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Abstract

This paper presents a disequilibrium macrodynamic model that incorporates certain
elements from Goodwin (the dynamics of the rate of employment and income distri-
bution), Kalecki (an investment function independent of savings, and mark-up pricing
in oligopolistic goods markets), and Marx (the reserve-army and reserve-army-creation
effects). The model has a system of differential equations for the rate of utilization,
profit share, and rate of employment. We show that there exist limit cycles that depend
on the sizes of the reserve-army effect and reserve-army-creation effect. This implies
that there exists a situation in which the economy experiences endogenous and perpet-
ual growth cycles. Moreover, we show that if the stable long-run equilibrium corre-
sponds to the profit-led growth regime, an increase in the bargaining power of workers
increases the rate of unemployment; conversely, if the equilibrium corresponds to the
wage-led growth-regime, an increase in the bargaining power of workers decreases the
rate of unemployment.
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1 Introduction

This paper introduces a labor market and endogenous technical change to a Kaleckian
model, which is a kind of disequilibrium macrodynamic model; investigates how the out-
put, income distribution, and employment are determined; and examines the stability of the
long-run equilibrium.

To date, a number of models of growth cycles have been developed. This paper focuses
on endogenous growth cycles. Mainstream theories of growth cycles show that even un-
der dynamic optimization, cyclical fluctuations can be produced endogenously.1 In what
follows, we consider two examples.

The first example is from Benhabib and Nishimura (1979). In dynamic optimization
models with one state variable, a steady state equilibrium is a saddle point; consequently,
cyclical fluctuations do not occur. However, in dynamic optimization models with more than
two state variables, cyclical fluctuations can occur. The authors reveal this fact by using the
Hopf bifurcation theorem.2

The second example is a model of growth cycles with innovation. Furukawa (2007)
extends a variety expansion model à la Romer (1990) and shows that cyclical fluctuations
occur endogenously. Specifically, he assumes that there is a lag between the invention of
new products and their diffusion. This time lag produces period-by-period indeterminacy
of expectations, leading to growth cycles. Similar models of growth cycles that emphasize
innovation include Evans et al. (1998), variety expansion; Francois and Lloyd-Ellis (2003),
quality ladder à la Grossman and Helpman (1991); and Wälde (2005), creative destruction
à la Aghion and Howitt (1992).

These models assume the full utilization of capital and the full employment of labor.
That is, although the time path of each endogenous variable shows cyclical fluctuations, the
economy as a whole is always in equilibrium.

This paper investigates growth cycles by using a disequilibrium macrodynamic model
that provides a viewpoint different from equilibrium macrodynamic models. After examin-
ing data for a real economy, it seems that the economy is in a situation in which capital is not
fully utilized and labor is not fully employed, even in the long run.3 For example, Zipperer
and Skott (2011) present long-run cyclical trends for the rate of capacity utilization and rate

1Here, we do not consider the real business cycle theory in which business cycles are produced through a
stochastic shock.

2For a detailed analysis of this line of research, see Dockner and Feichtinger (1991).
3It goes without saying that even if the real economy is not in equilibrium, equilibrium macrodynamic

models are still valid. The most important role of using equilibrium models is to provide an explanation on
economic cycles and fluctuations that is explicitly based on people’s economic incentives and decisions made
in or out of the markets.
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of employment (and profit share) in the OECD that support the above observation.4

A typical example of a disequilibrium macrodynamic model is that of Goodwin (1967).
Goodwin’s model shows that with full capacity utilization, there exist clockwise cyclical
fluctuations along closed orbits in the (e,m)-plane, where e and m denote the rate of em-
ployment and profit share, respectively.5 The empirical studies mentioned above show that
in most countries, clockwise cycles are actually observed. That is, it is safe to say that
clockwise cycles in the (e,m)-plane is a consensus. However, Goodwin’s model assumes
the validity of Say’s law, which states that the goods market is always in equilibrium. Good-
win’s model does not consider the disequilibrium of goods markets and hence cannot explain
cyclical fluctuations of capacity utilization.

In contrast, Keynesian macrodynamic models that are founded on the principle of effec-
tive demand consider the disequilibrium of both the labor and goods markets. Because we
are investigating output as well as employment, we also consider Keynesian macrodynamic
models. Several types of Keynesian models have been produced for the purpose of analy-
sis. For example, Yoshida (1999) and Sportelli (2000) built Harrodian models, while Skott
(1989) presented a Kaldorian model.

In this paper, we consider the Kaleckian model (a class of Keynesian macrodynamic
models),6 specifically the Kaleckian model that incorporates the theory of conflicting-claims
inflation, because it emphasizes the importance of income distribution between classes.7 In
the Kaleckian model incorporating conflicting-claims inflation, both the rate of capacity uti-
lization and income distribution (wage share and profit share) are endogenously determined
through the conflict between workers and firms.

However, even such extended models do not consider the labor market satisfactorily.8

The existing Kaleckian growth models assume an unlimited labor supply and that firms em-
ploy as many workers as they desire at the given wage rate. If, however, the labor supply

4Other empirical findings include Barbosa-Filho and Taylor (2006), long-run trends for the rate of capacity
utilization in the US; Mohun and Veneziani (2008), long-run trends for the rate employment in the US; and
Harvie (2000), long-run trends for the rate of employment in the OECD.

5For extensions of Goodwin’s model, see Pohjola (1981), Wolfstetter (1982), Sato (1985), Foley (2003),
Ryzhenkov (2009), Shah and Desai (1981), van der Ploeg (1987), Sportelli (1995), and Choi (1995).

6Kaleckian models have the following four characteristics (Lavoie 1992): (1) they comprise the investment
function; (2) the prices relative to direct costs are influenced by a broad range of factors, often summarized by
the phrase “degree of monopoly”; (3) marginal costs are assumed to be constant up to full capacity; and (4)
the rate of capacity utilization is assumed to be generally below unity.

7The theory of conflicting-claims inflation was originally developed by Rowthorn (1977). For the theory of
Kalecki, see Kalecki (1971). For Kaleckian models with conflicting-claims inflation, see also Lavoie (1992)
and Cassetti (2003).

8Dutt (1992) is a rare case. He introduced the labor market into a Kaleckian model and investigated growth
with business cycle. For Kaleckian models with a labor market, see also Lima (2004) and Velupillai (2006).
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grows at an exogenously given rate, there is no guarantee that the endogenously determined
employment growth will equal the exogenous labor supply growth. If the labor supply grows
faster than the employment demand, then the rate of unemployment continues to rise; this is
an unrealistic finding. Hence, such a model cannot suitably investigate long-run unemploy-
ment.

On the basis of the above observation, we present a Kaleckian model in which excess
capacity is retained and cyclical growth never disappears, not even in the long run.9 For
this purpose, we endogenize the labor-saving technical progress. By this extension, we
demonstrate the existence of a situation in which the economy experiences endogenous and
perpetual growth cycles.

We assume that the growth rate of labor productivity positively depends on the rate of
employment. This assumption is based on Bhaduri (2006), Dutt (2006), and Flaschel and
Skott (2006). Given the level of output, an increase in labor productivity lowers employment
and thus gives rise to the Marxian concept of the reserve army of labor, that is, the unem-
ployed. Because, from our specification, the growth rate of labor productivity increases with
the rate of employment, a counterbalancing effect that lowers the increased rate of employ-
ment is exerted. We call this effect the “reserve army creation effect.”10 K. Marx emphasizes
the role of labor-saving technological progress in the creation of the reserve army of labor
(Marx, 1976; chs. 10, 13, and 23). We use this term to distinguish it from the “reserve
army effect”: that the growth rate of the wage is increasing in the rate of employment. We
show that the interaction between the reserve army effect and reserve army creation effect
produces limit cycles.

Contrary to the general belief, few studies simultaneously consider the three variables:
rate of capacity utilization, rate of employment, and profit share. According to the findings
of Zipperer and Skott (2011), in the US economy, clockwise cycles consistently exist in the
(u,m)- and (e, u)-planes as well as in the (e,m)-plane, where u denotes the rate of capacity
utilization. In relation to this finding, Skott and Zipperer (2010) develop a three-dimensional
Kaldorian model that explains clockwise cycles in the three planes.

However, as Zipperer and Skott (2011) correctly state, counterclockwise cycles in the
(u,m)- and (e, u)-planes are also observed, except in the US. Figures 1–3 show time-connected
scatterplots of the rate of employment, rate of capacity utilization, and profit share by using
quarterly data for Japan during the period 1960–2007.11 The dotted circles in Figures 1–3

9Raghavendra (2006) proves the existence of endogenous and perpetual business cycles in a Kaleckian
model. However, his model is a short-run model that does not consider the labor market and economic growth.

10For Kaleckian models with the reserve army creation effect, see also Sasaki (2010, 2011).
11The data for the rate of employment are taken from the Labour Force Survey, those for the profit share from

the Financial Statements Statistics of Corporation by Industry, and those for the rate of capacity utilization from

3



correspond to counterclockwise cycles. From these figures, we see that unlike in the US,
clockwise cycles are not always dominant in Japan. Therefore, the directions of cycles can
differ for countries and periods. Our model produces clockwise cycles in the (e,m)-plane but
counterclockwise cycles in the (u,m)- and (e, u)-planes. In this sense, the model is consistent
with some empirical findings.

[Figures 1–3 around here]

Since our model incorporates certain elements from Goodwin (the dynamics of the rate
of employment and income distribution), Kalecki (an investment function independent of
savings and mark-up pricing in oligopolistic goods markets), and Marx (the reserve army
and reserve army creation effects). For this reason, we call our model a Goodwin-Kalecki-
Marx model.

The remainder of the paper is organized as follows. Section 2 presents the framework
of the model and derives the fundamental equations for the analysis. Section 3 analyzes
the long-run equilibrium, shows that a limit cycle can occur, and conducts a comparative
statics analysis. Section 4 shows the existence of limit cycles through the use of numerical
simulations. Section 5 concludes the paper.

2 Basic framework of the model

Consider an economy with workers and capitalists. Suppose that workers spend all their
wages and capitalists save a constant fraction s of their profits. Let r and K be the rate of
profit and capital stock, respectively. Then, the real savings are given by S = srK, and
accordingly, the ratio of real savings to capital stock, gs = S/K, yields

gs = sr. (1)

We ignore capital depreciation for simplicity.
Suppose that the firms operate with the following fixed coefficients production function:

Y = min{aL, (u/k)K}, (2)

where Y denotes real output; L, employment; and a = Y/L, the level of labor productivity.
The rate of capacity utilization is defined as u = Y/Y∗, where Y∗ denotes the potential
output. The coefficient k = K/Y∗ denotes the ratio of capital stock to potential output, which

the Indices of Industrial Production. These quarterly data are smoothed by the Hodrick-Prescott filter with a
smoothing parameter λ = 1600.
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is assumed to be constant. This assumption implies that both K and Y∗ grow at the same rate.
Moreover, when the rate of capacity utilization is constant, the growth rates of capital stock
and actual output are the same. Accordingly, the actual output and potential output grow at
the same rate in the long-run equilibrium. To simplify the analysis, we assume k = 1 in what
follows. The main results in this paper do not change as long as k is assumed to be constant.
From this, we have r = mu, where m denotes the profit share.

Based on the argument of Marglin and Bhaduri (1990), we specify the ratio of real
investment I to capital stock K, gd = I/K, as a function that is increasing in both the profit
share and the rate of capacity utilization.12 In particular, following Blecker (2002), we
specify the investment function as follows:

gd = ψmβuγ, ψ > 0, β ∈ (0, 1), γ ∈ (0, 1), (3)

where ψ denotes a constant; β, the elasticity of the investment rate with respect to the profit
share; and γ, the elasticity of the investment rate with respect to the rate of capacity utiliza-
tion. Equation (3) implies that the desired investment rate of firms is increasing in both the
profit share and the rate of capacity utilization. The parameter restriction 0 < γ < 1 ensures
that, evaluated at the equilibrium, investment is less sensitive than saving to variations in the
rate of utilization.13 Because the investment function is not linear but Cobb-Douglas, as will
be shown later, different regimes can be produced by changing the sizes of β and γ. When
β < γ, the long-run equilibrium is wage-led growth, whereas when β > γ, it is profit-led
growth. The equilibrium is said to be wage-led (profit-led) growth if a rise in the profit share
leads to a fall (rise) in the rate of capital accumulation.14

An equation of motion for the rate of capacity utilization is given by

u̇ = α(gd − gs), α > 0, (4)

12The reason for this is as follows. The rate of profit is equal to the product of the profit share and the rate
of capacity utilization, that is, r = mu. Thus, it is plausible that a combination of high capacity utilization and
a low profit share and a combination of low capacity utilization and a high profit share will produce different
levels of investment even when the rate of profit is held constant at a given level.

13However, there is a view that the long-run parameter restrictions in the Kaleckian investment function
have neither theoretical nor empirical support. See Skott (2012).

14In this paper, the profit share is an endogenous variable, and not an exogenous variable, and thus, we
cannot define ∂g∗/∂m at the equilibrium. Accordingly, we use the relationship between g∗ and the parameter
m f (the target profit share of firms introduced later). Hence, the equilibrium is wage-led growth if ∂g∗/∂m f < 0
and profit-led growth if ∂g∗/∂m f > 0. As seen from equation (A-19), the sign of ∂g∗/∂m f depends on the
relative sizes of β and γ. If β > 1 in this specification, we have the exhilarationist regime in which an increase
in the profit share leads to a rise in the rate of capacity utilization. However, β > 1, as Blecker (2002) points
out, is an extreme case. Hence, we assume 0 < β < 1 in the following analysis.
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where α denotes the speed of adjustment of the goods market. Equation (4) shows that
excess demand leads to a rise in the rate of capacity utilization, while excess supply leads to
a decline in the rate of capacity utilization.

From the definition of profit share, we have m = 1− (wL/pY), from which we obtain the
following relation:15

ṁ
1 − m

=
ṗ
p
− ẇ

w
+

ȧ
a
, (5)

where w denotes the money wage and p, the price. To know the dynamics of m, we have to
specify the dynamics of p, w, and a.

We specify the dynamics of the money wage and price by using the theory of conflicting-
claims inflation. First, suppose that the growth rate of the money wage that workers manage
to negotiate depends on the discrepancy between their target profit share and the actual
profit share. Second, suppose that the firms set their price to close the gap between their
target profit share and the actual profit share. From these considerations, the dynamics of
the money wage and price can be described, respectively, as follows:

ẇ
w
= θw(m − mw), θw > 0, mw ∈ (0, 1), (6)

ṗ
p
= θ f (m f − m), θ f > 0, m f ∈ (0, 1), (7)

where θw and θ f denote the speed of adjustment; mw, the target profit share set by workers;
and m f , the target profit share set by firms. In equations (6) and (7), expected price- and
wage inflations are not explicitly considered. However, even if inflationary expectations are
introduced, we obtain similar results given the perfect foresight (see Dutt, 1992). Therefore,
the present simple specification suffices for our purpose. In equation (7), it is assumed that
firms are unable to set the markup at the level that they consider optimal. According to
Lavoie (1992), in historical time, prices do not always follow wages. For example, firms
have to publish price lists in advance before wage bargaining is over. In addition, firms face
constraints on prices that are not considered in the present model such as foreign competi-
tion. Hence, it is difficult for firms to set the optimal markup.

We can interpret θw and θ f as the bargaining powers of the workers and firms, respec-
tively.16 We assume θ f + θw = 1 and define θ f ≡ θ because bargaining power is a relative

15Cassetti (2003) derives an equation of motion for the profit share by specifying a price-setting equation
of firms and differentiating it with respect to time. However, this procedure is unnecessary for deriving the
dynamics of the profit share, and our procedure is easier than his. Under the conflicting-claims inflation theory,
the price-setting equation in Cassetti’s model plays the role of determining the mark-up rate, and not the price
level.

16This interpretation is also adopted in Lavoie (1992, p. 393) and Cassetti (2003, p. 453).
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concept. Then, we have θw = 1 − θ, where 0 < θ < 1.17 For example, we consider an
increase in the unionization rate as a factor in increasing the bargaining power of workers
(i.e., a decrease in θ), and an increase in the market power of oligopolistic firms as a factor
in increasing the bargaining power of firms (i.e., an increase in θ).

We assume that the workers’ target mw depends negatively on the rate of employment, e.

mw = mw(e), m′w < 0, (8)

Here, e = L/N and N = N0ent denotes the exogenous labor supply, where N0 is the initial
value of labor supply and n > 0 is the exogenously given growth rate of N. As the rate
of employment increases, workers’ demands in the bargaining are likely to increase, which
leads workers to set a higher target wage share, and accordingly, set a lower target profit
share. We consider equation (8) as expressing the “reserve-army effect.”18 On the other
hand, for simplicity, we consider the firms’ target profit share m f as exogenously given.19

Notice the difference between θ and equation (8). The parameter θ represents the relative
bargaining power of firms (workers) and reflects the power to realize their demands. In
contrast, equation (8) reflects their demands in the bargaining. To what extent their demands
can be realized depends on θ.

From equation (2), the rate of employment is given by e = uK/(aN), and hence, the rate
of change in the rate of employment yields

ė
e
=

u̇
u
+ gd − ga − n, (9)

where n is the growth rate of N and given exogenously, and ga = ȧ/a.
As stated above, we assume that the growth rate of labor productivity depends positively

on the rate of employment.20

ga = ga(e), g′a > 0, ga > 0. (10)

This equation includes the reserve-army-creation effect.21 Based on the idea of Marx,
Bhaduri (2006) states that this formulation captures the view that technological change is

17The constraints 0 < θw, θ f < 1 are also adopted by Dutt and Amadeo (1993), who, however, do not assume
θ f + θw = 1. Even if we impose only 0 < θw, θ f < 1 and not θ f + θw = 1, we can obtain similar results.

18Cassetti (2003) also considers such a reserve-army effect in the Kaleckian framework.
19We can endogenize the target profit share of firms. Lima (2004) assumes that m f is an increasing function

of u.
20The adoption of a new technology entails cost. The purpose of this paper is to analyze the effect of

induced technical progress arising from demand factors on the stability of the economy, and not to investigate
the consequences of resource allocation to R&D sectors. Therefore, we neglect the adoption cost of technology.

21We can also interpret that Equation (10) is obtained through the learning-by-doing effect à la Arrow (1962).
If the level of labor productivity is increasing in the production experience and the experience is measured by
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driven by inter-class conflict over income distribution between workers and capitalists. Dutt
(2006) says that as the labor market tightens and labor shortage becomes clearer, the bar-
gaining power of workers increases, which exerts an upward pressure on wages, leading
capitalists to adopt labor-saving technical changes. The view that increases in wages induce
labor-saving technical progress is consistent with an empirical study by Marquetti (2004),
who investigates the co-integration between real wages and labor productivity and conducts
Granger non-causality tests by using U.S. data. He shows that Granger non-causality tests
support unidirectional causation from real wage to labor productivity. In determining tech-
nical change, mainstream growth theory emphasizes supply side factors such as R&D in-
vestment and human capital accumulation. In contrast, this paper emphasizes the demand
side factors contributing to technical change: changes in aggregate demand cause changes
in employment, which leads to technical change.

In general, the natural rate of growth is defined as a sum of the growth rates of labor
productivity and labor supply. Although the growth rate of labor supply in our model is
exogenously given, the growth rate of labor productivity is endogenously determined. Under
our specification, therefore, the natural rate of growth increases when business is good (i.e.,
when the employment rate is high) and it decreases when business is bad (i.e., when the
employment rate is low). The assumption that the natural rate of growth is endogenously
determined is consistent with the empirical studies of León-Ledesma and Thirlwall (2002)
and Libânio (2009).22

We now focus on the derivation of the system of differential equations. First, substituting
equations (1) and (3) in equation (4), we obtain the dynamics of u. Second, substituting
equations (6) and (7) in equation (5), and substituting equations (8) and (10) in the resulting
expression, we obtain the dynamics of m. Finally, substituting the dynamics of u, equation
(3), and equation (10) in equation (9), we obtain the dynamics of e.

u̇ = α(ψmβuγ − smu), (11)

ṁ = −(1 − m)[m − θm f − (1 − θ)mw(e) − ga(e)], (12)

ė = e[α(ψmβuγ−1 − sm) + ψmβuγ − ga(e) − n]. (13)

the cumulative sums of the employment rate, then the growth rate of labor productivity is increasing in the
employment rate. Moreover, this specification apparently relates to Verdoorn’s law and also to Okun’s law. In
this paper, however, we emphasize the route that a rise in the rate of employment makes firms adopt labor-
saving technology.

22León-Ledesma and Thirlwall (2002) empirically investigate whether the natural growth rate is exogenous
or endogenous to demand and whether it is input growth that causes output growth or vice versa. This question
lies at the heart of the debate between neoclassical growth economists and economists in the Keynesian/post-
Keynesian tradition. Using the same method, Libânio (2009) empirically investigates Latin America and
reaches similar conclusions.
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We now provide an explanation with regard to the structure of our model. If we intro-
duce mw = mw(e) with ga as exogenously given, we find that the rate of employment is
endogenously determined whereas the natural rate of growth is exogenous. If we, on the
other hand, introduce ga = ga(e) with mw as exogenously given, we find that both the rate of
employment and the natural rate of growth are endogenously determined. Hence, to endog-
enize both the rate of employment and the natural rate of growth, we do not need to specify
mw as a function of e. Nevertheless, we use both ga(e) and mw(e). This is because we intend
to capture the interaction between the reserve-army and reserve-army-creation effects.

3 Long-run equilibrium analysis

3.1 Existence of the long-run equilibrium

The long-run equilibrium is a situation where u̇ = ṁ = ė = 0. Here, we have the following
three equations:

ψmβuγ − smu = 0, (14)

m − θm f − (1 − θ)mw(e) − ga(e) = 0, (15)

ψmβuγ − ga(e) − n = 0. (16)

These equations show that the equilibrium values do not depend on the speed of adjustment,
α. From equation (14), we obtain

u =
(
ψ

s

) 1
1−γ

m
β−1
1−γ . (17)

Substituting equation (17) in equation (16), we find that the resulting expression will be an
equation of m and e. Combining this equation with equation (15), we can obtain the equilib-
rium values of m and e, which are substituted in equation (17) to find the equilibrium value
of u. In the following analysis, we assume that there uniquely exist long-run equilibrium
values (u∗,m∗, e∗) that satisfy equations (14), (15), and (16) simultaneously. In addition, we
assume u∗,m∗, e∗ ∈ (0, 1). Hereafter, the long-run equilibrium values are denoted with “∗.”

3.2 Local stability of the long-run equilibrium

To investigate the local stability of the long-run equilibrium, we linearize the system of
differential equations (11), (12), and (13) around the equilibrium.

u̇
ṁ
ė

 =

J11 J12 0
0 J22 J23

J31 J32 J33




u − u∗

m − m∗

e − e∗

 , (18)
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where the elements of the Jacobian matrix J are given by

J11 ≡
∂u̇
∂u
= −αs(1 − γ)m < 0, (19)

J12 ≡
∂u̇
∂m
= −αs(1 − β)u < 0, (20)

J22 ≡
∂ṁ
∂m
= −(1 − m) < 0, (21)

J23 ≡
∂ṁ
∂e
= (1 − m) [(1 − θ)m′w(e) + g′a(e)]︸                      ︷︷                      ︸

≡Γ(e,θ)

= (1 − m)Γ(e, θ) ≷ 0, (22)

J31 ≡
∂ė
∂u
= sme

[
α(γ − 1) + γu

u

]
≷ 0, (23)

J32 ≡
∂ė
∂m
= se[α(β − 1) + βu] ≷ 0, (24)

J33 ≡
∂ė
∂e
= −eg′a(e) < 0. (25)

All elements are evaluated at the long-run equilibrium; we omit “∗” to avoid troublesome
notations.

The term Γ(e, θ) ≡ (1 − θ)m′w(e) + g′a(e) in equation (22) consists of the following three
elements: the relative bargaining power of firms θ, the extent of the reserve-army effect m′w,
and the extent of the reserve-army-creation effect g′a. Because m′w < 0 and g′a > 0, Γ can be
positive or negative. When the reserve-army effect is strong (i.e., the absolute value of m′w is
large), and the bargaining power of firms and the reserve-army-creation effect are weak (i.e.,
θ and g′a, respectively, are small), we have Γ < 0. On the other hand, when the reserve-army
effect is weak, and the bargaining power of firms and the reserve-army-creation effect are
strong, we have Γ > 0. The sign of Γ plays an important role in both the stability of the
equilibrium and the comparative statics analysis below.

The signs of equations (23) and (24) are indeterminate. When α is sufficiently large,
these signs are likely to be negative.

The characteristic equation of the Jacobian matrix (18) is given by

λ3 + a1λ
2 + a2λ + a3 = 0, (26)

where λ denotes a characteristic root. Each coefficient of equation (26) is given by

a1 = −tr J = −(J11 + J22 + J33), (27)

a2 =

∣∣∣∣∣∣∣J22 J23

J32 J33

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣J11 0
J31 J33

∣∣∣∣∣∣∣ +
∣∣∣∣∣∣∣J11 J12

0 J22

∣∣∣∣∣∣∣ = J22J33 − J23J32 + J11J33 + J11J22, (28)

a3 = − det J = −J11J22J33 + J11J23J32 − J31J12J23, (29)
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where −a1 = tr J denotes the trace of J; a2, the sum of the principal minors’ determinants;
and −a3 = det J, the determinant of J.

The necessary and sufficient condition for the local stability is that all characteristic
roots of the Jacobian matrix have negative real parts, which, from Routh-Hurwitz condition,
is equivalent to

a1 > 0, a2 > 0, a3 > 0, a1a2 − a3 > 0. (30)

Let us examine whether these inequalities hold. We arrange the coefficients with respect to
α.

First, a1 is a linear function of α.

a1 ≡ a1(α) = s(1 − γ)m︸     ︷︷     ︸
≡A>0

α + (1 − m) + eg′a(e)︸              ︷︷              ︸
≡B>0

= A
+
α + B

+
. (31)

Therefore, we can confirm that a1 > 0. This implies that tr J < 0, which is a necessary
condition for the local stability of the equilibrium.

Second, a2 is a linear function of α.

a2 ≡ a2(α) = {s(1 − γ)m[1 − m + eg′a(e)] + s(1 − β)e(1 − m)Γ(e, θ)}︸                                                                 ︷︷                                                                 ︸
≡C≷0

α

+ e(1 − m)[(1 − βsu)g′a(e) − sβ(1 − θ)um′w(e)]︸                                                    ︷︷                                                    ︸
≡D>0

= C
+/−
α + D

+
. (32)

If Γ > 0, we always have C > 0. Hence, we obtain a2 > 0. If, however, Γ < 0, we do not
always have C > 0.

Third, a3 is a linear function of α.

a3 ≡ a3(α) = s(1 − γ)em(1 − m)
[
g′a(e) − s(β − γ)

1 − γ uΓ(e, θ)
]

︸                            ︷︷                            ︸
≡Θ

α

= s(1 − γ)em(1 − m)Θ︸                    ︷︷                    ︸
≡E

α = Eα. (33)

Finally, a1a2 − a3 is a quadratic function of α.

a1a2 − a3 ≡ ϕ(α) = (AC)α2 + (AD + BC − E)α + BD︸︷︷︸
+

. (34)

At this stage, we cannot confirm whether this parabola is convex upward or convex down-
ward. However, when α = 0, we have ϕ(0) = BD > 0, which shows that there exists an α
such that a1a2 − a3 > 0 for α > 0.

Observing equations (31) through (34), we obtain the following proposition:
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Proposition 1. Suppose that Γ > 0. Suppose also that the equilibrium profit share m∗ is less
than or equal to 1/2. Then, the long-run equilibrium is locally stable irrespective of the size
of α.

Proof. If Γ > 0, and consequently C > 0, ϕ(α) becomes a parabola that is convex downward.
Here, we focus on the coefficient of α in ϕ(α), that is, AD + BC − E. Expanding this
coefficient, we have

AD + BC − E = s(1 − γ)m[1 − m + eg′a(e)]2︸                             ︷︷                             ︸
+

+ s(1 − β)e(1 − m)Γ︸                ︷︷                ︸
+

[eg′a(e)︸︷︷︸
+

+ (1 − m − sγum)︸             ︷︷             ︸
≡Λ

].

(35)

When s, γ, and u are close to zero, Λ ≡ 1 − m − sγum will be positive because sγum will
be sufficiently small. On the other hand, when s, γ, and u are close to unity, Λ approaches
Λ = 1−2m. From this, if m∗ ≤ 1/2, we haveΛ ≥ 0. WhenΛ ≥ 0, we have AD+BC−E > 0,
and consequently, we obtain ϕ(α) > 0 for α > 0. Therefore, if Γ > 0 and if m∗ ≤ 1/2, then
the necessary and sufficient conditions for local stability, that is, a1 > 0, a2 > 0, a3 > 0, and
a1a2 − a3 > 0, are all satisfied. ■

Proposition 1 is obtained when the reserve-army effect is weak, and the relative bargain-
ing power of firms and the reserve-army-creation effect are strong. In general, the profit
share in the real world is considered to be less than 1/2, and hence, condition m∗ ≤ 1/2 is
plausible. Note, however, that m∗ ≤ 1/2 is a sufficient and not a necessary condition for
a1a2 − a3 > 0. Moreover, m∗ depends on the parameters of the model.

Here, we introduce the following assumption:

Assumption 1. The sign of Θ in equation (33) is positive.

The sign of a3 depends on the sign of Θ. If Θ > 0, we have E > 0, and consequently,
a3 > 0. This implies that det J < 0, which is a necessary condition for the local stability
of the equilibrium. When β > γ, we always have Θ > 0 irrespective of the sign of Γ.23

However, when β < γ, we do not always have Θ > 0. When β < γ, we always have Θ > 0 if
Γ > 0. Even if Γ < 0, we can have Θ > 0.

From this, we obtain the following proposition:
23Expanding Θ, we obtain

Θ =

(
1 − su

β − γ
1 − γ

)
g′a(e) − su

β − γ
1 − γ (1 − θ)m′w(e).

When β > γ, (β−γ)/(1−γ) is larger than zero and smaller than unity. From this, the first term of the right-hand
side is positive. The second term of the right-hand side is positive because m′w < 0. Therefore, when β > γ,
we have Θ > 0 irrespective of the sign of Γ.
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Proposition 2. Suppose that the speed of adjustment of the goods market α is sufficiently
close to zero. Then, the long-run equilibrium is locally stable.

Proof. From the above discussion, we have a1 > 0 and a3 > 0. When α = 0, we have
ϕ(0) = BD > 0, that is, a1a2 − a3 > 0. If a1 > 0, a3 > 0, and a1a2 − a3 > 0, then a2 > 0 is
necessarily satisfied. Hence, if α = 0, the necessary and sufficient conditions given by (30)
are all satisfied. Because ϕ(α) is a continuous function of α, even if α > 0, a1a2 − a3 > 0 is
satisfied when α is sufficiently close to zero. Therefore, when α is sufficiently close to zero,
the necessary and sufficient conditions given by (30) are all satisfied. ■

Proposition 2 is obtained regardless of whether Γ > 0 or Γ < 0. That is, if the speed
of adjustment of the goods market is very slow, the long-run equilibrium is locally stable
irrespective of the size of the relative bargaining power of firms, the reserve-army effect,
and the reserve-army-creation effect.

3.3 Existence of closed orbits

As explained above, if Γ < 0, it is possible that C < 0, which implies that the system
is locally unstable. However, the instability of the steady state does not necessarily mean
that the system will explode. If there exists a limit cycle, it is possible that the economy
converges to a cyclical path.

Proposition 3. Suppose that C < 0. Then, a limit cycle occurs when the speed of adjustment
of the goods market lies within some range.

Proof. If C < 0, a2(α) becomes a straight line whose slope is negative and intercept is
positive. This implies that there exists ᾱ > 0 such that a2(ᾱ) = 0. Moreover, if C < 0,
Descartes’ rule of signs assures that the quadratic equation ϕ(α) = 0 has one negative real
root and one positive root. Since only the positive root has economic meaning, we let α
denote the positive root. Let us investigate which is larger, ᾱ or α. From a2(ᾱ) = 0, we
obtain ᾱ = −D/C > 0. Substituting ᾱ in ϕ(α), we obtain

ϕ(ᾱ) =
DE
C

< 0 (36)

because C < 0. This implies that α < ᾱ. From this, we get that a1 > 0, a2 > 0, a3 > 0, and
a1a2 − a3 > 0 within the range α ∈ (0, α), while a1 > 0, a2 > 0, a3 > 0, and a1a2 − a3 < 0
within the range α ∈ (α, ᾱ). Consequently, a Hopf bifurcation occurs at α. Indeed, at α = α,
we obtain

a1 > 0, a2 > 0, a3 > 0, a1a2 − a3 = 0,
∂(a1a2 − a3)

∂α

∣∣∣∣∣
α=α

, 0. (37)
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That is, all conditions for the occurrence of the Hopf bifurcation are satisfied.24 Therefore,
when C < 0, there exists a continuous family of non-constant, periodic solutions of the
system around α = α. ■

We obtain C < 0 when g′a and θ are small, and the absolute value of m′w is large. These
conditions are similar to the conditions for Γ < 0. Indeed, Γ < 0 is a necessary condition for
C < 0. From this, we can obtain Proposition 3 when the reserve-army effect is strong, and
the relative bargaining power of firms and the reserve-army-creation effect are weak.

As explained above, the long-run equilibrium can be both stable and unstable. Let us
briefly explain this mechanism. Here, we focus on the rate of capacity utilization. Suppose
that the rate of capacity utilization exceeds its equilibrium value for some reason. Then, as
long as the speed of adjustment of the goods market is not extremely large, the increase in
the rate of capacity utilization induces the rate of employment to increase through equation
(23). This increase in the rate of employment changes the profit share through equation (22).
The direction of the change in the profit share depends on the sign of Γ.

If Γ > 0, that is, the power of firms is relatively strong, then the profit share increases.
This increase in the profit share has two opposing effects. (1) The increase in the profit
share stimulates the investment of firms, which increases the output. (2) The increase in
the profit share increases the savings of capitalists, which decreases the output. Because the
adjustment process of the goods market is stable, the latter negative effect on the output is
stronger than the former positive effect, and as a result, the output and the rate of capacity
utilization decrease (see equation (20)). Therefore, here, a negative feedback effect acts on
the rate of capacity utilization, and accordingly, the long-run equilibrium will be stable.

On the other hand, if Γ < 0, that is, the power of workers is relatively strong, then
the profit share declines, which increases the rate of capacity utilization through equation
(20). Therefore, here, a positive feedback effect acts on the rate of capacity utilization, and
accordingly, the long-run equilibrium will be unstable.

u ↑=⇒ e ↑ (when α is not so large) =⇒

m ↑ (Γ > 0)

m ↓ (Γ < 0)

=⇒ u ↓ (stabilizing)
=⇒ u ↑ (destabilizing)

.

Finally, we refer to the roles of the reserve-army and reserve-army-creation effects.
When only the reserve-army-creation effect exists, that is, m′w = 0, we always have Γ =
g′a > 0. In this case, from Proposition 1, the long-run equilibrium is locally stable given that

24For the Hopf bifurcation theorem, see Gandolfo (2010). The last condition in equation (37), that is,
∂(a1a2 − a3)/∂α|α=α , 0, is equivalent to the condition that the derivatives of the real parts of the characteristic
roots with respect to α are not zero when evaluated at α = α. For details, see Asada and Semmler (1995, pp.
634–635).
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m∗ ≤ 1/2, and accordingly, the Hopf bifurcation never occurs. Therefore, the reserve-army-
creation effect has a stabilizing effect.

In contrast, when only the reserve-army effect exists, that is, g′a = 0, we always have
Γ = (1 − θ)m′w < 0. In this case,

Θ = − s(β − γ)
1 − γ u(1 − θ)m′w. (38)

If β > γ, then Θ > 0 necessarily holds. However, if β < γ, then Θ < 0 necessarily
holds, which contradicts Assumption 1, and consequently, the long-run equilibrium becomes
unstable. This implies that the long-run equilibrium in the wage-led growth regime is always
unstable, and also that the Hopf bifurcation never occurs. Therefore, the reserve-army effect
has a destabilizing effect.

From the above reasoning, the interaction between the reserve-army and reserve-army-
creation effects plays an important role in stabilizing both the wage-led and profit-led growth
regimes, and in the occurrence of the Hopf bifurcation.

3.4 Comparative statics analysis

This section investigates the effects of the shifts in the parameters on the long-run equilib-
rium. To conduct a comparative statics analysis, we need the stability of the equilibrium.
For this reason, we assume Θ > 0 in the following analysis. As has been discussed above,
the long-run equilibrium can be unstable. Therefore, we confine ourselves to the case where
the long-run equilibrium is stable.

Table 1 summarizes the results of comparative statics in the four cases.25 In Table 1, the
“+” sign indicates that the corresponding variable increases with the parameter, while the
“−” sign indicates that the corresponding variable decreases with the parameter. The signs
“+/−” and “−/+” indicate that an increase in the parameter either increases or decreases the
corresponding variable. The mark “†” shows that the left-hand sign applies when Γ < 0,
while the right-hand sign applies when Γ > 0.

Moreover, for the effect of θ, we assume that m f − mw(e) > 0. Firms attempt to set their
target profit share as high as possible, whereas workers attempt to set their target profit share
as low as possible. Therefore, this assumption is reasonable.

[Table 1 around here]

Let us explain the results in Table 1. Because of the limitations of space, we focus
especially on the rate of employment.

25See Appendix for details.
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■ Savings rate
An increase in the savings rate of capitalists decreases the rate of capacity utilization

and the rate of capital accumulation. This negative effect on the growth rate is known as
the “paradox of thrift.” A rise in the savings rate decreases the rate of employment. Stock-
hammer (2004) also investigates the rate of employment in a Kaleckian framework. In
Stockhammer’s model, the long-run equilibrium value of the rate of employment consists
of the exogenous natural rate of growth and the parameters of the investment function and
the income distribution function, and does not depend on the savings rate. Hence, a change
in the savings rate never affects the rate of employment. In our model, on the other hand,
the natural rate of growth is endogenously determined, and accordingly, the change in the
savings rate affects the rate of employment.
■ Labor supply growth

Previous Kaleckian models cannot investigate the effect of supply side factors on equi-
librium values. In contrast, our model can investigate these. In either case, an increase in n
lowers the rate of employment. Because the relation g∗a = sm∗u∗ − n holds in the long-run
equilibrium, an increase in n has three different effects on g∗a and consequently, on e∗: it
directly decreases g∗a with the coefficient of n being −1; it indirectly affects g∗a through m∗,
which is positive when Γ < 0 and negative when Γ > 0; and it indirectly affects g∗a through
u∗, which is negative when Γ < 0 and positive when Γ > 0. In total, the two negative ef-
fects outweigh the one positive effect, which leads to a decline in g∗a and e∗. Stockhammer
(2004) also concludes that an increase in labor supply growth leads to a decrease in the rate
of employment in the profit-led growth regime (β > γ in our model), in which the long-run
equilibrium is stable. Yet, the wage-led growth regime in Stockhammer’s model (β < γ

in our model) is unstable, and thus, one cannot conduct a comparative statics analysis. In
contrast, even the wage-led growth regime can be stable in our model.
■ Relative bargaining power

An increase in the relative bargaining power of firms either increases or decreases the
rate of employment depending on the size of the two elasticities of the investment function.
The rate of employment decreases when β < γ, whereas it increases when β > γ. An
increase in θ has two different effects on ga and e: it indirectly increases ga and e through
its positive effect on m and it indirectly decreases ga and e through its negative effect on u.
Whether or not the increase in θ leads to an increase in ga and e depends on which effect
dominates, which in turn depends on the size of the elasticities of the investment function.
When β < γ, the negative effect of the capacity utilization dominates the positive effect of
the profit share, thereby leading to a decrease in the growth rate of labor productivity and the
employment rate. When β > γ, in contrast, the positive effect of the profit share dominates
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the negative effect of the capacity utilization, thereby leading to an increase in the growth
rate of labor productivity and the employment rate.

Stockhammer (2004) also investigates the relationship between bargaining power and
unemployment. He concludes that in the profit-led growth regime, a decrease in the bar-
gaining power of workers leads to higher employment and lower unemployment. This result
is consistent with our results. However, in the wage-led growth regime of Stockhammer’s
model, the long-run equilibrium is unstable, and consequently, one cannot investigate the
relationship between bargaining power and unemployment. In our model, in contrast, the-
long run equilibrium of the wage-led growth regime can be stable. In this case, we reach
the opposite conclusion that an increase in the bargaining power of workers leads to higher
employment and lower unemployment. This result is consistent with the empirical result of
Storm and Naastepad (2007). Using data for 20 OECD countries during 1984–1997, they
show that an increase in the bargaining power of firms because of labor market deregulation
increases the unemployment rate; this is in contrast to the view of the mainstream theory.

4 Numerical simulations

In this section, we present numerical examples to show that, under plausible settings, an
economically meaningful long-run equilibrium actually exists and limit cycles really occur.
Note, however, that the results of numerical simulations depend on the specification of the
functional form and the numerical values of the parameters.

For the numerical simulation, we have to specify the functional forms of equations (8)
and (10). We specify these functions as follows:

mw(e) = δ(1 − e), δ > 0, (39)

ga(e) = ηe, η > 0. (40)

In this case, Γ and Θ are respectively given by

Γ = η − (1 − θ)δ, (41)

Θ = η − s(β − γ)
1 − γ [η − (1 − θ)δ]u. (42)

The equilibrium profit share m∗ satisfies the following equation:

Γψ
1

1−γ s−
γ

1−γ m
β−γ
1−γ − ηm + η[θm f + (1 − θ)δ] − Γn = 0. (43)

From this, we obtain m∗, which we substitute in equation (17) to determine u∗. Furthermore,
we substitute m∗ in the following equation to determine e∗:

e∗ =
m∗ − [θm f + (1 − θ)δ]

Γ
. (44)
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We consider two cases depending on which is larger, β or γ given that Γ < 0 is negative.26

4.1 Case 1 (wage-led growth): β < γ, Γ < 0

Case 1 corresponds to the case where the elasticity of the investment rate with respect to the
profit share is smaller than the elasticity of the investment rate with respect to the rate of
capacity utilization, the reserve-army effect is strong, and the relative bargaining power of
firms and the reserve-army-creation effect are weak. We set the parameters as follows:

β = 0.2, γ = 0.4, ψ = 0.15, s = 0.6, η = 0.1, δ = 0.5, θ = 0.25, m f = 0.3, n = 0.015.
(45)

In this case, the long-run equilibrium values, Γ and Θ, yield the following:27

u∗ = 0.74642, m∗ = 0.220134, e∗ = 0.835875, Γ = −0.275 < 0, Θ = 0.0589496 > 0.
(46)

These equilibrium values are economically meaningful. In addition, Θ > 0 is satisfied.
Figure 4 displays the solution path when the initial values and the speed of adjustment

are set as u(0) = 0.7, m(0) = 0.21, e(0) = 0.8, and α = 4. The figure shows a cyclical
fluctuation. In Figure 4, we draw the solution path from t = 100 to t = 200, and upon
performing the calculations further, we find that the solution path is not a perfect closed
orbit and that it converges to the long-run equilibrium with rotation. Moreover, if we set the
initial conditions further away from the long-run equilibrium, we find that the solution path
diverges from the equilibrium. From these observations, we confirm that in this numerical
example, the subcritical Hopf bifurcation occurs and the periodic solution is unstable.

Figure 5 projects the three-dimensional dynamics on the (u, e)-plane. The solution path
starting from point P converges to the long-run equilibrium with rotation. In contrast, the
solution path starting from point Q diverges from the long-run equilibrium with rotation.
These phenomena correspond to the “corridor stability” of Leijonhufvud (1973).

Figure 6 shows the graphs of a2(α) and ϕ(α). We find that ᾱ = 4.61097 and α = 4.02288.
In Figure 4, we use α = 4, from which we have 4 < α. Therefore, the subcritical Hopf
bifurcation certainly occurs in this case.28 Moreover, if we choose α larger than α, we find

26Note that if Γ > 0, the long-run equilibrium is almost always stable (see Proposition 1) and limit cycles
never occur. Numerical simulations in stable cases are shown in the discussion paper version of the present
paper.

27From these numerical settings, we obtain two values of m within the range m ∈ (0, 1): m∗1 = 0.220134 and
m∗2 = 0.0516332. However, from m∗2, we obtain u∗ = 5.16014 and e∗ = 1.44861, which are unrealistic. For
this reason, we do not adopt m∗2.

28In this numerical example, the range of α is such that both a2(α) > 0 and ϕ(α) < 0 are narrow. However,
we can widen the range by choosing different parameter settings.
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that the solution path diverges irrespective of the initial conditions. This confirms that the
subcritical Hopf bifurcation occurs at α.

Note, however, that the Hopf bifurcation that occurs in case 1 is not always the sub-
critical Hopf bifurcation. We can find a numerical example wherein the supercritical Hopf
bifurcation occurs in case 1.29

[Figures 4, 5, and 6 around here]

Finally, Figures 7, 8, and 9 show cyclical patterns in the (e,m)-, (u,m)-, and (e, u)-
planes. In the (e,m)-plane, clockwise cycles emerge whereas in the (u,m)- and (e, u)-planes,
counterclockwise cycles emerge. These cyclical patterns are consistent with some empirical
findings stated in Introduction. Therefore, the type of cyclical fluctuations produced by our
model matches empirical findings.

[Figures 7, 8, and 9 around here]

4.2 Case 2 (profit-led growth): β > γ, Γ < 0

Case 2 corresponds to the case where the elasticity of the investment rate with respect to
the profit share is larger than the elasticity of the investment rate with respect to the rate of
capacity utilization, the reserve-army effect is strong, and the relative bargaining power of
firms and the reserve-army-creation effect are weak. We set the parameters as follows:

β = 0.4, γ = 0.2, ψ = 0.2, s = 0.6, η = 0.1, δ = 1, θ = 0.25, m f = 0.3, n = 0.016. (47)

Here, the long-run equilibrium values, Γ and Θ, yield the following:

u∗ = 0.741857, m∗ = 0.238619, e∗ = 0.902125, Γ = −0.65 < 0, Θ = 0.172331 > 0. (48)

These equilibrium values are economically meaningful. In addition, Θ > 0 is satisfied.
Figure 10 displays the solution path when u(0) = 0.7, m(0) = 0.2, e(0) = 0.9, and

α = 2. The figure shows a cyclical fluctuation. Using various initial values, we find that
in this case, a stable limit cycle emerges: any initial point converges to the limit cycle with
rotation. Therefore, the supercritical Hopf bifurcation occurs in case 2.

Figure 11 shows the graphs of a2(α) and ϕ(α). We find that ᾱ = 2.34506 and α =

1.95504. In Figure 10, we use α = 2, from which we have α < 2. Therefore, the supercritical
Hopf bifurcation certainly occurs in this case.30

29Under the parameters β = 0.4, γ = 0.41, ψ = 0.2, s = 0.6, η = 0.1, δ = 1, and θ = 0.25, the Hopf
bifurcation point leads to α = 2.56626, and there exists a stable limit cycle at α > α.

30In this case, as in case 1, the range of α is such that both a2(α) > 0 and ϕ(α) < 0 are narrow. However, we
can widen the range by choosing different parameter settings. Note that we were unable to find a numerical
example that produced subcritical Hopf bifurcation.
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[Figures 10 and 11 around here]

In case 2 as in case 1, though we do not present figures because of limitation of space,
we obtain clockwise cycles in the (e,m)-plane and counterclockwise cycles in the (u,m)-
and (e, u)-planes.31

5 Concluding remarks

In this paper, we have developed a demand-led growth model that considers elements from
Goodwin, Kalecki, and Marx. More specifically, we have presented a Kaleckian model that
describes a labor-constrained economy. In the model, we have considered the two opposing
effects caused by an increase in the rate of employment. One is the reserve-army effect:
as the labor market tightens and labor shortage becomes clearer, the bargaining power of
workers increases, which exerts an upward pressure on wages. The other is the reserve-
army-creation effect: such an upward pressure on wages leads firms to adopt labor-saving
technical changes to intentionally create the reserve-army of labor.

We have presented the two cases that produce limit cycles according to the size of pa-
rameters of the investment function, the relative bargaining power of firms, the reserve-
army effect, and the reserve-army-creation effect. These two cases correspond to the case
where the relative bargaining power of firms is weak, the reserve-army effect is strong, and
the reserve-army-creation effect is weak. Our theoretical analysis and numerical examples
show that limit cycles occur in both wage-led growth and profit-led growth, which implies
that perpetual business cycles are inherent in capitalist economies.

Using the model, we have analyzed how the relative bargaining power of workers and
firms affects the long-run equilibrium rate of employment. The relationship between the
bargaining power and the employment rate differs depending on the regime of the long-run
equilibrium. If the long-run equilibrium is characterized as the wage-led growth regime, a
rise in the relative bargaining power of workers increases the employment rate. If, on the
other hand, the long-run equilibrium is characterized as the profit-led growth regime, a rise
in the relative bargaining power of workers decreases the employment rate.

Note, however, that in the wage-led growth regime, an increase in the workers’ bargain-
ing power leads to higher employment, but it simultaneously leads to lower profit share: the

31Depending on conditions, our model produces clockwise cycles in the all three planes as observed in the
US by Zipperer and Skott (2011). For example, if the long-run equilibrium exhibits the exhilarationist regime,
if the reserve army creation effect is weak, and if the reserve army effect is strong, then clockwise cycles can
occur.
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workers’ interests interfere with firms’ interests. For this reason, it may be difficult to im-
plement an economic policy intended to adjust the bargaining power of both classes. Even
in this case, nonetheless, the demand stimulation policy is effective. The stimulation of
effective demand brings about higher employment and accordingly, lower unemployment.
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Table 1: Results of comparative stat-
ics analysis

β < γ s n θ m f ψ

u∗ − −/+† − − +‡

m∗ +/−† +/−† + + −/+†

e∗, g∗a − − − − +

g∗ − −/+† − − +

β > γ s n θ m f ψ

u∗ − −/+† − − +‡

m∗ +/−† +/−† + + −/+†

e∗, g∗a − − + + +

g∗ − +/−† + + +

† When Γ < 0, the left-hand sign applies,
and when Γ > 0, the right-hand sign ap-
plies.

‡ These signs are obtained by numerical
calculations.
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A Appendix

The effects of a rise in parameters on the long-run equilibrium values are as follows.
■ The rate of capacity utilization

du∗

ds
=

u∗[sβu∗(1 − θ)m′w(e∗) − (1 − sβu∗)g′a(e∗)]
s(1 − γ)Θ

< 0, (A-1)

du∗

dn
=

(1 − β)u∗Γ
(1 − γ)m∗Θ

≷ 0, (A-2)

du∗

dθ
= −

(1 − β)u∗g′a(e∗)[m f − mw(e∗)]
(1 − γ)m∗Θ

< 0, (A-3)

du∗

dm f
= −θ(1 − β)u∗g′a(e∗)

(1 − γ)m∗Θ
< 0, (A-4)

du∗

dψ
=

u∗[(1 − γ)Θ − s(1 − β)m∗Γ]
ψ(1 − γ)2Θ

. (A-5)

■ The profit share

dm∗

ds
= − γu∗m∗Γ

(1 − γ)Θ
≷ 0, (A-6)

dm∗

dn
= − Γ
Θ
≷ 0, (A-7)

dm∗

dθ
=

g′a(e∗)[m f − mw(e∗)]
Θ

> 0, (A-8)

dm∗

dm f
=
θg′a(e∗)
Θ

> 0, (A-9)

dm∗

dψ
=

sm∗u∗Γ
ψ(1 − γ)Θ

≷ 0. (A-10)

■ The rate of employment

de∗

ds
= − γu∗m∗

(1 − γ)Θ
< 0, (A-11)

de∗

dn
= − 1
Θ
< 0, (A-12)

de∗

dθ
=

s(β − γ)u∗[m f − mw(e∗)]
(1 − γ)Θ

≷ 0, (A-13)

de∗

dm f
=
θs(β − γ)u∗

(1 − γ)Θ
≷ 0, (A-14)

de∗

dψ
=

sm∗u∗

ψ(1 − γ)Θ
> 0. (A-15)
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■ The rate of capital accumulation

dg∗

ds
= −γm∗u∗g′a(e∗)

(1 − γ)Θ
< 0, (A-16)

dg∗

dn
= − s(β − γ)u∗Γ

(1 − γ)Θ
≷ 0, (A-17)

dg∗

dθ
=

s(β − γ)u∗g′a(e∗)[m f − mw(e∗)]
(1 − γ)Θ

≷ 0, (A-18)

dg∗

dm f
=
θs(β − γ)u∗g′a(e∗)

(1 − γ)Θ
≷ 0, (A-19)

dg∗

dψ
=

sm∗u∗g′a(e∗)
ψ(1 − γ)Θ

> 0. (A-20)
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