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Forward flights of a bilaterally symmetrically flapping butterfly modeled as a four-
link rigid-body system consisting of a thorax, an abdomen, and left and right wings
are numerically simulated. The joint motions of the butterflies are adopted from
experimental observations. Three kinds of the simulations, distinguished by ways to
determine the position and attitude of the thorax, are carried out: a tethered simulation,
a prescribed simulation, and free-flight simulations. The upward and streamwise
forces as well as the wake structures in the tethered simulation, where the thorax
of the butterfly is fixed, reasonably agree with those in the corresponding tethered
experiment. In the prescribed simulation, where the thoracic trajectories as well as
the joint angles are given by those observed in a free-flight experiment, it is confirmed
that the butterfly can produce enough forces to achieve the flapping flights. Moreover,
coherent vortical structures in the wake and those on the wings are identified. The
generation of the aerodynamic forces due to the vortical structures are also clarified. In
the free-flight simulation, where only the joint angles are given as periodic functions
of time, it is found that the free flight is longitudinally unstable because the butterfly
cannot maintain the attitude in a proper range. Focusing on the abdominal mass,
which largely varies owing to feeding and metabolizing, we have shown that the
abdominal motion plays an important role in periodic flights. The necessity of control
of the thoracic attitude for periodic flights and maneuverability is also discussed.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790882]

I. INTRODUCTION

Human-made aircraft mostly have fixed wings or rotary wings. The wings except some small
parts are steady. On the other hand, most flying animals on the earth such as insects and birds flap
their wings. We have much to learn from the insects which have chosen the flapping flight as a result
of the natural selection since the number of the species of the insects is the largest on the earth. The
aerodynamics of the insect flight are reviewed in Refs. 1–3.

Flying animals must produce aerodynamic forces enough to sustain their weight against
the gravity and to overcome the drag. Moreover, the direction of the aerodynamic force should
be controlled for flight maneuvering; the direction should be even in transverse to turn around.
The flying animals produce the aerodynamic forces as the reactions to the force produced
when the motion of their wings change the momenta of the surrounding air. The associated flow
around the wings is characterized by coherent vortices, which are generated by separation from the
flapping wings and interact with the wings and other vortices. Such interactions are complicated from
the aerodynamic point of view, and non-trivial behaviors of flapping models have been reported:
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even up-down symmetric flaps of wings lead to unidirectional motion in both vertical and horizontal
directions,4, 5 depending on the model details. Bilateral asymmetry of flaps is experimentally found
in in-flight turns of fruit flies.6 The maneuverability of the flapping-flight animals resulting from the
variability of their flapping motions is necessary to survive.

The characteristics of the flow, which determines the forces and the torques acting on the wings,
are often categorized by vortical patterns in the wake of flying animals. Doughnut-shaped vortex rings
are often shed by slowly-traveling animals’ wings into the wake at the transitions from downstrokes
to upstrokes while undulating cylindrical vortices trailing behind each wing tip are often found
in the wakes of fast traveling animals.7 The wake structures created by forward-flight or hovering
flapping “flyers”, such as a hummingbird, a bat, and a foil, have experimentally or numerically been
visualized.8–10 A ladder-like vortical structure in the wake of a flapping butterfly was proposed.11

Flow structures produced by hovering insects have also been visualized.12, 13 The relation between
vortical structures induced by the flap motions and aerodynamic forces of a tethered fruit fly
was experimentally investigated.14 The leading-edge vortex created by dynamic stall enhances lift
of hawkmoth’s hovering flight.15 The importance of reattachment of the leading-edge vortices in
lift generation of a butterfly was also reported.16 The forces due to vortex rings in the wakes
were theoretically estimated.17 The forces and torques acting on insects’ flapping wings have been
estimated numerically.12, 13, 18–20

The flights of butterflies and moths appear to be energy-efficient, since they are known to be
able to fly with smaller flapping frequencies than other insects comparable in size to them (see
Ref. 21 and references therein). We remark that, when compared with the fixed wing, the energy
efficiency of flapping flight was shown to be better in a two-dimensional model,22 even though the
flapping motion appears to require additional energy consumption. Moreover, the selection rule of
a flapping frequency was discussed,23 and it was concluded that the optimal frequency of a flap-
ping foil in two-dimensional flow is the frequency of the advectively most unstable mode of the
wakes.24 The advantage of the flapping forward flights in three-dimensional flow has not been inves-
tigated in detail. The mechanism of butterflies’ flights with small flapping frequencies needs to be
clarified.

Natural flyers obtain information of their attitudes and locations by their sensory organs.25, 26

According to the information, the flyers control their attitudes and locations by changing their
flapping motions explicitly. Cabbage white butterfly alters the angle of the joint between the thorax
and the abdomen to stabilize their thoracic pitching angles (see Ref. 27 and reference therein).
Hawkmoths maintain their positions and attitudes during hovering flights with redundantly huge
number of degrees of freedom as an inverse problem.28 The mechanisms of the control are attracting
the interests of researchers also in engineering.29 Stabilization in butterflies’ flights due to elastic
deformation of wings was also reported.30 We will see the necessity of the control from the viewpoint
of the fluid dynamics.

Among these previous studies, we study the flapping flights of relatively large-size butterflies.
Turbulent flows made by the flapping flights and the abdominal motion are the primary distinctions
from the flapping flights of other insects. In this study, bilaterally symmetrically flapping butterflies
in forward flights are numerically simulated to clarify the relation between aerodynamic forces and
flow structures characterized by vortices. Three kinds of the simulations, distinguished by ways
to determine the position and the attitude of the thorax of the butterfly, are carried out: a tethered
simulation, a prescribed simulation, and free-flight simulations. In all the simulations joint motions
of the butterflies are adopted from experiments with living butterflies. In the tethered simulation,
where the thorax of the butterfly is fixed, the forces caused by the flaps are compared with the
corresponding experiment. The wake structures visualized by passive tracers in the simulation are
also compared with those visualized by smoke in the experiment. The aerodynamic forces and
torque during a free flight are numerically obtained in the prescribed simulation, where the thoracic
trajectories as well as the joint angles are given by those observed in the free-flight experiment.
The torques and powers generated by the joints are confirmed to be consistent with the biological
facts. Vortical structures are also visualized and forces due to the vortical structures are identified.
In the free-flight simulations, where only the joint angles are given and the thoracic trajectories are
numerically obtained, feasibility of the free flights are discussed.
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II. NUMERICAL SCHEME

A. Flow field

The governing equation of the incompressible flow is the Navier–Stokes equation:

∂u
∂t

+ (u · ∇)u = −∇ p

ρair
+ ν∇2u + f IB, (1a)

∇ · u = 0, (1b)

where u is the velocity of the flow, and p is the pressure. The interactions between the flow and the
butterfly are calculated by the immersed boundary method.31 The interactions are introduced as the
boundary force f IB. The values of the air properties are adopted from those at 25 ◦C: the density
ρair = 1.184 kg/m3 and the kinematic viscosity νair = 1.54 × 10−5 m2/s. However, in this study, the
values of the kinematic viscosity, ν = 2νair or 3νair, larger than the actual value are also adopted to
avoid numerical oscillation. The forces and torques acting on the butterfly do not depend much on
the kinematic viscosity in this range. The dependence on the kinematic viscosity as well as other
numerical parameters is checked in the Appendix.

The direction of the main stream is taken as the positive x direction, the vertically upward
direction as the positive y direction, and the horizontal direction as the z direction. The directions
are expressed by the Cartesian unit vectors ex , ey , and ez in Fig. 1. The boundary conditions of
the flows are as follows. The velocity is constant on the inflow boundary plane: u = u0ex . The
Sommerfeld condition is employed as the outflow condition. The boundary condition of the pressure
is the Neumann boundary condition ∂p/∂x = 0 on both inflow and outflow plane. The streamwise
length of the computational domain is Lx = 5 × 10−1 m, which is approximately 18 times as long
as the mean wing-chord length. The periodic boundary condition is employed for the transverse
boundaries. The transverse length of the computational domain is Ly = Lz = 2.5 × 10−1 m, which

FIG. 1. Definitions of coordinates and the Euler angles. The positive directions of the thoracic and joint angles θ t, θ a, β, η,
and θ are expressed by the round arrows. (a) First, the coordinate of the left wing corresponds to that of the thorax on the
right side. (d) After the three rotations (1: about the i t axis by β + π , 2: about the k′ axis by −η, 3: about the j ′′ axis by −θ )
the coordinate corresponds to (iwl, jwl, kwl). (e) The coordinate of the thorax corresponds to that of the abdomen after the
rotation about the j t axis by −θ a (4). The positive directions of the Euler angles of the rotations φij are determined by the
right-hand rule.
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is approximately 5 times as long as the wing-tip length. The results are not affected by the values of
Lx, Ly, and Lz (see the Appendix).

The Navier–Stokes equation is spatially discretized by Eulerian uniform grids in the Cartesian
coordinate. The spatial resolution is Nx × Ny × Nz = 4096 × 512 × 512. The fourth-order central
difference is used for the derivatives in the x direction. The second-order forward and backward
differences also used near the inflow and outflow boundaries, respectively. The derivatives in the y
and z directions are evaluated with the Fourier transforms. The Poisson equation with pentadiagonal
matrix is solved by the Gaussian elimination thanks to the periodic boundary conditions in the y and
z directions.

The time integration of the flow is made by the fractional step method from tn to tn+1 = tn
+ 
t, where 
t is a time increment, as follows:

1. The fractional step of the advective term and the viscous term, H = −(u · ∇)u + ν∇2u,
is made as û(x, tn+1/2) = u(tn) + H(tn)
t by the second-order Runge–Kutta method. The
advective term is obtained by the spectral method with de-aliasing by the 3/2 method. The
viscous term is implicitly added.

2. The force per unit mass at an Eulerian grid point x in the flow field is obtained accord-
ing to the immersed boundary method. The velocity of the flow is interpolated on the im-
mersed boundaries, i.e., at a Lagrangian point Xn = X(tn) on the surface of the butterfly
as ǔ(Xn, tn+1/2) = ∑

x û(x, tn+1/2)δ
x(x − Xn)
x, where 
x = 
x
y
z is the volume
of the Eulerian cell. The discrete δ function δ
x(x − X) = (1/
x)δs4(|x − X |/
x)δs4(|y
− Y |/
y)δs4(|z − Z |/
z) is given by the smoothed four-point piecewise function δs4 pro-
posed in Ref. 32. The force per unit area at X on the immersed boundaries due to the
flow is given by the difference between the interpolated velocity and the velocity of the
immersed boundary U as F(Xn, tn+1/2) = ρair(ǔ(Xn, tn+1/2) − Un)
x/(
t
X). Here, 
X
is the area of the cell on the immersed boundary. The force per unit mass is obtained as
f IB(x, tn+1/2) = −(1/ρair)

∑
X F(Xn, tn+1/2)δ
x(x − Xn)
X . Then, the fractional step of

the immersed boundary is made as ũ(tn+1/2) = û(tn+1/2) + f IB(tn+1/2)
t .
3. The pressure term is calculated. The pressure function P = p/ρair is obtained by solving the

Poisson equation ∇2 P = ∇ · ũ(tn+1/2)/
t . The fractional step of the pressure is made as
u(tn+1) = ũ(tn+1/2) − ∇ P
t , and this is the velocity of the flow at tn+1.

We adopt T/4000 or T/8000 as the time increment 
t in this study, where T is a flapping period.

B. Butterfly

A chestnut tiger butterfly (Parantica sita) is modeled as four rigid bodies: a spheroidal thorax, a
spheroidal abdomen, and left and right thin flat wings. The functional form of the shape of the wings
are given by the polynomial approximation of the average shape of the wings of living butterflies.
Although the butterfly has a forewing and a hindwing on one side, the forewing and hindwing are
modeled as a unified wing. The thorax and the abdomen, the thorax and the left wing, and the thorax
and the right wing are connected with joints with three degrees of freedom (DOF). We have used the
parameters of two individual butterflies as the dimensions of the modeled butterfly. The dimensions
are summarized in Table I.

The relations between the thoracic mass and the thoracic size, and between the masses of the
wings and the wing-tip length are statistically obtained by measuring the masses and the lengths of
the disassembled parts. Then, the masses of the thorax and the wings are, respectively, estimated by
measuring the thoracic size and the wing-tip length of the living butterfly. Because the total mass of
the living butterfly can be measured directly, the masses of the thorax and the wings subtracted from
the total mass give the abdominal mass. Note that the actual values of the abdominal mass largely
vary during the experiments.

The state of the butterfly is given by θ = (xt,φt,φa,φwl,φwr) ∈ R15 and its time derivative θ̇ ,
where xt is the position of the center of mass (COM) of the thorax, and φt represents the attitude
of the thorax. The joint angles of the abdomen, the left wing, and the right wing are denoted by
φa, φwl, and φwr, respectively. Note that each of xt, φt, φa, φwl, and φwr has three components. The
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TABLE I. Physical properties of butterflies (chestnut tiger).

Parameters Individual A Individual B

Total mass m (kg) 3.38 × 10−4 3.36 × 10−4

Wing loading mg/(2Sw)(N/m2) 1.13 1.32
Thoracic mass mt (kg) 1.20 × 10−4 8.28 × 10−5

Thoracic length 2lt (m) 1.24 × 10−2 1.05 × 10−2

Thoracic width 2wt (m) 5.40 × 10−3 5.50 × 10−3

Abdominal mass ma (kg) 1.68 × 10−4 2.11 × 10−4

Abdominal length 2la (m) 2.14 × 10−2 2.10 × 10−2

Abdominal width 2wa (m) 5.70 × 10−3 4.55 × 10−3

Wing mass mw (kg) 2.52 × 10−5 2.10 × 10−5

Wing-tip length ytip (m) 5.47 × 10−2 5.03 × 10−2

Wing area Sw (m) 1.47 × 10−3 1.24 × 10−3

components of θ are divided into the thoracic coordinates denoted by θ1 and the joint coordinates
by θ2; θ = (θ1, θ2), where θ1 = (xt,φt) ∈ R6 and θ2 = (φa,φwl,φwr) ∈ R9.

The coordinates used in this study are shown in Fig. 1. The laboratory frame which is fixed to
the wind tunnel, is given as ex , ey , and ez . An inertial coordinate at rest in the laboratory frame is
expressed by i I, j I, and kI, where (i I, j I, kI) = (−ex ,−ez,−ey).

The coordinate of the thorax (i t, j t, kt), which is used to describe the thoracic attitude φt, is given
by the 1-2-3 Euler angle from the inertial coordinate (i I, j I, kI). When the flow fields are symmetric
with respect to the sagittal plane, the state of the thorax is characterized by the three longitudinal
coordinates: xt = (xt, yt, 0) and φt = (0, θt, 0). Here, xt and yt are, respectively, the streamwise
position and the vertical position of the thoracic COM in the laboratory frame (ex , ey, ez). Note that
increase of xt represents a forward flight slower than u0 because xt is measured in the laboratory
frame. The pitching angle about the thoracic COM θ t is the Euler angle φt2 to orient the inertial
coordinate (i I, j I, kI) to the coordinate of the thorax (i t, j t, kt) by the rotation about the j I axis. The
unit vector i t is parallel to the line from the thoracic posterior end to the anterior end.

Similarly, the coordinate of each joint (i i , j i , ki ) is given by the 1-3-2 Euler angle from
the coordinate of the thorax (i t, j t, kt). Namely, the coordinate of the thorax coincides with the
coordinate of the joint by three composed rotations: the rotations about the i t axis by φi1, about the
k′ axis by φi2, and about the j ′′ axis by φi3. After the composed rotations, the unit vector jwl is
parallel to the line from the left wing joint to the left wing tip, and the unit vector kwl is normal to
the left wing plane (see Ref. 33 for details). Since the flapping motion is assumed to be bilaterally
symmetric with respect to the sagittal plane in this study, 4 DOFs out of 9 DOFs in the flapping
motion θ2 are independent: φa = (0, 0,−θa), φwl = (β + π,−η,−θ ), and φwr = (−β,−η, θ ). The
flapping angle corresponds approximately to β, and the flapping angle coincides exactly with β

when η = θ = 0. Similarly, the lead-lag angle and the feathering angle correspond approximately to
η and θ , respectively. Note that the flapping, lead-lag and feathering angles are generally given by
combination of β, η and θ .34

Two kinds of experiments with living butterflies were made in a wind tunnel:35 a tethered
experiment and a free-flight experiment. In the tethered experiment, the inflow velocity was set to
be u0 = 1.0 m/s. The thorax of the individual A in Table I was tethered to a tip of a force–torque
sensor so that the angle between the long axis of the thorax and the main stream was fixed to 20◦

(θ t = 20◦). Because the butterflies do not start to flap if the thoracic angle is too large or too small,
the thoracic angle in the tethered experiment is empirically determined so that the butterfly actively
flaps. Because of the tethered situation, θ1 is constant in time. The variables needed to construct the
joint angles θ2, are expressed by the Fourier series as drawn in Fig. 2. The position and the attitude
of the thorax were obtained by optically measuring the positions of two markers made of tiny styrene
foams put on the thoracic anterior end and the abdominal joint with three cameras. The joint angles
of the abdomen are determined by the positions of the markers put on the thoracic anterior end, the
abdominal joint, and the abdominal posterior end. The positions of three markers put on the wing
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FIG. 2. Observed joint angles of the abdomen and the wings of a tethered butterfly. The abdominal pitching angle, the
approximate flapping angle, the approximate lead-lag angle, the approximate feathering angle are denoted by θa, β, η, and
θ , respectively.

tip, the trailing edge, and the wing joint were similarly measured. The wing plane is determined by
the positions of the three markers. The joint angles of the wing are determined with the wing plane
and the thoracic attitude (see Ref. 33 for details). Note that the trajectories were obtained during
one specific period without being averaged. For example, the approximate flapping angle β is given
as β(t) = ∑2

j=0 Cβ j cos(2π j f t + ϕβ j ), where f = 1/T is the fundamental frequency. We define the
time origin by the time satisfying ϕβ1 = 0 so that a downstroke is observed during t � T/2 and
an upstroke during t � T/2. Similarly, θ a, η, and θ are expressed by the Fourier series up to the
first, the third, and the second orders, respectively. The orders of the truncation are determined so
that the Fourier series approximately reproduce the functional forms of the observed joint angles.
The abdominal pitching angle θ a and the approximate flapping angle β are almost in antiphase.
Namely, the posterior end of the abdomen goes up during downstrokes. The principal frequency of
the approximate lead-lag angles of the wings η is twice as large as the fundamental frequency of the
approximate flapping angles β. The feathering motions expressed by θ are seen to be passively made
by the aerodynamic forces.36 Note that the flapping motion θ2 varies slightly with both individuals
and flaps. In the tethered experiment, the upward and streamwise forces and the longitudinal torque
to fix the thorax were measured by the force–torque sensor at the same time as the joint angles θ2

were measured. The measured forces and torque are the sum of the aerodynamic forces, the gravity,
and the reaction forces due to the flapping motion.

In the free-flight experiment, the individual B freely flies in the wind tunnel, in which the inflow
velocity was set to u0 = 1.6 m/s. In the free-flight experiment, both the thoracic coordinates θ1 and the
joint coordinates θ2 were optically measured, although the forces and the torque cannot be measured.
The joint angles θ2 are similar to the angles shown in Fig. 2. The thoracic coordinates θ1, which are
given by the Fourier series up to the fourth order, are shown in Fig. 3. It is clearly shown that the
variation of the vertical coordinate of the thorax yt is larger than that of the horizontal coordinate
xt. Since the free-flight experiment was performed in the wind tunnel where the inflow velocity was
u0, the difference of the variations can be understood as the trajectory such that butterflies in natural
environments fly up and down with almost constant horizontal velocity. The pitching angle of the
thorax varies greatly. The variation results mainly from the variation of the aerodynamic torque and
that of the reaction torques due to the abdominal flapping motion.

The nondimensional numbers of the flow in the free-flight experiment are listed as follows. The
mean wing-tip velocity and the maximal wing-tip velocity are estimated as 4Cβ1fytip = 1.3 m/s and
2πCβ1fytip = 2.0 m/s, respectively. It must be emphasized that the maximal wing-tip velocity is larger
than the velocity of the main stream, i.e., the traveling velocity of the butterfly. The Reynolds number
evaluated by the mean wing-tip velocity and the wing-tip length is Re = 4Cβ1 f y2

tip/νair = 4300.
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FIG. 3. Observed thoracic coordinates during a free flight. The means of the vertical and horizontal coordinates during the
flapping period are set to 0. The pitching angle is scaled by the right-hand axis.

The Strouhal number in the experiment is St = 4Cβ1fytip/u0 = 0.81, and the reduced frequency is
k = 2Cβ1 f Sw/(u0 ytip) = 0.20. The Froude number is Fr = 4Cβ1f(ytip/g)1/2 = 1.9.

Three kinds of numerical simulations, whose conditions are summarized in Table II, are carried
out: a tethered simulation, a prescribed simulation, and a free-flight simulation. The tethered sim-
ulation mimics the tethered experiment. In this simulation, the thoracic coordinate θ1 is constant.
The COM of the thorax is fixed at Lx/4 from the inflow boundary. The thoracic pitching angle is
also fixed as θ t = 20◦. The joint angles of the flapping motion θ2 were obtained by the experimental
observation shown in Fig. 2. All the parameters in the simulations are adopted from the experi-
ment except the kinematic viscosity. In the prescribed simulation, the thoracic trajectories in the
free-flight experiment shown in Fig. 3 are adopted as the thoracic coordinate θ1. The joint angles
are also adopted from the free-flight experiment. In the free-flight simulation, the thoracic motion
is numerically solved according to the inverse kinematics in robotics as shown below. The joint
angles in this simulation are also adopted from the free-flight experiment. The free-flight simulation
is started from the steady periodic state of the prescribed simulation.

The dynamics of the butterfly is expressed by the Euler–Lagrangian equation of motion,

d

dt

(
∂L

∂ θ̇

)
− ∂L

∂θ
= τ , (2)

where L = K − V is the Lagrangian, K = θ̇ M θ̇/2 is the kinetic energy, and V is the potential
energy due to the gravity. Note that the inertia matrix M(θ ) ∈ R15×15 depends on time through θ .
The generalized force τ ∈ R15 consists of the aerodynamic force τ air obtained from the force F
according to the immersed boundary method and the control force τ cont applied to the thorax and
the joints. For example, the lift, drag, and the pitching moment about the thoracic COM are given

TABLE II. Numerical conditions of three simulations.

Tethered simulation Prescribed simulation Free-flight simulation
Individual A B B
Inflow velocity u0 (m/s) 1.0 1.6 1.6
Kinematic viscosity ν 3νair νair 2νair

Thoracic coordinates θ1 Constant Given by free-flight
experiment

Calculated according to
Eq. (5)

Flapping motion θ2 Given by tethered
experiment

Given by free-flight
experiment

Given by free-flight
experiment

Flapping period T (s) 0.12 0.112 0.112
Time increment 
T T/4000 T/8000 T/4000
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by the thoracic components of τ air. Then, Eq. (2) is rewritten as

M θ̈ + Ṁ θ̇ − 1

2

∂

∂θ

(
θ̇ M θ̇

) + ∂V

∂θ
= τ air + τ cont. (3)

In all the simulations, the joint angles θ2 are given as functions of time based on the experimental
measurements. In the tethered simulation, θ1 is constant in time since the thorax is fixed. In the
prescribed simulation, the thoracic trajectory θ1 is also given by the observation in the free-flight
experiment. Then, the control forces τ cont are obtained according to Eq. (3) in the tethered simulation
and the prescribed simulation since all the elements of θ = (θ1, θ2) are given. On the contrary, in the
free-flight simulation, Eq. (3) is solved to obtain the acceleration of the thoracic coordinate θ̈1. By
dividing the variables into the thoracic part and the joint part, Eq. (3) can symbolically be rewritten
as (

M11 M12

M21 M22

)(
θ̈1

θ̈2

)
+

(
h1

h2

)
=

(
τ cont1

τ cont2

)
, (4)

where

h = (h1, h2) = Ṁ θ̇ − 1

2

∂

∂θ

(
θ̇ M θ̇

) + ∂V

∂θ
− τ air.

Because the butterfly cannot control the thorax during free flights directly, τ cont1 = 0. On the other
hand, it is assumed that the butterfly can move the joint angles as they like. Then, θ2 observed in
the experiment are assumed to be realized without error by the control of the joints. Therefore, the
controlled joint forces can be obtained as τ cont2 = h2 − M21 M−1

11 (M12θ̈2 + h1). Finally, Eq. (4) is
solved as

θ̈1 = −M−1
11 (M12θ̈2 + h1). (5)

The time integration of θ1 during the free-flight simulation is made by the second-order Adams–
Bashforth method according to Eq. (5).

The grid points on the immersed boundary, which are the surface of the thorax and the abdomen
and the thin wings, are required to compute the interactive forces according the immersed boundary
method. The wing span and the wing chord of each wing are discretized by uniform grids with 128
and 512 points, respectively. The surface of the thorax is discretized by 128 grid points in the long
axis direction and 16 in the circumferential direction. The surface of the abdomen is also discretized
by 256 grid points in the long axis direction and 16 in the circumferential direction. The effect of
the internal mass of the thorax and the abdomen on the forces and torques37 is neglected because the
spurious forces and torques are much smaller than the real forces and torques acting on the thorax,
abdomen and wings.

III. NUMERICAL RESULTS

A. Tethered simulation

In the tethered simulation, the thoracic coordinates θ1 are set to be constant and the thoracic
pitching angle is θ t = 20◦ The data in the tethered simulation and in the prescribed simulation in
this section are recorded during one flapping period after the lapse of sufficient time from the initial
flap. Note that the forces and torque even during the first flapping period is almost the same as those
during other flapping periods except the earliest stage.

The upward and streamwise forces and the longitudinal torque in the simulation and in the
experiment are compared in Figs. 4(a)–4(c). The forces and the torque about the COM of the thorax
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FIG. 4. Upward and streamwise forces and longitudinal torque acting on the thorax of the tethered butterflies in the numerical
simulation and the experiment. (a) Upward force, (b) streamwise force, and (c) longitudinal torque. The aerodynamic forces
and pitching moment in the simulation are also drawn as the lift, drag, and pitching moment, respectively.

were measured with the force–torque sensor in the tethered experiment. The maximal uncertainty of
the static forces in the experimental system is approximately 1 × 10−3 N for the forces smaller than
2 × 10−2 N. The maximal uncertainty of the static torque is similarly 4 × 10−5 Nm for the torque
smaller than 6 × 10−4 Nm. The forces and the torque in the tethered experiment correspond to the
reaction of the control forces applied to the thorax to fix the thorax −τ cont1 in the tethered simulation.
The forces and the torque are composed of the aerodynamic forces, the reaction forces due to the
motions of the abdomen and the wings, and the gravity. The lift, the drag and the pitching moment
due to the aerodynamic forces, which are the thoracic components of the aerodynamic force τ air1,
are also drawn in Figs. 4(a)–4(c). Note that the forces and the torque both in the simulation and in
the experiment are recorded during one period when the joints behave according to the trajectories
drawn in Fig. 2 without being averaged.
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The aerodynamic lift accounts for a large fraction of the upward force as shown in Fig. 4(a). The
difference between the upward force and the aerodynamic lift results mostly from the gravity mg
= 3.3 × 10−3 N. The upward force and the aerodynamic lift reach their maxima around T/4 when
the downstroke velocity is maximal. The negative upward force around 3T/4 is also accountable for
the negative aerodynamic lift during the downstroke. The mean lift is positive because the angle of
attack is positive and the flapping motions are asymmetric, where the time spent on the downstroke
is longer than that on the upstroke. The upward force obtained in the numerical simulation agrees
with that measured in the experiment. In particular, the agreement is remarkable in the early phase
of the downstroke t < T/4.

Similarly to the upward forces, the aerodynamic drag accounts for a large fraction of the
streamwise force as shown in Fig. 4(b). The aerodynamic drag is positive during the downstroke,
i.e., t � T/2, and is negative during the upstroke, i.e., t � T/2. Since the butterfly flaps the wings
with the leading edge up during the upstroke, i.e., θ > 0, the aerodynamic thrust, which is caused
by the pressure difference between the dorsal and ventral sides of the wings, is obtained during
the upstroke. The streamwise force in the numerical simulation qualitatively agrees with that in the
experiment.

The aerodynamic pitching moment is positive during the downstroke and negative during the
upstroke as shown in Fig. 4(c). The effective points of the application of the aerodynamic forces on
the wings lie downstream of the thoracic COM because of the shape of the wings. Therefore, the
aerodynamic forces make negative aerodynamic pitching moments about the thoracic COM, i.e.,
head-down pitching moments during the downstroke. In an opposite manner, the pitching moment
due to the aerodynamic forces is positive during the upstroke. Namely, the aerodynamic pitching
moment during the upstrokes is a head-up pitching moment.

The gravity acting on the abdomen makes positive longitudinal torque about the thoracic COM.
The longitudinal torque due to the gravity acting on the abdomen is roughly 2.5 × 10−5 Nm. Note
that time variation of the gravitational longitudinal torque is large because of the abdominal motion.
Unlike the upward force and the streamwise force, the reaction torques due to the flapping motions
rather than the aerodynamic pitching moment consist mostly of the longitudinal torque as shown
in Fig. 4(c). In particular, the abdominal motion is responsible for the large difference between the
longitudinal torque and the aerodynamic pitching moment around T/10 and the approximate lead-lag
motion is for that around 9T/10, when the variation of the approximate lead-lag angle acts like the
flapping motion rather than the lead-lag motion.

As shown in Fig. 4(c), the longitudinal torque obtained in the numerical simulation deviates
from that measured in the experiment because of the accuracy of the measurements. The discrepancy
of the longitudinal torques mostly results from the reaction torques of the flapping motions of the
abdomen and the wings. Since the reaction torque strongly depends on θ̈2, the flapping motions in
the experiment must be measured with high resolutions in space and time so that the longitudinal
torques in the numerical simulation agree with those in the experiment. Moreover, the longitudinal
torque in the experiment requires high accuracy since the value of the longitudinal torque is small.
Although the functions in θ2 based on the experimental measurements are not accurate enough, the
upward force and the streamwise force reasonably agree with the experimental results. A detailed
tuning of the functions might be needed to improve the calculation results.

The flow in the tethered experiment was visualized by smoke released in front of the butterfly
so that the smoke intersects with the leading edge of the left wing at the 4/5 length from the wing
root to the wing tip in the middle of downstrokes. The smoke during a downstroke is shown in
Fig. 5. In the tethered simulation, passive tracers released on the vertical segment of z = 4ytip/5 on
the inflow boundary are used to mimic the smoke in the experiment. The tracers at the middle of
the downstroke t = T/4 are shown in Fig. 6. A two-dimensional sheet of the smoke and the tracers
are initially given, but they make three-dimensional characteristic patterns in the wakes. Large-scale
zig-zag structures of the tracer density caused by the upstrokes and the downstrokes are observed
both in the numerical simulation and in the experiment: Figs. 5(b) and 6(b). Similar zig-zag structures
were also observed in the wake of a tethered flight of a peacock butterfly.11 The sparse regions of
the smoke and the tracers indicate stretching due to the flow structures. The dense regions suggest
existence of low-pressure vortical structures. Small-scale complex structures of the tracers are also
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(a)

(b)

FIG. 5. Smoke structures in the tethered experiment. The smoke is released on the vertical segment of z = 4ytip/5 on the
inflow boundary. (a) Topview and (b) sideview.

seen. In fact, the tracers follow small- and large-scale vortical structures around, which are identified
below.

B. Prescribed simulation

1. Forces and torques during flap

In the prescribed simulation, the thoracic trajectories in the free-flight experiment shown in
Fig. 3 are adopted as the thoracic coordinate θ1. Thus, θ1 is not constant in time. The joint angles θ2

are also adopted from the free-flight experiment.
The lift, the drag, and the pitching moment about the COM of the thorax due to the aerodynamic

forces are shown in Fig. 7. Similarly to the tethered simulation, the lift is positive during the
downstroke and negative during the upstroke. The flapping motions generates lift and the mean
lift during one flapping period is close to the gravity mg = 3.3 × 10−3 N. The flapping motion
generates the drag during the downstroke and the thrust during the upstroke. The functional form
of the feathering angles causes this asymmetry. Because the mean drag is positive, the additional
thrust is required for the butterfly to stay against the main stream. The mean pitching moment
about the thoracic COM due to the aerodynamic forces is negative, i.e., a head-down moment. The
gravity acting on the abdomen produces a positive longitudinal torque about the thoracic COM, i.e.,
a head-up moment. If the mean pitching moment due to the aerodynamic forces balanced with the
mean longitudinal torque due to the gravity, the periodic flight should be realized. Note that the signs
of the mean reaction torques due to the flapping motion are not directly related to the periodicity
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(a)

(b)

FIG. 6. Passive tracers in the tethered simulation. (a) Topview and (b) sideview.

of the flights since the torques applied to the joints are internal torques for the butterfly motion. It
should also be noted that the forces in the prescribed simulation are larger than those in the tethered
simulation mainly because the individual B used in the prescribed simulation has the wings larger
than the individual A used in the tethered simulation has.

The forces and the longitudinal moment due to the extra control τ cont1, which are required so
that the thoracic trajectory θ1 in the simulation traces that observed in the free-flight experiment,
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FIG. 7. Lift, drag, and pitching moment due to aerodynamic force in the prescribed simulation. The pitching moment is
scaled by the right-hand axis.
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FIG. 8. Upward and streamwise forces and longitudinal torque due to extra control applied to the thorax in the prescribed
simulation. The longitudinal torque are scaled by the right-hand axis.

are shown in Fig. 8. The upward and streamwise forces given by the extra control term are as
large as the lift and the drag, respectively. On the other hand, the longitudinal torque due to the extra
control is thrice as large as the aerodynamic pitching moment. In this simulation, the external control
forces and torque comparable to the calculated aerodynamic forces and torque are still required. It
suggests that the flight of the butterfly is realized upon delicate control mechanisms. Because third
or higher harmonics account for the extra control forces in Fig. 8, more accurate measurement of
the trajectories θ1 and θ2 in the experiment would make τ cont1 smaller.

The torques applied to the joints between the thorax and the abdomen and between the thorax
and the left wing are shown in Fig. 9. The pitching angle of the abdomen θ a, the approximate
flapping angle β, the approximate lead-lag angle η, and the approximate feathering angle θ of the
left wing correspond to the components of the Euler angles of the joints as θ a = −φa3, β = φwl1

− π , η = −φwl2, and θ = −φwl3. Then, the torques corresponding to θ a, β, η, and θ are defined
by each components of the generalized torque as τθa = −τa3, τwlβ = τwl1, τwlη = −τwl2, and τwlθ

= −τwl3. Note that these torques applied to the joints are internal torques while the extra control
forces are external forces. The control torques of the abdomen τθa and the approximate flapping
angle τwlβ are larger than those of the approximate lead-lag angle τwlη and the feathering angle τwlθ .
These results fit with our observations that the butterflies actively control the abdominal motion and
the flapping angles. On the other hand, the variation of the feathering angle is passively made by
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FIG. 10. Power due to aerodynamic force Pair, extra control P1, and joint control forces P2 in the prescribed simulation. The
power due to the joint control is the sum of those due to the abdominal and wing joints, i.e., P2 = Pa + Pwl + Pwr.

the aerodynamic forces.36 It is expected that the butterflies can control the lead-lag angle little since
monarch butterflies related to the chestnut tiger butterflies have only small muscles to control the
lead-lag angle.38 These biological facts are consistent to the torques drawn in Fig. 9.

Power done by air, by the torques of the joints, and by the extra control forces are shown in
Fig. 10. Power done by air Pair = τ air · θ̇ is almost always negative, showing that the butterfly moves
the joints against the air. The power done by control of the joints, P2 = τ cont2 · θ̇2, is the sum of
the power done by all the three joints, i.e., P2 = ∑

i ∈ {a,wl,wr}Pi, where Pi = τ i · φi . The power
done by the left wing Pwl, which is almost identical to the power done by the right wing Pwr owing
to the bilaterally symmetrically flapping motions, is positive in the middle of the downstroke and
the upstroke. Then, the power done by the control of the joints P2 is positive in the middle of the
downstroke and the upstroke. Because P2 ≈ 2Pwl, the power done by the control of the joints comes
mainly from that done by the joints of the wings. It is of interest that the power done by the abdominal
joint is much smaller than that by the joints of the wings although the torques applied to the joints
are comparable. Thus, the control with the abdominal motion is energy-efficient. The power done
by the extra control forces, P1 = τ cont1 · θ̇1, shown also in Fig. 10 is much smaller than that done by
the control of the joints P2. It also supports that the control required to steady periodic flights can be
done energy-efficiently by the abdominal motions.

The powers of various free-flying insects including tobacco hornworm belonging to Lepidoptera
are roughly estimated as 102 W/kg muscle, and thoracic muscle mass accounts for one third of body
mass of Lepidoptera.27 This results in 10−2 W in the butterfly with 1 × 10−4 kg thoracic muscle
mass, which is of the same order as P2 in Fig. 10.

2. Vortical structures

The vortical structures of the flow field are shown in Fig. 11. The low-pressure vortices
are identified by the Q-criterion,39 i.e., the second invariant of the velocity gradient tensor Q
= ∇2p/(2ρair). The isosurface of Q = 1 × 105 s−2 at the middle of the downstroke t = T/4 are drawn in
Fig. 11. Note that the slight noise seen around the wings is caused by the visualization technique and
it does not affect the forces and the torques acting on the butterfly. The three-dimensional vortical
structures and their directions are schematically drawn in Fig. 12. The movie of the vortical struc-
tures during one flapping period can be downloaded from Ref. 40. For visibility of the movie, the
isosurface of Q = 1.2 × 105 s−2 is drawn in red over the entire computational domain in the movie
while the isosurface of Q = 3 × 104 s−2 is drawn in blue only for the structures generated in the
previous flap.

The large-scale zig-zag structures, similar to those in Figs. 5(b) and 6(b), are recognized also in
Fig. 11(b). Since the flow is turbulent, small-scale structures are observed and the bilateral symmetry
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FIG. 11. Vortical structures visualized by the Q-criterion, i.e., the second invariant of velocity gradient tensor in the prescribed
simulation. The isosurface of Q = 1 × 105 s−2 is drawn. (a) Topview and (b) sideview.

FIG. 12. Schematic illustration of the three-dimensional vortical structures. The directions of the coherent vortices are
expressed by the arrows.
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of the flow field is slightly broken. Even large-scale coherent structures are not similar to a chain
of coupled vortices proposed by in Ref. 11. In fact, the large-scale coherent structures in the wake
are similar to those of a low-aspect-ratio flapping foil10 and the flow structures are significantly
complex. Small-scale complex vortices are dissipated or merged into large-scale coherent vortices,
and then only the large-scale coherent vortices survive in the far field. The tracers in Fig. 6 mainly
follow the strong vortices.

The generation process of such zig-zag vortical structures is as follows. Several thin swirling
vortices start from each wing tip during a downstroke. The thin swirling vortices twist immediately
after the separation from each wing tip and form a wing-tip vortex during the downstroke (WTVd).
As swept in the downstream, the thin vortices are merged by the viscosity into a coherent vortex.
Because the directions of the vorticities of the WTVds starting from the left and right wing tips are,
respectively, −x and +x (see Fig. 12), the fluid particles between the two WTVds are advected to
the downward direction. Then, the WTVds generate lift as the reaction of inducing the downward
flow. Wing-tip vortices during upstrokes (WTVu) are also made; the vorticities of the left and right
WTVus are aligned close to the negative and positive y direction, respectively. Therefore, the flow
along the positive x direction is enhanced, which generates the thrust. The thrust due to the WTVus
is smaller than the lift due to the WTVds because the WTVus are less coherent than the WTVds
and the WTVus induce weaker airflow. Trailing-edge vortices (TEV) released at the transitions from
downstrokes to upstrokes are barely visible in the wake. The TEV makes the flow enclosed in the
TEV downward and forward. Then, the TEVs generate the lift and the drag on the butterfly, and the
generation of the lift and the drag due to the TEV is seen during T/2 � t � 5T/8 in Fig. 7.

Among these coherent structures in the wake, leading-edge vortices during downstrokes (LEVd),
which are the vortices generated by the separation from the entire leading edges, are formed on the
dorsal side of the wings. The separation on the leading edges makes complex secondary flow vortices
(SFV) below the LEVds (see Fig. 13(a) below). The SFVs are released around the transitions from
downstrokes to upstrokes in the movie (Ref. 40). The vortical directions of the SFVs are not uniformly
aligned. These fine complex flows are smoothened by the viscosity, and they disappear as they are
advected downstream.

The mechanisms of the formations of the vortical structures are clarified by the visualization
of near-field flows. The vortical structures as well as the aerodynamic forces which act on the
wings at three distinct times are depicted in Figs. 13(a), 13(c), and 13(d). The aerodynamic forces
F(Xn, tn+1/2) consisting of the pressure forces and the viscous forces are drawn only on the left
wing while the isosurface of Q = 2.5 × 105 s−2 is drawn only on the right side. Note that the forces
along the edges of the wings appear to be large, but the integral of the forces along the edges are
smaller than that on the rest of the wing.

To identify structures of strong vortices at the middle of the downstroke, we show in Fig. 13(b)
two groups of streamlines: the streamlines in a group start from the points on the line segment in front
of the leading edge, while the streamlines in the other group start from the points on the line segment
located in the middle of the left wing. Both starting segments are parallel to the wing plane and
just above the plane. The spanwise vorticities ωz and the streamwise vorticities ωx are, respectively,
drawn on a cross-section on the right wing and on another cross-section in the downstream in
Fig. 13(b). Both cross-sections are normal to the x direction. A movie of the near-field vortical
structures during one flapping period can be downloaded from Ref. 40. The isosurface of Q = 2.5
× 105 s−2 is drawn in the movie.

In the middle of the downstroke, t ≈ T/4, the LEVds separate from the leading edges on the
dorsal side of the wings as shown in Fig. 13(a). The streamlines starting from the segment in front
of the leading edge in Fig. 13(b) fall into two categories based on their patterns. The streamlines
starting from near the thorax make a thick tubular structure in the middle of the wing and go through
the wing to the ventral side. On the other hand, the streamlines starting from near the wing tip
go through the wing to the ventral side near the leading edge. The behaviors of the streamlines
clearly indicate two kinds of the LEVds: one is the LEVd near the wing root and the other is the
LEVd near the wing tip. The LEVds have the vorticities in the negative z direction. The LEVd
near the wing root appears as a sheet-like structure where the negatively large ωz are localized
on the upstream cross-section. The LEVd near the wing tip contains small vortical structures. The
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FIG. 13. Near-field structures viewed from above and behind in the prescribed simulation. The forces and the isosurface of
Q = 2.5 × 105 s−2 are drawn. The streamlines starting from two segments are drawn at t = T/4. The spanwise vorticities
ωz on the right wing and the streamwise vorticities ωx in the downstream are also drawn on the corresponding cross-section
at t = T/4. (a) Forces and Q-criterion at t = T/4, (b) streamlines and vorticities at t = T/4, (c) forces and Q-criterion at
t = 5T/8, and (d) forces and Q-criterion at t = 7T/8. The magnitudes and the direction of the forces are, respectively,
expressed by density (density of blue) and by the displacement from the wing. The forces and the streamlines are shown on
the left side while the isosurface of Q and the vorticities are shown on the right side.

emergence of the two kinds of the LEVds are reported in hawkmoth’s hovering flight.41 The flow
structures due to the LEVd near the wing root on the wing in the middle of the downstrokes are
much similar to the flow behind the high angle-of-attack inclined plates as shown in Fig. 13(a).
Since the larger value of the Q-criterion than that in Fig. 11 is adopted to identify the vortical
structures, the secondary flow vortices below the LEVd near the wing root, which are seen as the
SFVs in the downstream in Fig. 11, can be seen clearly. The vortical directions of the SFVs are
not uniformly aligned, but the mean vortical direction of the SFVs on the wings around t = T/4
are found in the near-field movie to be −z, the same direction as that of the LEVds. Two relatively
strong vortices among other SFVs (SSFV) are found on the wing during the downstroke. The
SSFVs have the spanwise vorticities. The spanwise flow of the LEVd near the wing root goes to the
wing tip, and the LEVd near the wing tip causes the vortex breakdown.42 It is of interest that
the boundary of the two kinds of the LEVds corresponds to the widening region of the wings on the
trailing edge. The shape of the wings might be advantageous for the WTVds not to interfere with
the wings.

The WTVds twist inside the break-down region of the LEVds near the wing tips
and the thin swirling vortices make a multiplex helical structure. Each swirling vortex starting
from the right wing tip has ωx > 0 (see the vorticities on the downstream cross-section in Fig. 13(b)).
The direction of the multiplex helical structure starting the right wing tip is left-handed since newly
generated swirling flow in the upstream is stronger than that in the downstream. The WTVds are
identified also by the outer streamlines starting from the segment in the middle of the wing shown
in Fig. 13(b).
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The distribution of the forces is closely correlated with the distribution of Q. The pressure
inside the vortical structures identified by Q is smaller than that outside the structures. The positive
Q appears on the dorsal side because the pressure of the dorsal side of the wings is smaller than
that of the ventral side during the downstrokes. By the same token, all the forces except those on
the trailing edges point upward, and act as lift on the wings. The large local lifts are found below
the separated LEVd on the anterior half corresponding to a forewing, while the local lifts on the
posterior half corresponding to a hindwing are small. The enhancement of the lift due to the LEVds
were observed similarly in hawkmoth’s hovering flight.15 In particular, the larger local lifts are found
below the SSFVs. Because the pressure inside the tubular SSFVs is smaller, the pressure difference
between the dorsal side and the ventral side is larger near the SSFVs than in other regions. The
pitching moment strongly depends on the position of the vortical structures on the wings such as
the SSFVs, and therefore the vortical structures largely affect the thoracic pitching angle of the
butterfly.

At the early phase of the upstroke t = 5T/8 shown in Fig. 13(c), the isosurfaces of positive Q
appear near the wing roots on the dorsal side and near the wing tips on the ventral side. Corresponding
to the distribution of Q on the wings, the forces on the wings near the wing root point to the dorsal
side and those near the wing tips to the ventral side. The leading-edge vortices during upstrokes
(LEVu) develop near the wing tips on the ventral side (which is not seen clearly in Fig. 13(c)). The
semicircular TEV followed by the SFVs can be recognized in Fig. 13(c). The TEV barely survives
in the downstream in Fig. 11, because the direction of the vorticities of the TEV is circumferentially
aligned unlike the SFVs although the swirling flow due to the TEV is not so strong as the WTVds.
The LEVds on the dorsal side become weak around the transitions from downstrokes to upstrokes. In
addition, the thoracic pitching angle and the feathering angle is large in the early phase of upstrokes.
Then, the SFVs are released to the downstream. The forces near the trailing edges largely fluctuate
because some of the SFVs pass over the trailing edges.

At the late phase of the upstroke t = 7T/8 shown in Fig. 13(d), the isosurfaces of the positive
Q appear on the ventral side and most forces on the wings point to the ventral side. Because the
thoracic pitching angle is large and the feathering angle is positive, the forces during the upstroke
act on the butterfly as the thrust. In particular, large forces are found near the wing tip. The LEVu
on the ventral side, which deviates from the leading edge near the wing tip because of the delayed
separation, generates the large forces. The WTVu is weakly connected to the LEVu near the wing tip
on the ventral side. The direction of the vorticity of the WTVu starting from the right wing tip is close
to +y and that starting from the left wing tip is to −y. The flow between the WTVus are accelerated
in the positive x direction. Then, the WTVus make thrust. It is of interest that the turbulent small
structures, the SFVs, are cleared on the wings at t = 7T/8. The mechanism of the clearance of the
turbulent structures should be necessary for the steady periodic flapping flights.

The behaviors of the LEVds in this simulation are much similar to those in hawkmoth’s hovering
flight41 in spite of different species and of different flapping patterns. On the other hand, the vortical
structures on the wings are much more complex although the Reynolds numbers are in the same range.
The elastic deformation of the wings more or less suppresses the turbulent structures, and slightly
affects the resulting forces.43, 44 However, even with the deformable wings, the three-dimensional
flapping flights for Re ≈ 4000 would generate the complex vortical structures. The fine numerical
grids are required for the turbulent structures to be resolved. These complex vortical structures on
the wings and their clearance are important features of butterflies’ forward flights.

To compare the flapping flights with gliding flights, we performed a simulation of gliding flight
by fixing the attitude and the joint angles of the butterfly as those at t = T/4 in the prescribed
simulation. In the steady state, the lift, the drag and the pitching moment are approximately 1
× 10−4 N, 4 × 10−4 N, and 2 × 10−6 Nm, respectively. The mean wing-tip velocity in the flapping
flight is approximately 1.3 m/s, and the velocity of other parts of the wing is smaller than it. Although
the relative wing velocity in the flapping flight is smaller than the inflow velocity, the mean lift in
the flapping flight 3 × 10−3 N in Fig. 7 is roughly 30 times larger than that in the gliding flight.
Similarly, the flow is laminar, and no coherent vortical structures are found in the gliding simulation
unlike the gliding flight of a simplified model in Ref. 45. Therefore, the flapping motions play a
crucial role in forward flights of butterflies.
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FIG. 14. Lift, drag, and pitching moment due to aerodynamic force during the first free-flight flapping period.

IV. DISCUSSION: FREE-FLIGHT SIMULATION

After the steady periodic prescribed flight is achieved, the extra control forces applied to the
thorax in the prescribed flight are removed at t = 0, i.e., τ cont1 = 0 for t ≥ 0, and then the free-
flight simulation is performed. Here, the time when the extra control forces are removed is chosen
the time at the transition from an upstroke to a downstroke, although the free-flight trajectories
should depend on the phases of the flapping motions when the extra control forces start to be
removed.

While the lift, the drag and the pitching moment due to the aerodynamic forces during the first
flapping period in the free-flight simulation are shown in Fig. 14, the thoracic coordinates are shown
in Fig. 15. The aerodynamic pitching moment during the downstroke is negative while the abdominal
motion and the gravity acting on the abdomen make a positive longitudinal torque on the thorax.
The longitudinal torque due to the gravity acting on the abdomen is roughly 3 × 10−5 Nm. Because
the absolute value of the negative pitching moment during the downstroke is smaller on average
than the longitudinal torque due to the gravity acting on the abdomen, the thoracic pitching angle
during the downstroke in Fig. 15 decreases little, and the minimal thoracic pitching angle is larger than
that of the observed trajectory shown in Fig. 3. The thoracic pitching angle at the end of the first flap
t = T is much larger than the initial pitching angle. Namely, the butterfly is going to be turned upward
and to fall. The lift in the free-flight simulation is larger than that in the prescribed simulation and
is large enough to sustain the altitude against the gravity. Then, the butterfly maintains its altitude

-2

-1

0

1

2

3

4

 0  0.028  0.056  0.084  0.112
 0.2

 0.4

 0.6

 0.8

 1

P
os

iti
on

 o
f T

ho
ra

ci
c 

C
O

M
 [×

10
-2

m
]

T
ho

ra
ci

c 
P

itc
hi

ng
 A

ng
le

 [r
ad

]

Time [s]

xt

yt

θt

FIG. 15. Thoracic coordinates during the first free-flight flapping period.
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FIG. 16. Lift, drag and pitching moment due to aerodynamic force during the three free-flight flapping periods with the
smaller abdominal mass 3ma/4.

after one flapping period. On the other hand, the drag during the downstroke is large and the thrust
during the upstroke is small. Therefore, the butterfly is swept downstream in the frame fixed to the
wind tunnel. Note that the butterfly is still going forward at approximately 1.1 m/s at t = T in the
frame of reference traveling with the main stream because the horizontal velocity in the laboratory
frame at t = T is about 0.5 m/s.

The lengths and the total mass of the butterfly were measured at the end of the free-flight
experiment. However, the masses of each parts are statistically estimated. During the experiment,
the values of the abdominal mass largely vary half to twice as large as the mean abdominal mass.
In consideration of the variation of the abdominal mass, another free-flight simulation is performed,
where a reduced abdominal mass 3ma/4 is adopted. The inertial tensor of the abdomen is also
multiplied by 3/4. In the free-flight simulation with the smaller abdominal mass, the total mass is
also reduced to 2.83 × 10−4 kg because the masses of the thorax and the wings the same as those in
the original free-flight simulation are employed.

The lift, the drag and the pitching moment due to the aerodynamic forces during the three free-
flight flapping period in the free-flight simulation with the smaller abdominal mass are shown in
Fig. 16, and the coordinates of the thorax in the simulation are also shown in Fig. 17. The functional
forms of the lift, drag and pitching moment in this simulation are qualitatively similar to those in the
original free-flight simulation, but quantitatively different from them. The lift in this simulation is
smaller than that in the original free-flight simulation. It results in small descent of the thoracic COM
in spite of the total mass smaller than that in the original free-flight simulation. The smaller drag
in this simulation also results in less recession of the thoracic COM. The pitching moment during
the downstroke t ≈ T/4 in this simulation is larger (negatively smaller) than that in the original
free-flight simulation. The longitudinal torque due to the gravity acting on the abdomen and the
reaction torque due to the motions of the abdomen are smaller than that in the original free-flight
simulation. These variations result in the better periodicity of the thoracic pitching angle at the end
of the first flap. However, the deviation of the pitching angle from the observed periodic trajectory
gradually increases. It is of interest that the pitching angle at the end of the first flap is smaller than
the initial pitching angle, but the butterfly is finally turned upward. It suggests that the deviation
of the pitching angle from the observed trajectory does not increase monotonically. It must be noted
that the trajectory of the pitching angle depends also on the phase of the flapping motion at which
the extra control forces are removed.

Moreover, the trajectories of the pitching moment are sensitive to the mean approximate lead-
lag angle. The observed mean approximate lead-lag angle is η ≈ −9.1 × 10−2 rad. When the mean
approximate lead-lag angle 2η is adopted, the thoracic pitching angle is approximately 0.1 rad at the
end of the first flap and the butterfly eventually falls forward. On the other hand, when the mean
approximate lead-lag angle 7η/4, the butterfly makes a trajectory of the thoracic pitching angle
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FIG. 17. Thoracic coordinates during the three free-flight flapping periods with the smaller abdominal mass 3ma/4.

during three flapping periods similar to that in the free-flight simulation with the smaller abdominal
mass. The slight difference of the flapping parameters causes the fatal difference in the thoracic
pitching angle. It suggests the possibility of the control of the pitching angle by the flapping motion.

These behaviors of the pitching angle indicate that the trajectory in the phase space of the
forward flight of the butterfly is an unstable periodic orbit. The forward flight of the butterfly is
longitudinally unstable unlike most human-made airplanes designed to be longitudinally stable.
The control of the thoracic pitching angle is essential to stabilize the flights. The control should be
made dynamically by the flapping motion, and it would be mainly by the abdominal motion. The
abdomen is presumed to be used as a rudder during the flights of tobacco hornworm driven by the
ventrolongitudinal muscles of the metathorax, the dorsolongitudinal muscles of the first abdominal
segment, and the dorsoventral muscles of the first abdominal segment.46 The chestnut tiger butterflies
have similar thick muscle complex. Thus, it is deduced that the chestnut tiger butterflies explicitly
control the abdominal joint. In contrast, the instability triggers complex trajectories characteristic to
the flights of butterflies and may be the source of the strategy to avoid predation.

V. CONCLUSION

In this study, the flapping flights of the butterflies in the flow inflowing with constant velocities
were numerically simulated. The butterfly is modeled as four rigid bodies, which are a spheroidal
thorax, a spheroidal abdomen, and left and right thin flat wings. The wings as well as the abdomen
are connected to the thorax with joints with three degrees of freedom. The interactions between
the flow field and the butterfly are numerically constructed by the immersed boundary method. The
three kinds of the numerical simulations, the tethered simulation, the prescribed simulation and the
free-flight simulations, are made.

In the tethered simulation, the thorax of the butterfly is fixed, and the joint angles are adopted
from the corresponding experiment. The forces to fix the thorax are compared with the forces
measured with a force–torque sensor in the tethered experiment. The upward and streamwise forces
in the simulation show a good agreement with the experimental observation. The reaction torques
due to the flapping motion account for a large fraction of the longitudinal torque about the center
of mass of the thorax. Both the simulation and the experiment require improvement of the accuracy
with respect to the longitudinal torques. The aerodynamic lift is generated during downstrokes, and
the aerodynamic thrust during upstrokes. The aerodynamic pitching moment about the center of
mass of the thorax is negative during downstrokes, and is positive during upstrokes. The passive
tracers in the wake in the simulation show zig-zag patterns similar to those in the experiment.

In the prescribed simulation, the thoracic coordinates as well as the joint angles are adopted
from the free-flight experiment. The extra forces applied to the thorax, which the living butterflies
cannot make directly, are required to realize the observed trajectories of the butterfly. Although the
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extra forces are as large as the aerodynamic forces, the powers due to the extra forces are much
smaller than the powers due to the controllable joints. It suggests that the control to make steady
periodic flights by dynamically changing the flapping motion is possible from the biological point
of view. The characteristic vortical structures are found in the wakes and on the wings. The wing-tip
vortices formed during downstrokes, which make multiplex helical structures, provide the lift and
those during upstrokes provide the thrust. The trailing-edge vortices shed at the transitions from
downstrokes to upstrokes also provide the lift. The leading-edge vortices separated on the leading
edges during downstrokes are classified into two classes: one appears near the wing root and the other
near the wing tip. The complex vortical structures similar to the flow behind the high angle-of-attack
inclined plates are found on the wings below the leading-edge vortices near the wing root during the
downstrokes. The secondary flow vortices below the leading-edge vortices are released to the wake
between the downstrokes and the upstrokes, and the mechanism of the release is necessary for the
steady periodic flapping flights.

In the free-flight simulation, where the joint motions are adopted from the free-flight experiment,
the flapping motions can produce sufficient lift against the gravity. However, the butterfly in the
simulation was turned upward and could not maintain the attitude in a proper range because the
aerodynamic pitching moment was negatively smaller than the longitudinal torque due to the gravity
acting on the abdomen. Then, the free-flight simulation failed to realize a steady periodic flight. On
the other hand, in the free-flight simulations with smaller abdominal mass and with smaller mean
approximate lead-lag angle, the flights were more stable than in the original free-flight simulation.

The pitching angle of the thorax is the key to the periodic flights. The periodic flapping flights
of the butterfly are longitudinally unstable and the control of the pitching angle is essential. In this
study, the flight stability was recovered by changing the abdominal mass or the mean approximate
lead-lag angle. Obviously, however, the living butterflies cannot change the abdominal mass easily.
In addition, the static change of the flapping parameters cannot realize a perfect periodic flight
although it makes the periodicity better. In fact, the living butterflies should dynamically control
their attitude by sensing their instantaneous attitude. Moreover, the living butterflies redundantly
have a large number of degrees of freedom in the flapping motions to explicitly stabilize the flights.
The explicit control is considered to be made mainly with the abdominal motions. The flexibility
such as the elastic deformation of the wings are also anticipated to stabilize the flapping flights and
to function as an implicit control. It is our future work to identify the mechanism of the explicit and
implicit controls.
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APPENDIX: VERIFICATION OF NUMERICAL PARAMETERS

The computational parameters in this paper are verified in this Appendix. The flapping param-
eters which are the same in the tethered simulation in Sec. III A are adopted. The computational
domain is a cube L on a side in all the numerical tests in this Appendix. The reference parameters
denoted by Test 1 are the same parameters as the tethered simulation except for the computational
domain length L = 0.25 m, the numbers of the grid points Nx = 2048, and Ny = Nz = 512. The
parameters denoted by Test 2 are the same as in Test 1 except ν = 4νair. Test 3 is made in a larger
computational cube whose side is L = 0.375 m. Note that the numbers of the grid points are changed
to Nx = 3072, and Ny = Nz = 768 in Test 3 so that the grid spacings are the same as those in Test
1. The time increment 
t = T/5000 = 2.4 × 10−5 s in Test 4 is smaller than 
t = T/4000 = 3
× 10−5 s in Test 1. The upward and streamwise forces and the longitudinal torque in the four tests
are shown in Fig. 18.

The values of the kinematic viscosity twice or thrice larger than that of the actual kinematic
viscosity of the air are adopted in this paper. It is validated by comparison between Test 1 and Test
2. The difference of the forces and torque between them is little, although the fine vortical structures
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FIG. 18. Upward and streamwise forces and longitudinal torque in four tests for computational validation.

are less visible in Test 2. The dependence of the forces and the torque on the viscosity is practically
negligible.

The streamwise length of the computational domain and the periodic boundary conditions of
the lateral y and z directions are validated by comparison between Test 1 and Test 3. The small
difference appears in the middle of the downstroke around t = T/4. The maximal upward force in
Test 3 is 4 × 10−4 N smaller than that in Test 1. The influence of time increment is also compared
between Test 1 and Test 4. The maximal upward force in Test 4 is 8 × 10−4 N larger than that in Test
1. On the whole, the influences of the computational domain and of the time increment are small
enough, although the differences are slightly seen in the middle of the downstroke.
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