

Introduction

In computer analysis of chemical compounds, chemical structures
are usually represented as graph structured data. Mathematically, a
graph consists of a set of vertices and a set of edges, where a vertex
represents some object and an edge represents a relation between two
objects. From a chemical viewpoint, a graph corresponds to a
chemical structural formula, in which a vertex and an edge correspond
to an atom and a chemical bond, respectively. Furthermore, an atom
type and a bond type are represented by labels of a vertex and an edge,
respectively. In this article, graphs with such labels are called chemical
graphs.

Graphs are a very important concept in computer science, and
extensive studies have been done to develop efficient algorithms for a
number of graph problems. Among these problems, we focus on
fundamental problems relevant to chemical graphs. In particular, we
consider comparison and enumeration of chemical graphs because
these are fundamental and have a long history in chemoinformatics.
For example, unique naming of chemical compounds and enumeration
of isomers have been studied for more than 100 years [1], much
before the invention of computers. In this article, we consider the
following problems:

(i) determining whether two chemical graphs are identical,
(ii) determining whether one input chemical graph is a part of the

other input chemical graph,
(iii) finding a maximum common part of two input graphs,
(iv) finding a reaction atom mapping,
(v) enumerating possible chemical graphs,
(vi) enumerating stereoisomers,

where (i) and (v) are closely related to unique naming and
enumeration of structural isomers, respectively. We do not intend to
provide a comprehensive review on these problems because there are
too many methods even for any of these six problems. Instead, we try
to clarify the computational complexities of them. We also introduce
some recent developments on problems (v) and (vi) with focusing on
our recent work because our algorithms are based on somewhat
different approaches than traditional approaches in chemoinformatics
[2] and they have guaranteed computational complexities. Since this
review article focuses on time complexity aspects of the problems and
algorithms, readers interested in practical and heuristic methods in
chemoinformatics are referred to existing books and review articles:
[2] for fundamental algorithms, [3,4] for pattern matching
algorithms, [2,5,6] for prediction and regression methods, and [2,7]
for enumeration algorithms.

As discussed later, most of the above problems are intractable for
general graphs from a viewpoint of computational complexity.
However, chemical graphs have several restrictions. For example, the
maximum number of bonds connecting to an atom is usually less than
8. Making use of these constraints, it is often possible to develop
theoretically efficient algorithms. Therefore, before discussing
individual problems, we briefly review graph classes that are relevant
to chemoinformatics.

The organization of this article is as follows. First, we review
graph classes relevant to chemoinformatics and give a brief
introduction of computational complexity. Next, we review
theoretical results and some algorithms on problems (i)-(iv). Next, we
describe a relationship between kernel methods and enumeration
problems, where kernel methods are a kind of machine learning
method and have been applied to various chemoinformatics problems.
Then, we review our recent algorithms for problems (v) and (vi)
because they are based on state-of-the-art techniques in graph
algorithms and thus may bring new methodologies into
chemoinformatics. Finally, we conclude with future work. For the
purpose of simplicity of presentation, we do not give formal
definitions, instead explain terms and results by using words and
figures.

CSBJ

Abstract: Chemical compounds are usually represented as graph structured data in computers. In this review article, we overview
several graph classes relevant to chemical compounds and the computational complexities of several fundamental problems for
these graph classes. In particular, we consider the following problems: determining whether two chemical graphs are identical,
determining whether one input chemical graph is a part of the other input chemical graph, finding a maximum common part of
two input graphs, finding a reaction atom mapping, enumerating possible chemical graphs, and enumerating stereoisomers. We also
discuss the relationship between the fifth problem and kernel functions for chemical compounds.

Comparison and Enumeration of Chemical Graphs

Tatsuya Akutsu a,*, Hiroshi Nagamochi b

Volume No: 5, Issue: 6, February 2013, e201302004, http://dx.doi.org/10.5936/csbj.201302004

aBioinformatics Center, Institute for Chemical Research, Kyoto University,

Gokasho, Uji, Kyoto 611-0011, Japan
bGraduate School of Informatics, Kyoto University, Yoshida, Kyoto 606-

8501, Japan

* Corresponding author. Tel.: +81 774383015 ; Fax: +81 774383022

E-mail address: takutsu@kuicr.kyoto-u.ac.jp (Tatsuya Akutsu)

1

Graphs and chemical compounds

A graph consists of a set of vertices and a set of edges, where a
vertex and an edge correspond to an atom and a chemical bond,
respectively. Each graph is denoted as G(V,E) where V denotes a set
of vertices and E denotes a set of edges. There are two kinds of
graphs: directed graphs and undirected graphs. Each edge has a
direction in directed graphs, whereas no edge has a direction in
undirected graphs. Since there is usually no explicit direction in
chemical bonds, we only consider undirected graphs in this article and
thus each edge is represented by a set of two vertices (i.e., two atoms
connected by the corresponding chemical bond).

In order to associate chemical structures to graphs, we employ
labels of vertices and edges. Each vertex v has a label l(v), which
represents an atom type (e.g., l(v)=`C' if v corresponds to a carbon
atom). In this article, a graph with vertex and edge labels defined as
above is called a chemical graph. There are two ways to represent a
chemical bond with multiplicity:

(i) multiplicity is represented by multi-edges (e.g., double bond is
represented by two edges),
(ii) multiplicity is represented by a label of an edge (e.g., l(e)=2 if an

edge e corresponds a double bond).

We mainly consider the latter way of representing chemical bonds
in this article, where l(e)=1.5 may represent an aromatic bond. The
degree of a vertex is defined as the number of edges connecting to it,
and is closely related to the valence of an atom. A graph with a
designated vertex r is called a graph rooted at a vertex r. Isomorphism
between two rooted graphs assumes that the roots of the two graphs
correspond each other. In this paper, we utilize a fast algorithm
designed for enumerating rooted trees. However, we designate as the
root of a tree a special vertex of the tree which is uniquely determined
by the topological structure only, and thereby our algorithms
effectively enumerate ``unrooted” trees.

As mentioned above, chemical structures can be represented as
graphs. However, we need not consider all kinds of graphs. For
example, it is known that most atoms have valence at most 8, which
implies that the maximum degree of chemical graphs is at most 8.
Therefore, it is enough for chemical structures to consider graphs
with bounded degree. In what follows, we only consider bounded
degree graphs.

As discussed later, many graph problems can be solved much
faster if we restrict types of graphs. Therefore, we review here several
graph classes that are relevant to chemical applications (see Figure 1).
For details of graph classes, see [8].

Tree: A graph is called a tree if it is connected and does not have a
loop, where `connected' means that there exists a path (a sequence of
connected edges) connecting any pair of vertices. Trees are one of the
simplest graphs and many problems can be solved much more
efficiently for trees than for general graphs.

Outerplanar graph: A graph is called outerplanar if it can be
drawn on a plane in such a way that all vertices lie on the outer face
without crossing of edges, where the outer face is the unbounded
exterior region. Trees are a subclass of outerplanar graphs.

Almost tree: A graph is called an almost tree (with parameter k) if
each biconnected component (i.e., maximal non-tree part) is obtained
by adding at most k edges to a tree. Trees are a subclass of almost

trees (i.e., k=0). However, outerplanar graphs are not a subclass of
almost trees or almost trees are not a subclass of outerplanar graphs.

Partial k-tree: A graph is called a partial k-tree if it is transformed
into a tree by regarding a family of subsets of vertices as a set of new
vertices (i.e., by tree decomposition), where each subset consists of at
most k+1 vertices (Figure 2). Trees, outerplanar graphs, and almost
trees with parameter k are subclasses of partial 1-trees, partial 2-trees,
and partial k+1-trees, respectively [9].

Yamaguchi et al. studied the distribution of partial k-trees in

chemical graphs [10]. Horváth and Ramon also studied the
distribution of partial k-trees in some dataset and reported that
8.77%, 97.35% and 99.97% of compounds are partial 1-trees, 2-
trees, and 3-trees, respectively and most partial 2-tree compounds are
outerplanar [11].

Here, we briefly review some basic concepts in computational
complexity. If the computation time of an algorithm is proportional
to nd (i.e., the computation time is O(nd)) for some constant d where
n denotes the size of an input data, the algorithm is said to be a
polynomial-time algorithm. There exist many problems that do not
have polynomial-time algorithms. Although we do not explain details,
NP-hard problems are widely believed not to have polynomial-time
algorithms. In theoretical computer science, polynomial-time
algorithms are regarded as efficient algorithms whereas NP-hard

Figure 1. Examples of (a) tree, (b) almost tree, and (c) outerplanar graph,
where k=2 in (b).

Comparison and enumeration of chemical graphs

2

Volume No: 5, Issue: 6, February 2013, e201302004 Computational and Structural Biotechnology Journal | www.csbj.org

problems are regarded as intractable problems. However, NP-hardness
does not necessarily mean practical inefficiency. In particular, the
number of vertices in a chemical graph is usually less than 100.
Therefore, there is room for development of practically efficient
algorithms for chemical compounds even if the problems are NP-
hard.

Comparison of chemical graphs

Comparison of graph structured data is fundamental and

important for chemoinformatics and pattern recognition. Indeed,
extensive studies have been done to develop practical algorithms for
that purpose [2-4]. In computer science, extensive theoretical studies
have also been done for comparison of graphs. However, it seems that
these theoretical results are not well-known in chemoinformatics.
Although most of theoretical algorithms are not efficient in practice,
they might give some hints for development of practically efficient
algorithms. In this section, we mainly review theoretical results on
graph isomorphism, subgraph isomorphism, maximum common
subgraphs, and reaction atom mapping, all for chemical graphs
(Figure 3 and Figure 4).

The most fundamental problem for comparison of chemical
graphs is to test whether given two graphs are identical (i.e.,
isomorphic). Although it is unknown whether there exists a
polynomial-time algorithm for general graphs, a polynomial-time
algorithm is known for graphs of bounded degree [12], which means
that isomorphism of two chemical graphs can be tested in polynomial
time. However, this algorithm is not practical because it is based on
group theory and the degree of polynomial in the time complexity is
high.

It is also important to give a normal form of a given graph, which
is equivalent to giving a unique name to a graph. Indeed, huge efforts
have been paid in chemistry to define rules for giving unique names to
chemical structures (e.g., IUPAC nomenclature). In computer science,
a group-theoretic polynomial-time algorithm is also known for the
normal form problem for graphs of bounded degree [13] although it
is not practical. Faulon gave detailed discussions on isomorphism and
normal forms for chemical graphs and presented polynomial-time
algorithms for chemical graphs with planar structures [14].

Another important problem is to decide whether some chemical
graph is included as a part of another chemical graph. Deciding
whether a benzene ring is contained in a given chemical graph is an
example of this problem. This problem is called the subgraph
isomorphism problem in graph theory. Although it is known that the
subgraph isomorphism problem is NP-hard even for graphs of the
maximum degree 3, a polynomial-time algorithm is known for partial
k-trees of bounded degree [15,16]. Therefore, the subgraph
isomorphism problem can be solved in polynomial time for almost all
chemical graphs. Unfortunately, the algorithms in [15,16] are not
practical.

For practical applications to chemical compounds, subgraph
isomorphim algorithms based on maximum clique or a branch-and-
bound method [17] have been widely developed and utilized (see for
example, [18] for the former approach and [19] for the latter one).
Although they are not guaranteed to work in polynomial time, they
work fast in practice. It is also important to search graphs containing
subgraphs isomorphic to a given query graph in a chemical database
[18,19]. In such an application, filtering non-relevant compounds is
quite useful and thus various features have been proposed and utilized
(see for example, [19]).

It is also important to find a common part of two or more
chemical graphs. Among several possible formulations, the most
fundamental one is the maximum common subgraph problem

Figure 2. Examples of partial k-tree for k=3. The right figure shows a tree
decomposition of G(V,E).

Figure 3. Comparison of graphs. Graph (a) is isomorphic to graph (b).
Graph (c) is subgraph isomorphic to graph (a). Graph (f) is a maximum
common subgraph between graphs (d) and (e).

Comparison and enumeration of chemical graphs

3

Volume No: 5, Issue: 6, February 2013, e201302004 Computational and Structural Biotechnology Journal | www.csbj.org

(precisely, the maximum common connected edge subgraph problem)
for two graphs [3]. Since a polynomial-time algorithm was developed
for almost trees of bounded degree [20], there had been almost no
significant progress [10] until recently from a viewpoint of the
computational complexity. However, Akutsu and Tamura recently
developed a polynomial-time algorithm for outerplanar graphs of
bounded degree [21]. On the other hand, they also showed that the
problem remains NP-hard for partial k-trees of bounded degree with
k =11 [22].

For general graphs, some exponential time algorithms have been
developed. Huang et al. presented an O(nhh2) time algorithm and

showed an Ω(f(h)no(h)) time lower bound under some reasonable
assumption on complexity class where n is the number of vertices of a
larger input graph, h is the size of the maximum common subtree, and
f is any recursive function [23]. However, we could not confirm
O(nhh2) time complexity and speculate that it should be O(n2hh2).
Abu-Khzam et al. developed an O(1.274c+3n/3(n+1)c) time algorithm
where c is the size of the minimum vertex cover of a smaller input
graph [24].

In addition to comparison of chemical graphs, there exists another
important pattern matching problem for graphs: finding a minimum
cost sequence of graph editing operations that transforms one input
graph into the other input graph [25]. There exist several variants of
the problem depending on the definition of editing operations [26].
There also exists a close relationship between the minimum graph edit
problem and the maximum common subgraph problem, both of
which are known to be NP-hard in general [25]. Since minimum
graph edit is too wide, we focus on the reaction atom mapping
problem (Figure 4). It is a problem of finding an optimum
correspondence (or enumerating all possible mappings) between
atoms before and after a reaction. It is also defined as a problem of
finding a minimum cost sequence of deletions and additions of edges
that transforms one input graph into the other input graph where
input graphs can be disconnected and the set of atoms must be
preserved before and after the edit sequence. Consider a simple
reaction of the following type

X-A + Y-B ↔ X-B + Y-A

where X, Y, A, B are chemical species. Then, by deleting two edges
(edges between X and A , and between Y and B) from the left hand
side of the reaction and inserting two edges (edges between X and B,
and between Y and A), we have the right hand side of the reaction. It
also gives a mapping between atoms before and after the reaction.
However, mapping or edit sequence may not be determined uniquely
as shown in Figure 4. In such a case, it may be required to enumerate
all possible mappings, or to find a chemically optimal mapping. Since
there exist several formulations depending on applications, we do not
give precise definitions here. This problem has several applications
including consistency check of chemical reactions in a database and in
silico tracer experiments.

Arita developed a heuristic method for the reaction atom mapping
problem based on maximum common subgraph (MCS) [27]. Hattoti
et al. also applied their own maximum common subgraph (MCS)
algorithm to find reaction atom mappings [28]. However, Arita
pointed out that MCS approaches sometimes fail to find desired
mappings [27]. Akutsu firstly gave a mathematical formalization of
the problem, proved NP-hardness of the problem, and developed an
algorithm based on unique graph naming and exhaustive examination
of cutting edges [29]. Crabtree and Mehta developed faster
algorithms based on unique graph naming and efficient combinatorial
search for cutting edges [30]. Heinonen et al. also developed a fast
algorithm based on A* search [31], a well-known efficient searching
technique in artificial intelligence. Zhou and Nakhleh developed a
method to find all symmetries in both a chemical compound and a
chemical reaction, where the latter can be used to find reaction atom
mappings with stereo chemical information [32].

Kernel methods and pre-image problem

Recently, kernel methods, which include support vector machines

(SVMs), have become one of the standard tools in machine learning.
Kernel methods have also been extensively applied to Quantitative
Structure-Activity Relationship (QSAR) and Quantitative Structure-
Property Relationship (QSPR) problems [2,5,6] whose purposes are
to predict the chemical activity and property for a given chemical
compound, respectively. For example, various kernel functions for
QSAR/QSPR have been developed based on alignment of two
chemical graphs [33,34], three-dimensional superposition [35],
Tanimoto and other coefficients [36], molecular descriptors [37], and
subtree patterns [38].

In order to apply kernel methods to chemical structures, it is
usually required to map a chemical graph to a feature vector in a
feature space (i.e., a vector in high-dimensional Euclidean space or
infinite-dimensional Hilbert space) because a kernel function is
defined as an inner-product between two feature vectors. Although
various methods have been proposed for design of feature vectors for
chemical graphs, those based on frequency of small fragments [39-41]
and frequency of labeled paths [42,43] have been widely used, where
weights/probabilities are sometimes put on paths/fragments.

For example, consider chemical compounds consisting of atoms
of type C, N, O, H. Then, there are 4 kinds of labeled paths of length
0 (i.e., C, N, O, H), 16 kinds of labeled paths of length 1 (i.e., C-C,
C-N, ...), 64 kinds of labeled paths of length 2, and so on. Figure 5
shows an example of a feature vector based on frequency of labeled
paths (precisely, a feature vector based on the numbers of occurrences
of labeled paths). For a chemical graph shown in Figure 5, the
numbers of atoms of type C, N, O, H are 5, 1, 2, 9, respectively, and
thus the coordinate values corresponding to paths of length 0 are 5, 1,
2, 9. For the same graph, the number of C-N bonds is 2 and thus the
corresponding coordinate value is 2. For C-C bond, the coordinate

Figure 4. Reaction atom mapping. In this case, there exist three possible
reaction atom mappings, where (A1,B1) is the most plausible. By deleting
the edges (bonds) crossing to curves of each type, we can obtain
isomorphic graphs between the left hand side and right hand side of the
reaction, which also gives a sequence of graph editing operations.

Comparison and enumeration of chemical graphs

4

Volume No: 5, Issue: 6, February 2013, e201302004 Computational and Structural Biotechnology Journal | www.csbj.org

value is 8 because each C-C bond is counted twice as two paths for
opposite directions. The maximum length of paths of a feature vector
is called the level of the feature vector. Therefore, the vector in Figure
5 is a feature vector of level 1.

In chemoinformatics, inverse QSAR/QSPR is becoming

important because it might lead to design of new chemical
compounds and new drugs [44-46]. As closely related concept, the
pre-image problem has been studied in machine learning [47,48]. In
the pre-image problem, a desired object is specified or computed as a
vector in a feature space using a suitable objective function and then
the vector is mapped back to the input space, where this mapped back
object is called a pre-image. Then, it is expected that this pre-image
has a desired property (e.g., chemical activity). Akutsu et al. showed
that the graph pre-image problem based on path frequency is solved
in polynomial time of the number of atoms if the graphs are trees
whose maximum degree is bounded by a constant and the lengths of
given paths and the number of atom types are bounded by constants
[49], which was further extended to outerplanar graphs with some
constraints [50]. However, this algorithm is not practical due to its
high degree of polynomial. Nagamochi proved that the graph pre-
image problem can be solved in polynomial time for both tree and
general graphs if the level of feature vectors is 1 [51]. Although the
corresponding algorithm is efficient in practice, it can only be directly
applied to feature vectors of level 1. Furthermore, it is difficult for the
above mentioned algorithms to cope with various constraints.
Therefore, it is useful to develop algorithms for the pre-image
problem based on enumeration of chemical graphs, which is explained
in the next section (see [52] for more detailed review).

It is to be noted that extensive studies have been done on inverse
QSAR/QSPR, where the descriptors correspond to feature vectors in
the pre-image problem. Kier et al. developed methods for
reconstructing molecular structures from the count of paths of a
length up to two and three by combining enumeration with bounding
operations [44]. Skvortsova et al. developed a similar method where
paths of the same length are further classified into several classes sing
atom and bond information [45]. Faulon et al. defined a descriptor
based on trees and developed methods to enumerate all the structures
consistent with a given descriptor [46]. Wale et al. compared various
descriptors including ECFP descriptors, not for inverse
QSAR/QSPR but for compound retrieval and classification [53].

Enumeration of chemical graphs and stereoisomers

The enumeration of chemical structures has a long history

beginning from the work by Cayley in the 19th century [1].
Enumeration of chemical structures has many applications in
chemistry, which include structure determination using mass-spectrum
and/or NMR-spectrum, virtual exploration of chemical universe,
reconstruction of molecular structures from their signatures, and
classification of chemical compounds.

Some useful tools such as MOLGEN have been developed for
enumeration of chemical graphs [2,54]. Although MOLGEN is very
efficient, it is worthy to examine other approaches because extensive
studies have been done on graph enumeration in the field of
theoretical computer science and data mining [55,56]. In particular, it
might be possible to develop faster algorithms for the enumeration
and pre-image problems if we restrict the class of target chemical
graphs and employ state-of-the-art techniques for enumeration of
graph structures. Based on this idea, we have been developing several
algorithms for enumeration of chemical graphs (i.e., structural
isomers) and stereoisomers. Although our enumeration algorithms for
structural isomers may not yet be faster in practice than MOLGEN,
our algorithms have some guaranteed time complexities. In addition,
our enumeration algorithms for stereoisomers are quite fast for
counting: they work in optimal linear time and are very fast in
practice. It is to be noted that the number of isomers grows
exponentially to the number of atoms in general and thus it is
impossible to output all isomers in polynomial time. Therefore, the
purpose of development of fast enumeration algorithms is to reduce
the computational complexity required per isomer. In this section, we
explain key ideas used in these algorithms. Since some details are a bit
involved, readers not interested in algorithmic details can skip such
parts.

Given a feature vector f that specifies the frequency of each path
of length at most K≥0, our aim is to enumerate all tree-like
chemical graphs whose path frequency for all paths of length up to K
is identical with f. A chemical graph is called tree-like if it becomes a
simple tree (an acyclic graph) by replacing the multiple edges (bonds)
between every two vertices with a single edge.

Ishida et al. [57] developed an efficient algorithm for enumerating
all tree-like chemical graphs that satisfy a given single feature vector f.
The algorithm consists of two major phases, each of which is designed
based on a branch-and-bound method (see [17] for details), one of
the standard enumerative approaches for solving combinatorial
problems. In the first phase, we first design a branching operation to
generate all simple trees that satisfy only the frequency of path of
length 0 in the vector f (i.e., a set V of vertices is specified by f),
ignoring any multiplicity prescribed in f. Starting with the empty
graph, the operation appends a new vertex to the current tree until the
tree has the vertex set V. A tree T' obtained from the current tree T
by appending a new vertex is called a child of T, where T is called the
parent of T’. Since the current tree T may have more than one
adequate position to which a new vertex is appended (i.e., T may have
more than one child), the parent-child relationship forms a tree
rooted at the empty graph, called a family tree. Each node v with
depth k in the family tree represents a tree T(v) of k vertices, and the
trees of the descendants of v rated from T(v) by repeated
applications of the branching operation.

Figure 6 (a) shows part of a family tree for generating simple trees
with a specified vertex set V of four carbons, one oxygen and five
hydrogens, where the parent of each simple tree Ti is Ti+1. A family

Figure 5. Feature vector and pre-image.

Comparison and enumeration of chemical graphs

5

Volume No: 5, Issue: 6, February 2013, e201302004 Computational and Structural Biotechnology Journal | www.csbj.org

tree is determined by how to define parents of trees, which also
defines the children and affects the computational efficiency. Using
the fastest tree enumeration [58], we can generate a child from the
current tree in a constant time.

The branching operation is rather a straightforward enumeration
which can output each tree efficiently, but may generate trees that do
not satisfy some of the required conditions of the problem such as the
frequency of path of length ≥ 1. In a branch-and-bound method, we
also incorporate into the process of executing a branching operation,
another procedure, called a bounding operation, to discard part of the
process which produces only candidates that do not lead to any
solutions. In our problem, we apply several quick tests to each node v
in the family tree to try to know whether there is a descendant w of v
such that T(w) is a solution; i.e., the tree T(v) can be extended to a
simple tree on the specified vertex set V without violating any of the
required conditions. Our bounding operation tests the following
criteria and skips the process of appending vertices to T(v) if one of
them holds:

(1) The root of T(v) cannot be the centroid after any extension

of T(v) (the centroid constraint);
(2) The frequency of some path in T(v) exceeds the value

specified by f (the feature vector constraint);
(3) The valence of a labeled vertex in T(v) exceeds the valence of

the atom (the valence constraint); and
(4) T(v) cannot be extended to a tree with the vertex set V and

edge set E specified by f (the detachment constraint).
Whether criterion (4) holds or not can be tested efficiently by
the algorithms in [51].

The first phase obtains a set S(f) of simple trees that satisfy the

given path frequency ignoring the multiplicity. In the second phase,

we select each simple tree T∊S(f) and generate all tree-like chemical
graphs that satisfy the given feature vector f by assigning multiplicity
on adequate edges in T. Our algorithm for the second phase is also
designed based on a branch-and-bound method and the idea of family
trees. Figure 6 (b) shows part of a family tree for assigning
multiplicity to simple tree T1, where the parent of each tree-like graph
Gi is Gi+1.

Note that a feature vector f on path frequency specifies the exact
number of times each path appears in a graph to be constructed.
When a vector f is artificially constructed, no graph with such a path
frequency in f may exist in many cases. To avoid this, Shimizu et al.
[59] recently introduced a problem of constructing all tree-like graphs
which satisfy one in a given set F of feature vectors. A set F of feature
vectors is specified by a pair of upper and lower vectors fU and fL on
path frequency such that fU and fL have the same frequency of path of
length 0 (i.e, both specifies the same set of vertices), and the set F is
defined to be the set of all vectors f such that fL≤f≤fU. Shimizu et al.
[59] successfully designed a two-phase algorithm for handling the
new problem directly without repeatedly applying the algorithm by

Ishida et al. [57] to each feature vector f∊F.
Recently Suzuki et al. [60] have developed an algorithm for

enumerating graphs with at most one cycle (of length at least 3) from
a set F of feature vectors specified by upper and lower vectors fU and
fL on path frequency. The main idea of this algorithm is to define the
parent of a graph with exactly one cycle to be a tree-like graph by
removing an edge in the cycle and to design as the third phase a
procedure for generating a graph with exactly one cycle from each
tree-like graph T obtained after the second phase of the algorithm by
Shimizu et al. [59]. Our experimental result reveals that the
computational efficiency of the new algorithm remains high

considering the hardness of treating graphs with one cycle compared
with tree-like graphs.

The computational efficiency of the above algorithms relies on
the result that all vertex-colored trees with at most n vertices in
constant time per output [58]. As an extension, we have proved that
all trees with labeled vertices with exactly n vertices (resp., all rooted
outerplanar vertex-labeled graphs with at most n vertices) can be
generated in constant time per output [61] (resp., [62]).

We have developed algorithms for enumerating all stereoisomers
of a given chemical graph G that admits tree or outerplanar structures
[63,64]. The algorithms are based on dynamic programming, another
standard enumerative approach for solving combinatorial problems
(see [17] for details). For simplicity, we describe the idea only for
tree-like graphs and the asymmetry around carbon atoms with no
double bonds incident to them (the asymmetry formed by double
bonds such as cis-trans type can be treated with a modified argument).
Thus a carbon atom is asymmetric if the four substructures around it
are all sterically distinct. Figure 7 (a) illustrates that the three-
dimensional structure around a carbon atom forms a regular
tetrahedron, where d0, d1, d2 and d3 represent the directions along the
four edges incident to the carbon atom. Figure 7 (b) and (c) show
two configurations around the asymmetric carbon atom in lactic acid.

Figure 7. Example of stereoisomers. (a) The four directions d0, d1, d2 and
d3 around a carbon atom in the three-dimensional space; (b), (c) Two
configurations around the asymmetric carbon atom in lactic acid.

Figure 6. Family trees for enumeration of chemical graphs. (a) A family
tree for generating simple trees; (b) A family tree for assigning multiplicity
to simple tree T1∊S(f).

Comparison and enumeration of chemical graphs

6

Volume No: 5, Issue: 6, February 2013, e201302004 Computational and Structural Biotechnology Journal | www.csbj.org

Given a tree-like chemical graph G, we regard it as a tree rooted at
its centroid r (the vertex removal of which leaves no component
containing more than a half number of the vertices). For each vertex v
in G, we denote by Tv the subtree induced by v and all its descendants
in G, and let f(v) denote the number of stereoisomers of Tv. For a
non-root carbon atom v in G, a stereoisomer of Tv is determined as
follows. Let u1, u2 and u3 be the three children of v in G, where v is

adjacent to the three subtrees
iui TT  , i=1,2,3. Note that v is

adjacent to the fourth subtree T4 composed of the rest of vertices,

which is always structurally distinct from every
iui TT  . See the

carbon atom v in Figure 8 for four subtrees T1, T2, T3 and T4.

Suppose that a stereoisomer of Tv, say, the k-th one
)(k

vT , consists of

the ki-th stereoisomer
)(ik

iT of Ti for each i=1,2,3, where

ki∊{1,2,…,f(ui)}. Then we have two cases: (a) some two of
)(

1
1kT ,

)(

2
2k

T and
)(

3
3k

T are sterically same (i.e., the same stereoisomer); and

(b) every two of
)(

1
1kT ,

)(

2
2k

T and
)(

3
3k

T are sterically distinct. In

(b), v is asymmetric, and there are exactly two different three-

dimensional positions of },,{
)(

3

)(

2

)(

1
321 kkk

TTT around v, each

of which we denote by σ=+ or σ=-. In (a) v is symmetric, and we let

σ=0. Thus, a stereoisomer
)(k

vT of Tv is represented by (τ,σ) (or

symbolically by an index vector (k1,k2,k3,σ)). Let g(v) (resp., h(v))

denote the number of collections τ of three stereoisomers of iT by

which case (a) occurs (resp., (b) can occur). Then the number of
stereoisomers of Tv is given as f(v)=g(v)+2h(v).

Our algorithm consists of two major phases: (i) the first phase
counts the number KG of stereoisomers of G by dynamic
programming; and (ii) for each k=1,2,…,KG, the second generates the
k-th stereoisomer by backtracking the computation in (i).

Counting phase. The first phase computes f(v) of each vertex v in
a bottom-up manner along G. When we visit a non-root carbon atom
v, f(ui) of each child ui, i=1,2,3 of v has been computed. If T1 and T2
are structurally same (where f(u1)=f(u2)) and T3 is structurally
distinct from T1 and T2, then we have g(v)=f(u1)f(u3),

)(
2

)(
)(3

1
uf

uf
vh 








 and

)(
2

)(
2)()()(2)()(3

1

31 uf
uf

ufufvhvgvf 







 .

Similarly if T1, T2 and T3 are all structurally distinct (resp., same),
then we have g(v)=0 and h(v)=f(u1)f(u2)f(u3) (resp., g(v)=f(u1)f(u1)

and 









3

)(
)(

1uf
vh). For example, the carbon atom v1 in Figure

8 has no two children which have the structurally same subtree, and
we have g(v1)=0, h(v1)=1 and f(v1)=2. Note that f(v2)=2 and
f(v3)=1. For the carbon atom w in Figure 8, only v1 and v2 among its
children have the structurally same subtree, and we have

g(w)=f(v1)f(v3)=2, 1)(
2

)(
)(3

1









 vf

vf
wh and f(w)=4. We

can regard the f(w)=4 stereoisomers are represented by index vectors

)0,1,1(
)1(
wT ,)0,2,2(

)2(
wT ,),2,1(

)3(
wT , and

),2,1(
)4(

wT . By computing f(v) for all carbon atoms v in a

bottom-up manner along G, we can finally determine the number KG
of all stereoisomers of G. The first phase can be implemented to run
in O(n) time and space for a tree-like graph or outerplanar graph G
with n vertices.

Output phase. For each number i=1,2,…,KG, the second phase
outputs the i-th stereoisomer of G. The i-th stereoisomer of G will be

characterized by choosing an index vector (k1,k2,k3,σ) for each carbon
atom in a top-down manner along tree G. When we visit a carbon

atom v, we are supposed to compute the k-th stereoisomer
)(k

vT of

the subtree Tv for a number k∊{1,2,…,f(v)} which has been
determined by the process applied to the ancestors of v so far. Our

task is to compute (k1,k2,k3,σ) from a given number k∊{1,2,…,f(v)}.
For example, the carbon atom w in Figure 8 has f(w)=4
stereoisomers, which are supposed to be represented by the index
vectors in the above. Then if k=3 at w, then we take

),2,1(
)3(

wT and assign k1=1 and k2=2 to our process for the

children v1 and v2, respectively. Based on how g(v) and h(v) have been
computed in the first phase, we can identify the k-th index vector
without explicitly constructing a complete ranking table for the f(v)
index vectors. We repeat this process until the corresponding index
vector for each carbon atom in G is determined. The second phase
can be implemented to generate each stereoisomer of a tree-like graph
(resp., outerplanar graph) G with n vertices in O(n) (resp., O(n3))
time per output using O(n) space.

Summary and outlook

In this article, we have reviewed graph classes relevant to chemical

compounds, theoretical results on the computational complexities of
the isomorphism, normal forms, subgraph isomorphism, and
maximum common subgraph problems of chemical graphs, and
algorithms for computation of reaction atom mappings and
enumeration of chemical graphs and stereoisomers.

As discussed above, the isomorphism and normal form problems
can be solved in polynomial time for all chemical graphs and the
subgraph isomorphism can be solved in polynomial time for almost
all chemical graphs. However, these polynomial-time algorithms are
not practical because of their high degrees of polynomials. Therefore,
algorithms having low-degree polynomial complexities should be
developed. As for the maximum common subgraph problem, there
exists a polynomial time algorithm for chemical graphs with

Figure 8. A tree-like chemical graph G rooted at its centroid r.

Comparison and enumeration of chemical graphs

7

Volume No: 5, Issue: 6, February 2013, e201302004 Computational and Structural Biotechnology Journal | www.csbj.org

outerplanar structures, whereas it is NP-hard for partial k-trees with
k=11. Since outerplanar graphs are a subclass of partial 2-trees and
most chemical graphs are partial 3-trees, it is interesting to study the
complexity of the maximum common subgraph problem for partial 2-
trees and partial 3-trees. For the reaction atom mapping problem,
several practical algorithms have been developed although it is NP-
hard in general.

From a practical viewpoint, it is not necessary to develop
polynomial-time algorithms because the size of chemical graphs is
usually limited. Therefore, development of efficient exponential-time
algorithms and/or fixed-parameter algorithms [65] is another
theoretical approach to these problems. Of course, some of existing
practical algorithms work very efficiently for most chemical graphs.
Analysis of the computational complexities of such algorithms might
also lead to development of faster algorithms.

In the latter part of this article, we explained algorithms for
enumeration of chemical graphs and stereoisomers that were
developed by the authors and their colleagues. These algorithms are
fast in both theory and practice. They were implemented on the
EnuMol web server (http://sunflower.kuicr.kyoto-
u.ac.jp/tools/enumol2/) and are freely available via the web page for
academic purposes, where the details of EnuMol will be reported
elsewhere. However, the classes covered by these algorithms are
limited. Therefore, development of algorithms that cover most
chemical graphs is important future work. Of course, enumeration
takes quite a long time for large chemical graphs because the number
of objects to be enumerated grows exponentially to the number of
atoms. Therefore, introduction and effective use of adequate
constraints are important and necessary in future studies.

Comparison and enumeration of chemical graphs

8

Volume No: 5, Issue: 6, February 2013, e201302004 Computational and Structural Biotechnology Journal | www.csbj.org

http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol2/
http://sunflower.kuicr.kyoto-u.ac.jp/tools/enumol2/

Keywords:
unique naming, maximum common subgraph, kernel methods, structural
isomers, stereoisomers

Competing Interests:
The authors have declared that no competing interests exist.

© 2013 Akutsu and Nagamochi.
Licensee: Computational and Structural Biotechnology Journal.
This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original
author and source are properly cited.

Comparison and enumeration of chemical graphs

9

Volume No: 5, Issue: 6, February 2013, e201302004 Computational and Structural Biotechnology Journal | www.csbj.org

