 138 
of Mahar et al. (1997) shows that increase of MMn widens the stability field of Grt + Crd assemblage 139 
very much. With MMn = 0.03, it is stable in subsolidus field even at 2 kbar, 650 oC. This is consistent 140 
with the whole-rock Mn content of pelitic metamorphic rocks in the Aoyama area having a MMn 141 
value up to 0.03 (Kawakami 2001b) and with the field observation that Grt + Crd assemblage is 142 
found not only in migmatite-dominant area but also in the schist-dominant area. Therefore, effect of 143 
Mn is probably responsible for the low-temperature estimates for the Grt + Crd bearing samples in 144 
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the Aoyama area.   145 
In the Grt-Crd zone, dehydration melting reaction such as  146 
Bt + Sil + Qtz = Crd ± Kfs + melt                                               (1) 147 

and 148 
Bt + Sil + Qtz = Grt + Crd ± Kfs ± Ilm + melt                                     (2) 149 

are responsible for the formation of migmatites (Kawakami 2001a, b).  150 
Besides the Grt-Crd isograd that is subparallel to the schist/migmatite lithological boundary, a line 151 

marking the breakdown of tourmaline was mapped and termed the ‘tourmaline-out isograd’ 152 
(Kawakami 2001a, 2004). This isograd is further extended to the western side of the Aoyama area in 153 
the present study (Fig. 1b). Near this isograd, magmatic andalusite is locally found, based on which 154 
nearly isothermal decompression P-T path was proposed for the Grt-Crd zone (Kawakami 2002). 155 
Melt extraction of 12–14 wt.% from the migmatite zone is estimated in the Aoyama area (Kawakami 156 
and Kobayashi 2006).  157 
 158 

Sample description and methodology 159 
 160 
Samples used in this study are from the Grt-Crd zone where lithological change from schist to 161 
migmatite as a function of increasing metamorphic grade can be observed (Fig. 1b). Three pelitic 162 
and psammitic schists, 13 metatexites and 4 diatexites were collected (Fig. 1b). Mineral assemblage 163 
and other details of the samples used in this study are summarized in Table 1.  164 

These samples were prepared as polished thin section for the electron microprobe analysis of 165 
constituting minerals and modal analysis of zircon. Remaining halves of the rock chips used for thin 166 
sectioning (i.e., the same area with a thin section, ca. 5 mm thickness) were powdered, and utilized 167 
in the trace element analysis by the XRF spectrometer Rigaku 3070 (Goto and Tatsumi 1996) at the 168 
Geothermal Research Institute, Kyoto University. The migmatite sample is chemically banded and 169 
the distribution of zircon within a sample is heterogeneous to some extent. In order to minimize such 170 
effect in comparing zircon mode and whole-rock Zr content, using ‘the same system size’ is 171 
preferable. This is why the remaining halves of the rock chips used for thin sectioning were utilized 172 
in the determination of whole-rock Zr concentration. 173 

Zircon grains in the thin section were observed under the SEM-EDS (Hitachi S-3500H equipped 174 
with EDAX X-ray analytical system) and JEOL JXA8105 superprobe using back scattered electron 175 
(BSE) images, qualitative analysis and an X-ray imaging. Size of zircon (major and minor axes) 176 
whose major axis is more than 20 μm (written as ‘zircon (> 20 μm)’ hereafter) was measured using 177 
BSE image of WDS. Zircon (< 20 μm) was not counted nor measured because they are so common 178 
and it is difficult not to overlook them. Using this grain size data of zircon (> 20 μm), crystal size 179 
distributions (CSDs) were calculated and CSD plots were constructed for each sample, following 180 
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Cashman and Ferry (1988) and Morishita (1992). The number of zircon crystals per size class and 181 
per unit volume (Nv) is represented by Nv = (c/a)1.5/ΔL (Cashman and Ferry 1988; Moroshita 1992), 182 
where c, a and ΔL are the number of zircon crystals within the size class, measured area (whole 183 
thin section in this study), and the size class (5 μm in this study).  184 

Modal amount of zircon (> 20 μm) was determined using the BSE images as follows: 185 
Modal amount of zircon (> 20 μm)  186 

= (Sum of the area of zircon (> 20 μm) in a thin section)/(area of whole thin section), 187 
where area of each zircon grain was calculated in two ways; assuming ellipsoidal shape of zircon 188 
grains or rectangular shape of them (Table 1). The latter gives the possible maximum modal amount 189 
of zircon.  190 

The X-ray elemental mapping of whole thin section was performed for the sample AN44, in order 191 
to determine the CSD plot of zircon covering zircon (< 20 μm). The beam diameter was 3 μm and 192 
the step for the mapping was 5μm each. The grain size of zircon was determined using the elemental 193 
map of Zr and ‘analyze particles’ function of the ImageJ software. Feret’s diameter of each grain 194 
calculated by ImageJ software was used to determine the CSD of zircon. Comparison of this CSD 195 
with the CSD data obtained by the modal counting of zircon enabled to convert the apparent grain 196 
size obtained by the elemental mapping to the real grain size.    197 

Zircon grains in selected schist and migmatite samples from the Grt-Crd zone (Table 1) were 198 
utilized in U-Pb dating using a Nu AttoM single-collector ICP-MS coupled to a NWR-193 199 
laser-ablation system utilizing a 193 nm ArF excimer laser at Kyoto University. The zircon dating 200 
was performed in situ on polished thin sections after BSE and CL image observations. Instrumental 201 
parameters are listed in Table 2. The laser was operated with output energy of ~ 4.4 mJ per pulse, 202 
repetition rate of 6 Hz and laser spot size of 20 μm in diameter, providing an estimated power 203 
density of the sample of 1.60-2.23 J/cm2. The pulse count was 100 shots. The ablation occurs in He 204 
gas within the sample cell, and then the ablated sample aerosol and He gas were mixed with Ar gas 205 
downstream of the cell. He minimizes redisposition of ejecta or condensates while Ar provides 206 
efficient sample transport to the ICP-MS (Eggins et al. 1998; Gunther and Heinrich 1999; Jackson et 207 
al. 2004). The signal-smoothing device was applied to minimize the introduction of large aerosols 208 
into the ICP, reducing signal spikes (Tunheng and Hirata 2004).  209 
  The ICP-MS is optimized using continuous ablation of a 91500 zircon standard (Wiedenbeck et al. 210 
1995; 2004) and NIST SRM 610 to provide maximum sensitivity. Data were acquired on seven 211 
isotopes, 202Hg, 204Pb, 206Pb, 207Pb, 208Pb, 232Th, and 238U using a peak jumping acquisition mode, 212 
which measures the signal intensity at the peak top.  213 
  Background and ablation data for each analysis were collected over 150 and 11 seconds, 214 
respectively. Backgrounds were measured with the laser shutter closed and employing identical 215 
settings and gas flows to those used during ablation. Data were acquired consisting of multiple 216 
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groups of 10 sample unknowns bracketed by quartets of NIST SRM 610 and 91500 zircon standards 217 
(Wiedenbeck et al, 1995; 2004), which are sandwiched by a background analysis. 218 
  202Hg was monitored to correct the isobaric interference of 204Hg on 204Pb. To reduce the isobaric 219 
interference, an Hg-trap device with an activated charcoal filter was applied to the Ar make-up gas 220 
before mixing with He carrier gas (Hirata et al. 2005). Prior to each individual analysis, regions of 221 
interest were pre-ablated using a pulse of the laser with a spot size of 35 μm in diameter to remove 222 
potential surface contamination, dramatically reducing common Pb contamination (Iizuka and Hirata 223 
2004). The average 204 intensities of background and samples for all the analysis performed in this 224 
study are 7680 cps and 7725 cps, respectively (average 204 intensity of selected analysis shown in 225 
Table 3 is 7690 cps). Most of 204 intensity for background is Hg, as indicated by a background 226 
202Hg/204 ratio indistinguishable from natural Hg, 202Hg/204Hg = 29.863/6.865. When 204Pb data for 227 
unknown sample was obtained and a sample has a discordant age without common Pb correction, 228 
common Pb correction was applied to the sample following the two-stage model of Stacey and 229 
Kramers (1975). The maximum level of the correction was fourth time. If the sample required more 230 
than the maximum level of correction, the age of sample was discarded. The effect of the common 231 
Pb correction was factored into the analytical errors on the ages.  232 
  All data reduction including the common Pb correction was conducted off-line using in-house 233 
Excel spreadsheet. Background intensities were interpolated using an averaged value among four 234 
background data acquired before and after the each unknown sample groups. The mean and standard 235 
deviation of the measured ratios among each eight NIST SRM 610 and 91500 zircon standard data 236 
bracketing unknown sample groups were calculated, and the mean and standard deviation measured 237 
for 91500 zircon standard were applied for age estimate and uncertainty propagation. All 238 
uncertainties are quoted at the 2 sigma level. 235U was calculated from 238U using a 238U/235U ratio of 239 
137.88 (Jaffey et al. 1971). 240 

Inclusions phases in zircon grains were observed using JEOL FE-SEM at Osaka University and 241 
transmitted electron microscope (TEM) Hitachi H8000k equipped with KEVEX EDS system at 242 
Kyoto University. The TEM samples were prepared from the polished thin sections using focused 243 
ion beam (FIB) FEI Quanta 200 3DS at Kyoto University.  244 

 245 
Results 246 

 247 
Modal amount of zircon and whole-rock Zr concentration 248 

 249 
The modal analysis of zircon (> 20 µm) was performed on 11 pelitic and psammitic schists, 250 
metatexite and diatexite samples (Fig. 1b, Table 1). Figure 2 is a diagram showing the relationship 251 
between the whole-rock Zr content and the modal amount of zircon (> 20 μm). Comparing the 252 
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modal amount of zircon (> 20 μm) in schists, metatexites and diatexites having almost the same 253 
whole-rock Zr content around 170-190 ppm, there is a tendency that the modal amount of zircon (> 254 
20 μm) is higher in the schists than the metatexites, and diatexites are in between them (Fig. 2). 255 
About 60% of the whole-rock Zr is hosted in zircon (> 20 μm) in schists, but zircon (> 20 μm) hosts 256 
less than 40% of whole-rock Zr in metatexites. In diatexites, 30-50% of the whole-rock Zr is hosted 257 
in zircon (> 20 μm).  258 

Figure 3 is a plot showing a grain size distribution of zircon determined by an X-ray elemental 259 
mapping of a whole thin section of a metatexite sample AN44. Open diamonds are plotted using 260 
Feret’s diameter determined by the elemental mapping and the ImageJ software. This diameter could 261 
be affected by step sizes and beam diameter of the elemental mapping. Grain size of the gray squares 262 
was determined under BSE observation, and thus considered reliable. The major axis of zircon is 263 
used as a grain size in this study. These two methods gave different, but almost parallel, linear least 264 
squares fit lines (Fig. 3). Since these two should be identical, and subtraction of 8 μm from the grain 265 
sizes determined by the elemental mapping (solid triangles in Fig. 3) results in good coincidence 266 
between the two (solid and dotted lines), we consider that the grain size distribution of the sample 267 
AN44 covering all the zircon size range could be approximately represented by the solid triangle 268 
data (Fig. 3).  269 

Figure 4 is the summary of CSD plots for 2 schist samples (Fig. 4a, b), 4 metatexites (Fig. 4c-f), 270 
and 4 diatexites (Fig. 4g-k). There is a tendency that the CSD plots of the grain size range of 25-40 271 
μm commonly define a linear trend. It is rarely curved at the smallest grain size range (20-35 μm) in 272 
sample Y32A. Data for coarse-grained zircons in the plot (more than 40-50 μm size in most cases) 273 
tend to be discordant with the least squares fit lines (e.g., Fig. 4a, e-f, i-j), possibly due to the small 274 
grain numbers (1 to 3).    275 

 276 
Zircon in diatexites of the Grt-Crd zone 277 

 278 
Zircon in the garnet-free diatexites from the Grt-Crd zone, especially those containing abundant 279 

coarse-grained zircon grains, clearly shows the core-rim microstructure; core is the inherited part 280 
from the protolith showing various ages (Fig. 5) and the rim overgrowths develop on it. The core-rim 281 
boundary can be commonly identified by the presence of characteristic thin, dark-CL (bright BSE) 282 
annulus (Fig. 5a-l, o-r, w-x). Although the dark annulus itself cannot be dated because it is too thin, 283 
ubiquitous occurrence of it at the immediate contact between inherited core and the rim regardless of 284 
the variety of the inherited core ages (Fig. 5) suggests that the dark-CL annulus is contemporaneous 285 
with the rim overgrowth, and formed during the latest metamorphic event, that is, the Ryoke 286 
metamorphism. The dark-CL annulus commonly includes tiny, dark inclusions of less than several 287 
microns in diameter (Fig. 5a-l, o-r, w-x). Such inclusions are abundant in pyramid faces where 288 
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overgrowth is thicker and probably faster (Fig. 5c-d, i-j). This microstructure resembles very much 289 
with that observed in zircons from the El Hoyazo enclave (Cesare et al. 2003). In the case of El 290 
Hoyazo, one of the tiny inclusions was confirmed to be a rhyolitic glass.  291 

In order to confirm the presence of melt inclusions in our sample, tiny inclusions present in the 292 
dark-CL annulus of zircon were prepared for the TEM observation utilizing FIB. Figure 6 shows the 293 
bright and dark field images of the sample G6 and the electron diffraction patterns of the inclusions 294 
in it. Judging from the diffuse, halo pattern of the electron diffraction images, inclusions 1, 3 and 5 295 
are the glass, and inclusions 2 and 4 are the mixture of glass and crystal. The EDS analysis under 296 
TEM and FE-SEM shows that inclusion 3 is a glass containing K, Al and Si, and inclusion 1 is a 297 
Si-rich glass. The melt inclusions rarely have pores (inclusion 2 of Fig. 6) that resembles to the 298 
‘micro- to nano-porosities’ (terminology after Cesare et al. 2011) reported from nanogranites. 299 
Presence of pores and daughter crystals in the glass inclusions in zircon is also observed in plutonic 300 
rocks (Thomas et al. 2003).  301 

The core of the zircon is often oscillatory zoned both in CL and BSE images and such a zoning is 302 
truncated by the rim overgrowth (Fig. 5a-b, e-f, k-l). The shape of the core (inside of the dark-CL 303 
annulus) is often angular (Fig. 5a-b, i-j), as observed in the case of metapelites from the amphibolite 304 
and granulite facies transition in Ivrea Zone (Vavra et al. 1999), but the rounded ones are also 305 
present (Fig. 5o-r). The important characteristic of the dark-CL annulus in the garnet-free diatexite 306 
zircon is that it varies in thickness and commonly truncated by the lighter-colored overgrowth (Fig. 307 
5a-b, g-h, w-x).   308 

Zircon grains without the inherited core are not uncommon in the matrix and the grain size is ca. 309 
35 μm (Fig. 5m-n), both in garnet-free and garnet-bearing diatexites. They show rounded shape and 310 
lack zoning, and show similar CL brightness with the bright-CL overgrowth developed at the coarse 311 
zircon rim. They also lack the dark-CL annulus. Based on transmitted light microscope observation, 312 
some of them are the rim of the coarse grained zircon. However, common occurrence of ca. 35 μm 313 
grains with young ages as reported below supports that some of them are newly nucleated ones 314 
contemporaneous with the coarse-grained zircon rims.  315 

Zircon with dark-CL annulus and tiny inclusion alignments are also found in the matrix and as 316 
inclusions in garnet from the garnet-bearing diatexite. In a garnet-bearing diatexite sample G11, 317 
major axis of zircon (> 20 μm) is mostly 20-30 μm (Fig. 4h) and the dark-CL annulus and tiny 318 
inclusion alignments are rarely observed in the matrix zircon (Fig. 5o-p, s-x). Zircon inclusion in 319 
garnet often has a major axis less than 30 μm (Fig. 5q-r), and has dark-CL annulus and tiny inclusion 320 
alignment. Most of the matrix zircon lacks apparent inherited core, and their microstructure and 321 
CL-intensity resemble to the possible newly nucleated grains observed in the garnet-free diatexites 322 
(Fig. 5m-n). Some matrix zircon grains show dark-CL annulus truncated by the overgrowth rim (Fig. 323 
5w-x) as in the case of garnet-free diatexites. Although it is still not clear whether this 324 



10 
 

microstructural difference between garnet-free and garnet-bearing diatexites are common in other 325 
diatexites in the Aoyama area or not, the important observation in this study is that both zircon rim 326 
overgrowth and newly crystallized grains can be recognized in garnet-free and garnet-bearing 327 
diatexites, and zircon in these diatexites also share the characteristic that dark-CL annulus is further 328 
truncated by the overgrown rim.   329 

The LA-ICP-MS U-Pb dating of zircon rims and the grains without inherited cores give the 330 
concordia age of ca. 90.3 ± 2.2 Ma (Fig. 7b). The cores give concordant ages of ca. 2100-1700 Ma, 331 
ca. 550 Ma and ca. 250-120 Ma, and these are considered to be inherited, detrital ages (Fig. 7a). 332 
Most of the rim overgrowths were too thin for the LA-ICP-MS U-Pb dating with 20 μm spot-size, so 333 
that many mixed analyses of inherited core and rim resulted in the formation of discordia in the 334 
concordia diagram (Fig. 7a). The Th/U ratio of the zircon core varies while that of the 90.3 ± 2.2 Ma 335 
rim is very low, mostly below 0.02 (Table 3). 336 

      337 
Zircon in schists and metatexites of the Grt-Crd zone 338 

 339 
Zircon in pelitic and psammitic schist of the Grt-Crd zone is found in the matrix, and intimate 340 

microstructural correlation between other mineral such as biotite is not observed. Microstructure of 341 
zircon does not differ between the pelitic and psammitic lithology, and the dark-CL annulus 342 
developed on the inherited core, accompanied by the inclusions similar to diatexite zircons, is rarely 343 
observed (Fig. 8). Rim overgrowth, if present, is about several microns in thickness (Fig. 8c-h, k-l, 344 
o-v). Zircon grains that do not have rim overgrowth are also common (Fig. 8a-b, m-n). Even in such 345 
cases, inclusion alignments are found along the healed cracks that can be observed in CL images 346 
(Fig. 8k-l). Shape of the core is often angular (Fig. 8e-h, k-l, q-r, u-v), although rounded variety is 347 
also present. 348 

Zircon in metatexite is found in the matrix (Fig. 9e-h, k-t), as well as inclusions in garnet 349 
porphyroblasts (Fig. 9a-b, i-j) or biotite (Fig. 9m-n). Zircon in the matrix is commonly found 350 
adjacent to biotite or quartz in mesosome and melanosome. It is rare in leucosome. The dark-CL 351 
annulus with inclusions is developed in most of the zircon grains found in the matrix (Fig. 9e-h, k-t). 352 
Nanogranite-like polyphase inclusion is included in the dark-CL annulus of zircon grain AN07a-7 353 
(Fig. 9o-p). The dark-CL annulus is further overgrown by the brighter-CL overgrowth (Fig. 9e-h, k-t). 354 
The thickness of the rim overgrowth is, in most cases, less than 10 μm. Shape of the core is often 355 
angular (Fig. 9e-f, k-l, q-r), even if the zircon is included in garnet (Fig. 9i-j), although rounded 356 
variety is also common (Fig. 9m-n).  357 

Zircon inclusions in garnet porphyroblast are often less than 20 μm, with or without core-rim 358 
microstructure (Fig. 9a-b, i-j). Monazite is also included in the same garnet, so monazite and zircon 359 
coexisted during the near-peak metamorphism when garnet grew. An example of inclusion zircon 360 
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from sample AN07 has angular-shaped core, overgrown by the dark-CL annulus and brighter-CL 361 
overgrowth on it (Fig. 9i-j). Dark-CL annulus has many inclusions of unidentified phases less than 362 
several microns in diameter (Fig. 9i-j, shown by arrows), microstructure of which resembles very 363 
much to the zircon with melt inclusions found in diatexites (Fig. 5). Different from diatexites, the 364 
dark-CL annulus is not truncated by the brighter-CL overgrowths in most of the metatexite samples 365 
(Fig. 9).     366 
 The dark-CL annulus and brighter-CL overgrowth on zircon in schists and metatexites are thinner 367 

than the spot size (20 μm) of the LA-ICP-MS U-Pb dating. Because of this, most dating on the 368 
zircon rim could be only done as mixtures with the inherited core. The result is plotted on a 369 
concordia diagram (Fig. 10). Most results are lying on a discordia, which is actually a mixing line 370 
resulted from the mixed analysis of the core and rim. The inferred lower intercept around ca. 90 Ma 371 
implies the presence of the rim overgrowth of ca. 90 Ma (Fig. 10). A zircon grain from the 372 
metatexite (sample AN52) with characteristic core-rim microstructure gave near-concordant age of 373 
115 ± 6.0 Ma and relatively low Th/U ratio of 0.16 (Fig. 9g-h). Presence of this kind of mixed age 374 
also supports the growth of young zircon rim in metatexites. Therefore, the thin zircon rim observed 375 
in the schists and metatexites is probably identical to the 90.3 ± 2.2 Ma zircon rim observed in 376 
diatexites. The cores of zircon from schists and metatexites give concordant U-Pb ages of ca. 2500 377 
Ma, ca. 2200-1700 Ma, ca. 600 Ma and ca. 230-120 Ma, and these are considered to be inherited, 378 
detrital ages (Fig. 10). 379 
 380 

Discussion 381 
 382 

Behavior of zircon at the schist-migmatite transition of the Aoyama area 383 
 384 

Mechanism of zircon growth in the Aoyama area 385 
 386 

The modal amount of zircon (> 20 μm) is high in schists of the Grt-Crd zone, and is lower in 387 
metatexites (Fig. 2). This tendency is not controlled by the difference in the whole-rock Zr 388 
concentration, because it is observed for the schists and metatexites showing similar whole-rock Zr 389 
concentration (Table 1, Fig. 2). Figure 2 shows that about 60% of the whole-rock Zr is contained in 390 
zircon (> 20 μm) in the schists, whereas less than 40% of the whole-rock Zr is contained in zircon (> 391 
20 μm) in metatexites. In diatexites, 30-50% of whole-rock Zr can be accounted for by the presence 392 
of zircon (> 20 μm), which is higher than the metatexites case. From the CSD plot of the metatexite 393 
sample AN44 (Fig. 3), abundant occurrence of fine-grained zircon (< 20 μm) is confirmed, and from 394 
a modal amount calculation of fine-grained zircon, roughly 20-40% of whole-rock Zr resides in 395 
zircon (< 20 μm), assuming rounded shape of them. This suggests that tiny zircon grains are the 396 
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important carrier of whole-rock Zr. 397 
Angular shape of the core of zircon in metatexites and diatexites (Figs. 5a-b, i-j, 9e-f, k-l, q-r) 398 

suggests that these cores did not resorb (Vavra et al. 1999), and the rim grew without experiencing 399 
resorption. Since the zircon included in peritectic garnet has tiny inclusion alignment and dark-CL 400 
annulus that resemble to melt-inclusion-bearing zircon in diatexites, the rim overgrowth on angular 401 
core probably occurred in the presence of melt.  402 

The source of Zr for this rim overgrowth is problematic. One possible source of Zr required for 403 
the rim overgrowth is the breakdown of Zr-bearing phases other than zircon. Biotite is not an 404 
important sink of Zr (Bea et al. 2006), and thus biotite breakdown cannot supply sufficient Zr. The 405 
Zr-bearing phases like garnet (Fraser et al. 1997) and ilmenite (Bingen et al. 2001) are the product of 406 
the partial melting reaction (2) rather than the reactant, so they cannot provide Zr, either. Minor 407 
xenotime (Bea et al. 2006) can be a Zr source for zircon overgrowth, but the microstructural 408 
evidence for this is absent so far. Therefore, breakdown of Zr-bearing phases other than zircon is less 409 
likely. 410 

Accepting that Zr is mostly hosted in zircon (Fraser et al. 1997), and because tiny zircon grains 411 
are confirmed to be an important carrier of Zr in samples of this study (Figs. 3, 4), behavior of tiny 412 
zircon grains is a key to understand the mechanism of zircon growth. Because the inherited core of 413 
zircon in metatexites and diatexites often exceeds 5-10 μm, it is possible that zircon grains less than 414 
this size were selectively dissolved through the Ostwald ripening process in the presence of melt at 415 
the initial stage of zircon growth (e.g. Vavra et al. 1999). Microstructural observation requests this 416 
process if the Zr is not introduced externally, although the observed CSD pattern does not directly 417 
support this process. However, the CSD pattern does not deny the Ostwald ripening at the initial 418 
stage of zircon growth, since our data does not cover the fine-grained zircon population as 5-10 μm 419 
size except for Fig. 3, and the evidence for an early stage process in CSD pattern could be erased by 420 
the later processes (e.g. Cashman and Ferry 1988). Judging from the fact that zircon inclusion in 421 
peritectic garnet also has an overgrowth accompanying dark-CL annulus and tiny inclusions, this 422 
process took place during the near-peak metamorphism.  423 

The linear CSD plots generally suggest the continuous nucleation and growth of zircon grains 424 
during metamorphism (e.g. Cashman and Ferry 1988; Okudaira 1996). However, as is clear from 425 
microstructural observation and LA-ICP-MS dating of zircon, inherited cores are abundant in zircon 426 
(Figs. 5, 8, 9). Therefore, theories and interpretation valid for crystals without inherited cores should 427 
not be applied directly to this study. A linear CSD trend is even observed for the pelitic schist sample 428 
AN24, in which development of zircon overgrowth is not evident (Fig. 8q-v). Therefore, it is highly 429 
possible that this linear CSD trend was already acquired at the protolith stage.  430 

However, the ca. 35 μm zircon grains with ca. 90 Ma age (Fig. 5m-n), probably representing 431 
newly nucleated grains, are common in diatexites. Therefore, fine-grained portion of the CSD plots 432 
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for diatexites, at least, could potentially represent the mechanism of zircon growth during the Ryoke 433 
metamorphism. The CSD plots of diatexite sample Y32A (Fig. 4h) shows curved nature at the finest 434 
grain size range (< 35 μm). This could represent the later modification of originally linear CSD 435 
pattern by the Ostwald ripening process (Cashman and Ferry 1988). Therefore, we consider that 436 
growth of zircon grains at the near-peak metamorphic stage occurred through the Ostwald ripening 437 
process consuming finer-grained zircon than ca. 35 μm in the diatexite sample Y32A. 438 

  439 
Interpretation of the dark-CL annulus and melt inclusions 440 

 441 
Zircon (> 20 μm) in the schists is inherited, detrital grain that is evident from the LA-ICP-MS 442 

U-Pb zircon dating giving various old ages (Fig. 8). Cretaceous overgrowth on them is very thin or 443 
almost absent. However in metatexites, young-aged overgrowth (ca. 90 Ma) is developed in most of 444 
the zircon grains as suggested by the presence of zircon rim with similar microstructural 445 
characteristics to melt-inclusion-bearing diatexite zircon (Fig. 9), and by the presence of ca. 90 Ma 446 
lower intercept for mixed analysis of zircon core and rim (Fig. 10). The ca. 90 Ma rim is commonly 447 
separated from the inherited, detrital core by the melt inclusion alignments included in a thin, dark 448 
annulus observed under the CL image (Figs. 5, 9). This trend is much clear in diatexites. Since 449 
dark-CL annulus is commonly developed on the inherited core of various ages, it is not 450 
contemporaneous with the inherited core, but is rather a part of an overgrowth contemporaneous 451 
with the ca. 90 Ma rim. 452 

This kind of dark-CL overgrowth on the inherited core of the Ivrea Zone is considered to have 453 
formed during the amphibolite facies metamorphism (Vavra et al. 1999). In the Aoyama area, garnet 454 
porphyroblasts in metatexites and diatexites include zircon (< 20 μm) with microstructure very 455 
similar to the melt-inclusion-bearing dark-CL annulus (Figs. 5, 9). Since garnet is considered to be a 456 
product of near-peak metamorphism, this clearly shows that melt inclusions, dark-CL annulus and 457 
part of the brighter-CL overgrowth on the dark-CL annulus (all found in zircon inclusions in garnet) 458 
are all formed at the near-peak metamorphism. Cesare et al. (2009) also interprets the zircon with 459 
euhedral overgrowths included in garnet from El Hoyazo to have formed early in the melting 460 
process.  461 

However, this dark-CL annulus is commonly truncated by the bright-CL overgrowth in 462 
diatexites (Fig. 5a-b). Therefore, resorption of relatively coarse-grained zircon took place after the 463 
near-peak growth of zircon. Such a resorption can occur when the amount of melt increased and the 464 
fine-grained zircon was totally consumed. Resorption of zircon continues as far as the amount of 465 
melt increases, but it starts to crystallize when the melt starts to cool and crystallize and the 466 
solubility of Zr in the melt decreases. Therefore, timing of the bright-CL overgrowth development 467 
that truncates dark-CL annulus is the retrograde, melt crystallization stage. 468 
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To summarize, zircon rim overgrowth (the dark-CL annulus and an outer part than it) is partly 469 
near-peak metamorphic in origin, and partly retrograde. Therefore, the U-Pb ages for zircon rims and 470 
newly nucleated grains obtained in this study represent the mixed age of near-peak and retrograde 471 
zircons, although the contribution of the near-peak zircon is small in some cases. For example, the 472 
analysis spot giving 90 ± 8 Ma in Fig. 5a-b is completely retrograde in origin because the rim 473 
analyzed truncates both the dark-CL annulus and part of the bright-CL overgrowth on it. The timing 474 
of this zircon rim crystallization is dated to be 90.3 ± 2.2 Ma (Table 3, Fig. 7b). The low Th/U ratio 475 
of these young zircon rims (Fig. 5, Table 3) would be due to the coexistence with monazite during its 476 
growth (Kawakami and Suzuki 2011; Cesare et al. 2003), as shown by the presence of monazite and 477 
zircon with rim overgrowth included in garnet.  478 

A fluid activity during the contact metamorphic event at 83.5 ± 2.4 Ma detected by the CHIME 479 
monazite dating is considered responsible for the rejuvenation of the monazite age (Kawakami and 480 
Suzuki 2011). Absence of further young overgrowth or rejuvenated part in zircon suggests that 481 
zircon was almost immune from the contact metamorphic event at 83.5 ± 2.4 Ma (Kawakami and 482 
Suzuki 2011). Overall discussion above suggests that presence of the melt is playing an important 483 
role in zircon formation during the high-temperature metamorphism (e.g. Vavra et al. 1999; Rubatto 484 
et al. 2001) in the Ryoke metamorphic belt at the Aoyama area.  485 

   486 
Duration of the high-temperature, low-pressure type Ryoke metamorphism 487 

 488 
 Monazite in the Ryoke metamorphic belt has been considered to record the timing of prograde 489 

growth when the rock first attained 525 oC (e.g. Suzuki and Adachi 1998). We follow their 490 
interpretation that the CHIME monazite age of 96.5 ± 1.9 Ma in the Aoyama area (Kawakami and 491 
Suzuki 2011) represents the timing of monazite growth at around 525 oC. On the other hand, zircon 492 
rims and newly nucleated grains give the mixed age of the near-peak metamorphism to the 493 
retrograde, melt crystallization stage (90.3 ± 2.2 Ma; Fig. 7b). The retrograde crystallization of 494 
zircon can be the same as or younger than this age. Therefore, using the difference of growth timing 495 
of monazite and zircon in the Aoyama area, duration of metamorphism higher than the amphibolite 496 
facies grade could be estimated (Fig. 11). These give the duration of high-temperature, low-pressure 497 
type Ryoke metamorphism of at least ca. 6 Myr in the case of the Aoyama area. This is a little longer 498 
than the estimate of Suzuki et al. (1994) who considered the duration of the Ryoke metamorphism 499 
above ca. 500 oC to be about 5 Myr.  500 
 501 
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 670 
 671 
Figure captions  672 
Fig. 1 (a) Simplified geological map of the Ryoke metamorphic belt. The low-temperature, 673 

high-pressure type Sanbagawa belt is located to the south of the Ryoke metamorphic belt and 674 
these two belts are separated by the Median Tectonic Line (MTL). (b) Geological map of the 675 
Aoyama area (after Yoshida et al. 1995; Ozaki et al. 2000) showing the sample localities. The 676 
Grt-Crd and tourmaline-out isograds (Kawakami 2001a) are subparallel to the schist/migmatite 677 
boundary and to the penetrative schistosity and migmatitic banding observed in this area. 678 
Sample names shown next to locality points correspond to those given in Table 1.  679 

 680 
Fig. 2. A diagram showing the whole-rock Zr concentration versus modal amount of zircon (> 20 681 

μm). Density of the rock and zircon were assumed to be 2.7 g/cm3 and 4.6 g/cm3, respectively. 682 
Each diamond and square pair connected by a solid line represent a dataset from a single sample, 683 
based on the different assumption made in calculating the modal amount of zircon in a single 684 
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thin section as follows: (i) assuming ellipsoidal shape of zircon, plotted as low-modal amount 685 
points, and (ii) assuming rectangular shape of zircon, plotted as high-modal amount points. 686 
Broken lines and numbers (%) shown in the figure represents the percentage of whole-rock Zr 687 
content hosted by the zircon (> 20 μm).   688 

 689 
Fig. 3 A plot showing the result of grain size distribution of zircon in a metatexite sample AN44, 690 

determined by the X-ray elemental mapping of the whole thin section (open diamonds). 691 
Numerical expression given in the figure is that for the least squares fit of the solid triangle data 692 
(solid line). A broken line represents the least squares fit for the gray square points. See text for 693 
further explanation. 694 

 695 
Fig. 4. A summary of the CSD plots for 2 schist samples (Fig. 4a, b), 4 metatexite samples (Fig. 4c-f), 696 

and 4 diatexite samples (Fig. 4g-k). All the zircon grain size (major axis) data were measured by 697 
BSE image observation utilizing WDS. Sample numbers are given in the top right of each figure 698 
(AN32 etc.). See Fig. 1b for the sample locality and Table 1 for sample descriptions. (j) is an 699 
enlargement of the fine-grained portion of (i). See text for details. 700 

 701 
Fig. 5. The BSE and CL images of zircon in diatexites from the Grt-Crd zone of the Aoyama area. 702 

Red circles represent the size of pits created by LA-ICP-MS U-Pb dating and numbers given are 703 
the 206Pb/238U age ± 2SD error [better than 95-105% concordance except for the points at young 704 
rim of (b) 93%, (f) 93%, and (l) 94%, where concordance = (206Pb/238U age)*100/(207Pb/235U 705 
age)] and Th/U ratio. These relatively low concordance data points are shown so that correlation 706 
with zircon microstructure is clear. ‘*’ represents that the point gave discordant data. Scale bars 707 
are 10 μm. Red arrows indicate the melt (presently glass) and mineral (biotite, quartz, 708 
plagioclase and K-feldspar) inclusions included along the thin, bright annulus under BSE image. 709 
This annulus is recognized as dark annulus in CL image. Red dotted line represents the core/rim 710 
boundary where dark-CL annulus is truncated by the brighter-CL overgrowth. (a), (c), (e), (g), 711 
(i) and (k); CL image of zircon grains from a diatexite (G6-28, G6-31, G6-4, G6-34, G6-38, and 712 
G6-17, respectively). (a), (c), (e) and (i) are in the matrix, and (g) and (k) are included in biotite. 713 
(b), (d), (f), (h), (j) and (l); BSE images of (a), (c), (e), (g), (i) and (k), respectively. (m) CL 714 
image of a newly nucleated zircon grain at 86.7 ± 9.2 Ma present in the matrix of diatexite 715 
(Y32-38). Note the similar CL-brightness as the outermost part of the rim overgrowth shown in 716 
(a), (c), (e), (g), (i) and (k). (n) BSE image of (m). (o), (q), (s), (u) and (w) CL images of zircon 717 
grains from a garnet-bearing diatexite (G11-19, G11-13, G11-16, G11-21 and G11-18, 718 
respectively). (q) occurs as an inclusion in garnet, and others are found in the matrix. (w) has 719 
tiny inclusion alignment along a dark-CL annulus under transmitted light microscope, but not 720 



21 
 

exposed on the surface. (p), (r), (t), (v) and (x); BSE images of (o), (q), (s), (u) and (w). 721 
 722 
Fig. 6. Bright and dark field images of TEM sample as a whole (sample G6), enlargement of 723 

inclusions in it (inclusions 1-5) and electron diffraction patterns of the inclusions. Width of the 724 
sample is 9.2 μm. Host mineral of the inclusions is zircon. Diffuse halo pattern clearly shows 725 
that inclusions are the glass (inclusions 1, 3 and 5), or the mixture of the glass and crystal 726 
(inclusions 2 and 4). Most of the spotted electron diffraction patterns are from host zircon except 727 
for inclusions 2 and 4. Red arrows shown in the photo of inclusion 2 are ‘nano-porosities’ after 728 
Cesare et al. (2011). The EDS analysis under TEM shows that inclusion 3 is a glass containing K, 729 
Al and Si, and inclusion 1 is a Si-rich glass. 730 

 731 
Fig. 7. (a) Concordia diagram for the LA-ICP-MS U-Pb dating of zircon from the diatexite-dominant 732 

part of the Grt-Crd zone. Concordia diagrams in this study are constructed using Isoplot 3.6 733 
(Ludwig 2008). Since the thickness of rim and the size of the newly-nucleated zircon sometimes 734 
reach more than 20 μm in the diatexite-dominant part of the Grt-Crd zone, LA-ICP-MS dating 735 
of the rim can be done without any mixing of the core. However, some of the analyses are the 736 
mixed analysis of the core and the rim, resulting in the discordia-like mixing line. Inset is an 737 
enlargement of the young-aged part. (b) Concordia diagram for selected analyses of zircon rim 738 
and newly-nucleated zircon grain. The result of concordia age calculation is also shown.   739 

 740 
Fig. 8. The BSE and CL images of zircon in a psammitic schist AN16 and a pelitic schist AN24 from 741 

the Grt-Crd zone. Red circles represent the size of pits created by LA-ICP-MS U-Pb dating and 742 
numbers given are the 206Pb/238U age ± 2SD error. (a), (c), (e), (g), (i), (k), (m), (o), (q), (s) and 743 
(u); BSE images of zircon. (a) AN16-re13 in matrix, (c) AN16-11 in matrix, (e) AN16-13 in 744 
matrix, (g) AN16-07 in matrix, (i) AN16-24 in matrix, (k) AN16-re35 in matrix, (m) AN16-22 in 745 
matrix, (o) AN16-29 in matrix, (q) AN24-31 in matrix, (s) AN24-re02 in quartz, and (u) 746 
AN24-re15 in plagioclase, respectively. (b), (d), (f), (h), (j), (l), (n), (p), (r), (t) and (v); CL 747 
images of (a), (c), (e), (g), (i), (k), (m), (o), (q), (s) and (u). 748 

 749 
Fig. 9. The BSE and CL images of zircon in metatexites from the Grt-Crd zone. Red arrows indicate 750 

the melt and mineral inclusions included along the thin, bright annulus under BSE image 751 
(identical with the dark-CL annulus). Red circles represent the size of pits created by 752 
LA-ICP-MS U-Pb dating and numbers given are the 206Pb/238U age ± 2SD error. (a), (c), (e), (g), 753 
(i), (k), (m), (o), (q) and (s); CL images of zircon from metatexite samples AN07a, AN27 and 754 
AN52. (a) AN07a-1 in garnet, (c) AN07a-3 in retrograde muscovite, (e) AN07-17 in matrix, (g) 755 
AN52-25 in matrix, (i) AN07a-2 in garnet, (k) AN07a-12 in matrix, (m) AN07a-07 in biotite, (o) 756 
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AN52-06 in matrix, (q) AN07-21 in matrix, and (s) AN27-06 in matrix, respectively. (b), (d), (f), 757 
(h), (j), (l), (n), (p), (r) and (t); BSE images of (a), (c), (e), (g), (i), (k), (m), (o), (q) and (s). 758 

 759 
Fig. 10. Concordia diagram for the LA-ICP-MS U-Pb dating of zircon from the schist-dominant and 760 

metatexite-dominant parts of the Grt-Crd zone. Since the development of the zircon rim is not 761 
sufficient enough for LA-ICP-MS dating with 20 μm spot size, mixed analysis was intentionally 762 
performed on rims, resulting in the discordia (mixing line) on the diagram. Inset is an 763 
enlargement of the young-aged part. 764 

 765 
Fig. 11. A P-T-t path for the low-temperature part of the Grt-Crd zone (schist-migmatite boundary) 766 

of the Aoyama area. Modified after Kawakami (2002). Pseudosection shown in the suprasolidus 767 
P-T region is from Wei et al. (2004) constructed for KMnFMASH + quartz system using typical 768 
pelite composition (MMn = Mn/(Mn+Fe+Mg) = 0.007) of Mahar et al. (1997). Their calculation 769 
shows that increase of MMn widens the stability field of garnet + cordierite assemblage very 770 
much. With MMn = 0.03, garnet + cordierite is stable in subsolidus field even at 2 kbar, 650 oC 771 
(not shown). This is consistent with the whole-rock Mn content of pelitic metamorphic rocks in 772 
the Aoyama area (Kawakami 2001b; Kawakami and Kobayashi 2006) and with the field 773 
observation that garnet + cordierite assemblage is found not only in migmatite-dominant area 774 
but also in the schist-dominant area. Therefore, effect of Mn is responsible for the 775 
low-temperature estimates obtained for the Grt-Crd zone samples. Timing of the monazite 776 
growth is considered to be the prograde stage (first attainment of 525 oC, pressure not 777 
constrained; Suzuki and Adachi 1998), and the zircon rim growth to be near-peak metamorphic 778 
condition to the retrograde, melt crystallization stage. Zircon rim growth stage is shown by a 779 
thick gray arrow.  780 

 781 
Table 1. Summary of the description of samples and the result of whole-rock trace element analyses. 782 

Trace element data were obtained for thin-section sized chips by XRF. Crd(?) in the mineral 783 
assemblage of sample AN24 represents that alteration that looks like a pseudomorph after Crd is 784 
present. 785 

 786 
Table 2. Instrumental settings of the LA-ICP-MS U-Pb zircon dating at Department of Geology and 787 

Mineralogy, Kyoto University. 788 
 789 
Table 3. Representative results of the LA-ICP-MS U-Pb zircon dating that were used for the 790 

calculation of 90.3 ± 2.2 Ma concordia age. Most of the 204Pb listed in the table are actually 791 
204Hg as calculated from 202Hg counts. No common Pb correction was applied. 792 
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Cr Ni Ba Rb Nb Pb Sr Zr Y

AN16 north psammitic schist scarce Bt ○ - - 33 24 1266 104 8 27 234 313 20   
AN24 north pelitic schist scarce Bt+Crd(?) ○ 0.013 0.016 49 24 1312 111 10 25 257 193 21   
AN32 north psammitic schist scarce Bt ○ 0.013 0.016 29 21 384 91 6 18 214 119 11   
AN28 middle metatexite common Bt+Grt+Crd - - - 45 29 510 64 9 9 108 105 15   
AN02 middle metatexite common Bt+Grt+Sil+Tur - 0.0002 0.0002 48 47 677 128 9 31 112 170 29   
AN06 middle metatexite common Bt+Crd+Tur - - - 56 48 962 192 10 30 281 249 25   

AN07a middle metatexite common Bt+Grt+Tur - 0.003 0.003 50 24 505 116 10 28 228 182 28   
AN09 middle metatexite scarce Bt+Grt (+Sil inc) - - - 46 35 766 112 10 20 113 195 28   
AN11 middle metatexite common Bt+Grt - - - 72 44 179 105 6 16 190 131 27   
AN38 middle metatexite common Bt+Grt+Crd - - - 34 26 225 84 7 16 145 177 37   
AN40 middle metatexite common Bt+Grt+Crd+Tur - - - 125 54 378 101 8 20 226 176 37   
AN47 middle metatexite common Bt+Grt+Crd (+Sil inc) ○ 0.009 0.011 62 28 421 130 8 17 159 172 24   
AN44 middle metatexite common Bt+Grt+Crd+Sil ○ 0.004 0.005 66 25 253 108 12 18 129 257 45   
AN52 middle metatexite common Bt+Grt ○ 0.004 0.005 52 30 249 85 9 22 285 157 29   
AN27 middle metatexite common Bt+Grt+Crd+Sil ○ - - 75 48 860 206 16 27 147 177 31   
Y49B south metatexite common Bt+Grt+Crd+Sil - - - - - - - - - - - -
Y32A south diatexite common Bt+Crd+Sil ○ 0.014 0.018 71 29 353 130 17 20 229 253 27
Y25 south diatexite common Bt+Crd+Sil ○ 0.011 0.013 73 40 589 167 19 23 209 193 22
G6 south diatexite common Bt ○ 0.008 0.010 109 47 258 96 14 21 232 211 17

G11 south diatexite rare Bt+Grt+Sil - 0.003 0.004 34 27 428 103 18 18 128 194 43

Table 1 Kawakami et al.
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Nu AttoM single collector ICP-MS
RF power 1350 W
Cooling gas flow rate 13 l /min
Auxiliary gas flow rate 0.9  l /min

Detection system

IC dead time 18 ns

NWR193 excimer laser system
ATLEX-SI ArF excimer laser
Wavelength 193 nm
Pulse energy 7.0 mJ
Pulse width 4-6 ns
Energy density/ Fluence 1.60-2.23 J /cm2

Repeatition rate 6 Hz
Spot diameter 20 μm
Helium carrier gas flow rate 1.00 l /min
Argon make-up gas flow rate 1.05 l /min
Signal smoothing device with
Number of laser shots 100 shots

Measured isotope Dwell time Attenuation
Sample Gas blank

202Hg 1300 ms 2000 ms Off
204Pb 1300 ms 2000 ms Off
206Pb 1300 ms 2000 ms Off
207Pb 1300 ms 2000 ms Off
208Pb 1300 ms 2000 ms Off
232Th 1300 ms 2000 ms Off
238U 1300 ms 2000 ms On or Off
Data acquired time 11 sec 150 sec

Kawakami et al. Table 2

Mixed attenuation-multiple ion counting



7th July 2011, Department of Geology and Mineralogy, Kyoto University Ages (Ma)

Grain number
204Pb
(cps)

202Hg
(cps)

U
(ppm)

Th
(ppm

)
Th/U

204Pb/206P
b

206Pb/238

U
±2SD

207Pb/235

U
±2SD

207Pb/206P
b

±2SD
206Pb/238

U age

±
2S
D

207Pb/235U
age

±2SD
abs

U-Pb
discordance

(%)
G6-15 1756 7487 660 3.1 0.005 0.0537 0.0134 0.0006 0.0866 0.0054 0.0465 0.0019 86.0 3.9 84.3 5.1 -2.0
G6-29 1783 7571 747 13.0 0.017 0.0538 0.0145 0.0013 0.0973 0.0107 0.0485 0.0019 92.8 8.2 94.3 9.9 1.6
G6-30 1720 7722 617 5.5 0.009 0.0538 0.0149 0.0013 0.0994 0.0110 0.0483 0.0019 95.2 8.4 96.2 10.1 1.1
G6-31 1785 7514 934 4.1 0.004 0.0538 0.0151 0.0013 0.0993 0.0109 0.0476 0.002 96.4 8.5 96.1 10.1 -0.4
G6-31r 1790 7616 1005 21.7 0.022 0.0538 0.0145 0.0013 0.0956 0.0105 0.0477 0.002 92.7 8.2 92.7 9.8 0.0
G6-34r 1797 7601 860 3.8 0.004 0.0538 0.0146 0.0013 0.0957 0.0107 0.0472 0.002 93.3 8.3 92.8 9.9 -0.6
G6-38r 1742 7701 583 3.4 0.006 0.0538 0.0143 0.0012 0.0951 0.0100 0.0482 0.0020 91.4 7.7 92.3 9.3 0.9
G6-40r 1848 7855 698 10.0 0.014 0.0537 0.0141 0.0012 0.0925 0.0097 0.0476 0.0020 90.0 7.5 89.8 9.0 -0.2
Y32-17 1852 7781 616 6.0 0.010 0.0538 0.0146 0.0012 0.0962 0.0098 0.0477 0.0026 93.2 7.8 93.3 9.1 0.1
Y32-38 1843 8050 430 4.0 0.009 0.0537 0.0135 0.0014 0.0871 0.0115 0.0471 0.002 86.7 9.2 84.8 10.7 -2.3

Table 3 Kawakami et al.
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