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1 Introduction

Chlorella is an important species of microorganism, which includes about 10 species (see,
for example, [1] $)$ . A single Chlorella cell is of sphere with the diameter from $2\mu m$ to
$12\mu m$ . Chlorella has the following characteristics. (a) It grows quickly and can efficiently
photosynthesize. (b) It includes rich protein, highly unsaturated fatty acids, carotenoid,
lutein, astaxanthin and a variety of vitamins (see, for example, [1], [24] $-[26]$ and [28]).
In particular, lutein in Chlorella has the functions of restraining the decreasing of sight
and the blindness caused by age and of inhibiting on the growth of tumor etc. (see, for
example, [7], [8], [9], [11] and [14] $)$ . In addition, Chlorella also contains Chlorella growth
factor which has the effect of increasing immune response of $T$ cells and $B$ cells. Chlorella
also has the effect of decomposing and eliminating harmful substances in environment
(see, for example, [6] and [21]). Furthermore, Chlorella has the effect of absorbing the
heavy metal copper etc.. Hence, in environmental science field, Chlorella is usually used
to remove organic pollutants and heavy metals (see, for example, [22] and [23]).

1.1 Culture of Chlorella

The culture of Chlorella is divided into autotrophic culture and heterotrophic culture.
Heterotrophic culture is divided into batch culture, feed-batch culture and continuous
culture. Batch culture is extensively used in applications. In batch culture, microorgan-
isms are put into the culture vessel which contains certain nutrients, under appropriate
temperature, salinity and $pH$ . Then, after a period of time of culture, the microorganisms
in the culture vessel are harvested one-time. Batch culture is simple, but it is usually
difficult to achieve higher biomass of microorganisms. Furthermore, the increasing of the
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initial concentration of nutrients may result in the inhibition on the growth of microor-

ganisms. In feed-batch culture, nutrients are added into the culture vessel for every fixed

time. Hence, feed-batch culture can reduce the inhibition on the growth of microorgan-

isms and achieve higher biomass of microorganisms. Continuous culture is divided into

semi-continuous culture and continuous culture. Semi-continuous culture is that nutrients

are added into the culture vessel and, at the same time, microorganism is harvested for
every fixed time. In continuous culture, nutrients are put into the culture vessel contin-

uously and, at the same time, microorganisms flow out continuously. Hence, a balance

between the inflow rate and the outflow rate can be maintained. Furthermore, continuous

culture can also decrease the inhibition on the growth of microorganism caused by higher

concentration of nutrients and accumulation of harmful substances in the culture vessel.

1.2 Heterotrophic culture of Chlorella sp. USTBOI

It has been found that some species of Chlorella can not only be cultured in suitable

organisms even in the absence of light (see, for example, [4] and [19]), but also contain
richer lutein (see, for example, [4], [12] and [17]). Usually, carbon source and nitrogen

source are main nutrients in culture of Chlorella. In [15], [16] and [20], the impact of

concentration of glucose on the growth of Chlorella has been studied. However, till now,

there are few species of Chlorella which can grow quickly (see, for example, [10], [13], [24]

and [26] $)$ .
Recently, a species of Chlorella, named Chlorella sp. USTBOI, which can be cultured

quickly by the method of heterotrophic culture has been successfully sieved out from

Qinghe river in Beijing (see, for example, [24]). Then, the impact of carbon-to-nitrogen

mass ratio on the growth of Chlorella sp. USTBOI has also been investigated in details in

[20], [24] and [25]. In the experiments, nitrogen sources are urea, ammonium chloride and

potassium nitrate, and the culture time is limited to 36 hours. The experimental data

show that, while carbon-to-nitrogen mass ratio is 20:1 and nitrogen source is ammonium
chloride, the biomass of Chlorella sp. USTBOI in the culture vessel is higher (see Fig.1),

but the protein contained is lower. If carbon-to-nitrogen mass ratio is still20:1, but nitro-
gen source is replaced by potassium nitrate, then, the biomass of Chlorella sp. USTBOI
in the culture vessel is not higher, but the protein contained is higher. Furthermore,

if carbon-to-nitrogen mass ratio is 10:1 and nitrogen source is ammonium chloride, the

biomass of Chlorella USTBOI in the culture vessel is higher, and the protein contained is

also higher.
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The purpose of the paper is to model the growth of Chlorella USTBOI by constructing
a dynamic model described by differential equations and to predict the growth status of
Chlorella sp. USTBOI for longer culture time. The organization of the paper is as follows.

In Section 2, firstly, standard Chemostat models are introduced. Secondly, a dynamic
model governed by differential equations is proposed based on standard Chemostat models
and the experimental data obtained for heterotrophic culture of Chlorella sp. USTBOI.
Thirdly, for the model, global existence and nonnegativity of the solutions with appro-
priate initial conditions and classification of the equilibria are discussed. In Section 3,
local and global asymptotic stability of two classes of the equilibria (i.e., Chlorella-free
equilibrium and the equilibria for which Chlorella, carbon sources and nitrogen sources
are coexistent) of the model in Section 2 are discussed by stability theory of differential
equations. In Section 4, the parameters in the model in Section 2 are determined ac-
cording to the experimental data and then numerical simulations are carried out. The
numerical simulations suggest the following interesting facts. (i) The trajectories of the
model in Section 2 fit the experimental data very well. (ii) Chlorella sp. UTSBOI is in the
exponential growth phase from 36 hours to 40 hours. (iii) If the culture time is extended
to 60 hours, the biomass of Chlorella sp. USTBOI in the culture vessel can reach at least
95% of the theoretical biomass.

2 Dynamic model

2.1 Chemostat models

Dynamical models which describe continuous culture of microorganisms are also called
Chemostat models (see, for example, [18]). Chemostat models can be used to the re-
searches on the growth of algae and plankton in lakes and oceans, as well as the growth of
endangered species. The standard Chemostat model with a single limiting resource and
a single microorganism is usually described by the following differential equations,

$\{\begin{array}{l}\dot{S}(t)=D(S_{0}-S)-\delta^{-1}\mu(S)X,\dot{X}(t)=(\mu(S)-D)X,\end{array}$ (2.1)

where $S(t)$ and $X(t)$ are the concentrations of the limiting resource (substrate) and mi-
croorganism at time $t$ , respectively. $S_{0}>0$ denotes the concentration of input limiting re-
source and is assumed to be constant. The constant $D>0$ is the dilution rate. The death
rate of microorganism is assumed to be insignificant compared to the dilution rate and is
ignored. The function $\mu(S)$ denotes how $X$ consumes $S$ and is called the uptake function.
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In most cases, $\mu(S)$ is chosen as Monod (1950) function, that is $\mu(S)=\mu_{m}S/(K_{m}+S)$ ,
where $\mu_{m}$ is the maximum growth rate of microorganism, $K_{m}>0$ is the Michaelis-Menten
(or half-saturation) constant.

2.2 Dynamical model in the heterotrophic culture of Chlorella

Chlorella sp. USTBOI (Chlorella in short hereafter) has a strong ability in the utilization

of organic compounds and includes rich protein (see, for example, [24]). In this subsec-
tion, based on the basic Chemostat model (2.1) and the experimental data in [24] in the

heterotrophic culture of Chlorella, a dynamical model is proposed.
Let us first look back the experimental procedures in [24]. (i) First, an appropriate

amount of Chlorella is added into the culture vessel which has definite volume and is fed

with an appropriate amount of carbon source and nitrogen source. (ii) Then, after the

beginning of the culture, an appropriate amount of carbon source and nitrogen source are
added into the culture vessel in batches (every 6 hours), and the quantity of the carbon

source and nitrogen source added are dependent on the consumption of the carbon source
and nitrogen source and the biomass of Chlorella in the culture vessel. Furthermore, the

quantity of the carbon source and nitrogen source added every 6 hours is not less than

the quantity added at the beginning of the experiment, and proportional to the biomass
of Chlorella in culture vessel (see Fig 1). (iii) The culture time is limited 36 hours and
the outflow of carbon source, nitrogen source and Chlorella in the culture vessel are not

considered. (iv) The experimental data show that the mortality of Chlorella in the culture
vessel increases as the biomass of Chlorella increases (i.e., product inhibition). Hence, the

growth of Chlorella in the culture vessel is density-dependent.
Let $X(t),$ $C(t)$ and $N(t)$ denote the mass of Chlorella, carbon source and nitrogen

source, respectively, in the culture vessel at time $t$ . We would point out here that, for

simplicity, it is assumed that input of carbon source and nitrogen source is continuous.

Hence, the dynamic model describing the growth of Chlorella in the heterotrophic culture
can be expressed as following,

$\{\begin{array}{l}\dot{X}=\theta_{1}(r\mu_{1}(C)\mu_{2}(N)-d_{1}-fX)X,\dot{C}=\theta_{2}(\alpha X+a-d_{2}C-\frac{X}{\delta_{1}}r_{1}\mu_{1}(C)\mu_{2}(N)),\dot{N}=\theta_{3}(\beta X+b-d_{3}N-\frac{X}{\delta_{2}}r_{2}\mu_{1}(C)\mu_{2}(N)),\end{array}$ (2.2)

where the constant $d_{1}>0$ is the mortality rate of Chlorella. The constants $d_{2}>0$ and
$d_{3}>0$ are the attrition rates of carbon source and nitrogen source, respectively. The term
$fX^{2}$ in which $f>0$ is constant indicates that the growth of Chlorella in the culture vessel
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Figure 1: Total inflows and residuum of ammonium chloride and potassium nitrate when carbon-to-nitrogen mass ratio
is 20:1

is density-dependent. The terms $\alpha X$ and $\beta X$ in which $\alpha>0$ and $\beta>0$ are constants
indicate that the quantity of carbon source and nitrogen source added every 6 hours are
proportional to the biomass of Chlorella in culture vessel, respectively. The constants
$a>0$ and $b>0$ represent the constant input of carbon source and nitrogen source,
respectively. Since carbon source and nitrogen source are perfectly complementary in the
culture of Chlorella, the term $r\mu_{1}(C)\mu_{2}(N)$ represents the growth rate of Chlorella, and
the terms $r_{1}\mu_{1}(C)\mu_{2}(N)X$ and $r_{2}\mu_{1}(C)\mu_{2}(N)X$ represent the quantity of decreasing of
carbon source and nitrogen source, respectively, where $r>0,$ $r_{1}>0$ and $r_{2}>0$ are
constants, and the functions $\mu_{1}(C)$ and $\mu_{2}(N)$ are nonnegative and continuous for $C\geq 0$

and $N\geq 0$ . $\delta_{i}(i=1,2)$ are yield coefficients, which are defined as

$\delta_{i}=\frac{massoforganismformed}{massofsubstrateconsumed}(i=1,2)$ .

The constants $\theta_{1}>0,$ $\theta_{2}>0$ and $\theta_{3}>0$ are relative growth rates of Chlorella, carbon
source and nitrogen source, respectively.

For simplicity of theoretical analysis, in this paper, the functions $\mu_{1}(C)$ and $\mu_{2}(N)$ are
chosen as Monod type functions, i.e.,

$\mu_{1}(C)=\frac{C}{k_{1}+C}$ , $\mu_{2}(N)=\frac{N}{k_{2}+N}$ ,

where $k_{1}>0$ and $k_{2}>$ are the half-saturation constants with respect to carbon source
and nitrogen source, respectively. The yield coefficients $\delta_{1}$ and $\delta_{2}$ are assumed to be
constants. Hence, without loss of generality, $r_{1}/\delta_{1}$ and $r_{2}/\delta_{2}$ are still denoted by $r_{1}$ and
$r_{2}$ , respectively. Therefore, the dynamic model (2.2) can be rewritten in the following
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simpler form,

$\{\begin{array}{l}\dot{X}=\theta_{1}(\frac{rCN}{(k_{1}+C)(k_{2}+N)}-d_{1}-fX)X,\dot{N}=\theta_{3}(\beta X+b-d_{3}N-\frac{(k_{1}+C)(k_{2}+N)r_{2}1CNXrCNX}{(k_{1}+C)(k_{2}+N)})\dot{C}=\theta_{2}(\alpha X+a-d_{2}C-\frac),.\end{array}$ (2.3)

2.3 Existence of equilibria

In this subsection, let us consider nonnegativity of the solutions and existence of the

equilibria of (2.3).

First, according to biological meanings, the initial condition of (2.3) is given as

$X(0)=X_{0}\geq 0,$ $C(O)=C_{0}\geq 0,$ $N(O)=N_{0}\geq 0$ , (2.4)

where the constants $X_{0},$ $C_{0}$ and $N_{0}$ represent the initial mass of Chlorella, carbon source
and nitrogen source, respectively. From standard theory on existence of solutions of
ordinary differential equations (see, for example, [5]), it can be easily shown that the

solution $(X(t), C(t), N(t))$ of (2.3) with the initial condition (2.4) is existent, unique and

nonnegative for all $t\geq 0$ .
Let $(X, C, N)$ be any equilibrium of (2.3). Then, $(X, C, N)$ satisfies the following

nonlinear algebraic equations,

$\{\begin{array}{l}\frac{rCNX}{(k_{1}+C)(k_{2}+N)}-d_{1}X-fX^{2}=0,\beta x\alpha XI_{b-d_{3}N-\frac}a-d_{2}C-\frac{rCNX}{(k_{1}+c,(k_{1}+C)(k_{2}+N)r_{2}d!_{V^{2+N)}}^{k_{X}}}==00.’\end{array}$ (2.5)

There are two cases to be discussed.
(i) (2.3) always has the boundary equilibrium $E_{0}=(X, C, N)=(0, a/d_{2}, b/d_{3})$ . The

existence of $E_{0}$ indicates that, if there is no Chlorella to be added into the culture vessel

at the beginning of the culture, the concentrations of carbon source and nitrogen source
in the culture vessel always maintain the constants values $a/d_{2}$ and $b/d_{3}$ , respectively.

The equilibrium $E_{0}$ is also called Chlorella-free equilibrium.
(ii) Let $(X, C, N)$ be any equilibrium with $X>0,$ $C>0$ and $N>0$ . From (2.5), we

have that

$\{\begin{array}{l}(d_{1}+fX)(k_{1}+C)(k_{2}+N)=rCN,C=\frac{1}{d_{2}r}\{ar-[(r_{1}d_{1}-\alpha r)X+r_{1}fX^{2}]\},N=\frac{1}{d_{3}r}\{br-[(r_{2}d_{1}-\beta r)X+r_{2}fX^{2}]\}.\end{array}$ (2.6)

Clearly, $X$ should satisfy the conditions

$ar-[(r_{1}d_{1}-\alpha r)X+r_{1}fX^{2}]>0$ (2.7)
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and
$br-[(r_{2}d_{1}-\beta r)X+r_{2}fX^{2}]>0$ . (2.8)

Substituting the second and the third equations of (2.6) into the first equation of (2.6)
gives a fifth order algebraic equation. Hence, under suitable conditions, there may be at
most five different positive roots for the fifth order algebraic equation. Let $X=X^{*}$ be
any such positive root which also satisfies the conditions (2.7) and (2.8). Then, from (2.6),
$C=C^{*}>0$ and $N=N^{*}>0$ can be obtained. Therefore, the dynamical model (2.3)
at most has five equilibria of the type of $E^{*}=(X, C, N)=(X^{*}, C^{*}, N^{*})$ with $X^{*}>0$ ,
$C^{*}>0$ and $N^{*}>0$ . The equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})$ is also called positive equilibrium
which indicates that Chlorella, carbon source and nitrogen source are coexistent for any
time $t\geq 0$ .

Fkom the first equation in (2.6), we obtain the function

$F(X)$ $=$ $(d_{1}+fX)(k_{1}+C)(k_{2}+N)-rCN$

$=$ $fX(k_{1}+C)(k_{2}+N)+d_{1}(k_{1}k_{2}+k_{1}N+k_{2}C)+(d_{1}-r)CN$,

which implies that $d_{1}<r$ is a necessary condition for a positive equilibrium to exist.
In fact, $E_{0}$ is globally asymptotically stable when $d_{1}\geq r$ (see Theorem 3.3 in Section 3
below).

General speaking, it is not easy to give a complete theoretical analysis for the existence
of all the positive equilibria. But, according to the experiment data provided in [24],
the approximate estimations of all the positive equilibria can be obtained by Matlab
programming.

3 Stability analysis of equilibria

Stability analysis of the equilibria of the dynamic model (2.3) is very important for un-
derstanding the growth status of Chlorella. In this section, some sufficient conditions are
given to ensure global asymptotic stability of boundary equilibrium $E_{0}=(0, a/d_{2}, b/d_{3})$

and local asymptotic stability of the positive equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})$ by standard
stability theory of ordinary differential equations (see, for example, [5], [18]).

First of all, for local asymptotic stability of $E_{0}=(0, a/d_{2}, b/d_{3})$ , we have the following

Theorem 3.1. (i) If
$d_{1}> \frac{rab}{(k_{1}d_{2}+a)(k_{2}d_{3}+b)}=\triangle\theta$ , (3.1)
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then the boundary equilibrium $E_{0}=(0, a/d_{2}, b/d_{3})$ is locally asymptotically stable.
(ii) If $d_{1}=\theta$ , then the boundary equilibrium $E_{0}=(0, a/d_{2}, b/d_{3})$ is linear stable.
(iii) If $d_{1}<\theta$ , then the boundary equilibrium $E_{0}=(0, a/d_{2}, b/d_{3})$ is unstable.

Remark 1. In view of the biological meanings of the parameters in (2.3) and the condition
(3.1), Theorem 3.1 indicates that the biomass of Chlorella may tend to zero and the mass
of carbon source and nitrogen source may tend to the constant values $a/d_{2}$ and $b/d_{3}$ ,

respectively, as time $t$ increases, if one of the following two cases occurs: (a) decreasing

the value of the constant input rate $a$ or $b;(b)$ increasing the value of the attrition rate $d_{2}$

or $d_{3}$ or the mortality rate $d_{1}$ . These cases are reasonable, since they imply the insufficient
sources for Chlorella to grow.

For local asymptotic stability of the positive equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})$ of the
dynamic model (2.3), we have the following

Theorem 3.2. If the positive equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})$ exists, and the conditions

$b\eta\cdot+fr_{2}X^{*^{2}}-rd_{3}N^{*}>0$ , $ar+fr_{1}X^{*^{2}}-rd_{2}C^{*}>0$ (3.2)

hold, then $E^{*}=(X^{*}, C^{*}, N^{*})$ is locally asymptotically stable.

Remark 2. Note that sufficient conditions for (3.2) to hold are $a\geq d_{2}C^{*}$ and $b\geq$

$d_{3}N^{*}$ . Hence, for fixed constants $a>0$ and $b>0$ , if the attrition rates $d_{2}$ and $d_{3}$ of
carbon source and nitrogen source, respectively, are small enough and the growth rate $r$ of
Chlorella is large enough, the conditions (2.7), (2.8) and (3.2) can be satisfied. Therefore,

it follows ffom Theorem 3.2 that the positive equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})$ is locally
asymptotically stable. This implies that Chlorella, carbon source and nitrogen source
in the culture vessel are coexistent and their masses tend to constant values as time $t$

increases.

Remark 3. There may exist multiple positive equilibria for the dynamical model (2.3).

Since complexity of the expression of the positive equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})$ , detailed
theoretical and numerical analysis on multi stability are omitted. In Section 4 below,

according to the experimental data in [24], the parameters in the dynamical model (2.3)

are chosen, and then the value of the positive equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})$ is computed
numerically. Theorem 3.2 and numerical simulations show that the positive equilibrium
$E^{*}=(X^{*}, C^{*}, N^{*})$ is asymptotically stable and that the trajectories of the dynamical
model (2.3) fit the trends of the experimental data well.
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From the point of view in both mathematics and biology, theoretical analysis on global
asymptotic stability of the equilibria of the dynamical model (2.3) has more important
significance. Global asymptotical stability of the equilibria $E_{0}$ or $E^{*}$ implies that the
asymptotic properties of Chlorella, carbon source and nitrogen source in culture vessel
are not dependent on the initial values $X_{0},$ $C_{0}$ and $N_{0}$ of Chlorella, carbon source and
nitrogen source.

For global asymptotically stability of the boundary equilibrium $E_{0}$ , we have the fol-
lowing

Theorem 3.3. If $d_{1}\geq r$ , or $d_{1}<r$ and

$d_{1} \geq\frac{r[af+\alpha(r-d_{1})][bf+\beta(r-d_{1})]}{[f(k_{1}d_{2}+a)+\alpha(r-d_{1})][f(k_{2}d_{3}+b)+\beta(r-d_{1})]}=\triangle\overline{\theta}$ , (3.3)

then, the boundary equilibrium $E_{0}$ is globally asymptotically stable.

Remark 4. The condition $d_{1}\geq\overline{\theta}$ in Theorem 3.3 implies the condition $d_{1}>\theta$ in Theorem
3.1. Furthermore, numerical simulations strongly suggest that the boundary equilibrium
$E_{0}$ should also be globally asymptotically stable even if the condition $d_{1}\geq\theta$ holds.
Therefore, the condition (3.3) in Theorem 3.3 may be further improved.

As for global asymptotic stability of the positive equilibrium $E^{*}$ , detailed discussions
shall be given in other paper.

4 Numerical simulations and discussions

4.1 Numerical simulations

In this subsection, let us discuss how the trajectories of the dynamical model (2.3) fit the
experimental data in [24] based on Theorem 3.2 and numerical simulations. To observe
the growth status of Chlorella in the culture vessel, two sorts of nitrogen sources (i.e.,
ammonium chloride and potassium nitrate) are used. Carbon source and nitrogen source
are added into the culture vessel for every 6 hours with two kinds of carbon-to-nitrogen
mass ratios 20:1 and 10:1.

Case (I) Nitrogen source is ammonium chloride and carbon-to-nitrogen mass ratio is
20:1. By suitable computations, we have from the experimental data in [24] that the
parameters in (2.3) can be chosen as follows,

$r=0.837,$ $k_{1}=5.926,$ $k_{2}=2.377,$ $f=0.002,$ $\alpha=0.2703,$ $a=0.6545,$ $\beta=0.022$ ,
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$b=0.0476,$ $r_{1}=1.73,$ $r_{2}=0.14,$ $\theta_{1}=1,$ $\theta_{2}=1,$ $\theta_{3}=1,$ $d_{1}=d_{2}=d_{3}=0.01$ .

It is easy to check that (2.3) has the positive equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})\approx$ (62.5998,

8.2038, 0.9162), and that the condition (3.2) holds. Hence, we have from Theorem 3.2 that
the positive equilibrium $E^{*}$ is asymptotically stable. Fig.2 shows that the trajectory of
(2.3) obtained by the numerical simulation with the initial value $(X_{0}, C_{0}, N_{0})=(1.54,0,0)$

fits the experimental data in [24] well.

$T$

Figure 2: The experimental data and the trajectory of (2.3) when the nitrogen source is ammonium chloride and
$carbon-tc\succ nitrogen$ mass ratio is 20:1

Case (II) Nitrogen source is potassium nitrate and carbon-to-nitrogen mass ratio is
20:1. By the same computations as Case (I), the parameters in (2.3) can be chosen as
follows,

$r=0.21,$ $k_{1}=2.908,$ $k_{2}=0.287,$ $f=0.003,$ $\alpha=0.2943,$ $a=0.5665,$ $\beta=0.0427$ ,

$b=0.0824,$ $r_{1}=0.42,$ $r_{2}=0.06,$ $\theta_{1}=0.9,$ $\theta_{2}=1,$ $\theta_{3}=1,$ $d_{1}=d_{2}=d_{3}=0.01$ .

(2.3) has the positive equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})\approx(47.3691$ , 9.6855, 4.6436$)$ which is
asymptotically stable. Fig.3 shows that the numerical simulation trajectory of (2.3) with
the initial value $(X_{0}, C_{0}, N_{0})=(1.63,0,0)$ fits the experimental data in [24] well.

Case (III) Nitrogen source is ammonium chloride and carbon-to-nitrogen mass ratio

is 10:1. The parameters in (2.3) can be chosen as follows,

$r=0.408,$ $k_{1}=5.168,$ $k_{2}=0.496,$ $f=0.003,$ $\alpha=0.2501,$ $a=0.6324,$ $\beta=0.0409$ ,

$b=0.0891,$ $r_{1}=0.575,$ $r_{2}=0.093,$ $\theta_{1}=0.7,$ $\theta_{2}=1,$ $\theta_{3}=1,$ $d_{1}=d_{2}=d_{3}=0.01$ .

(2.3) has the positive equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})\approx(58.1376$, 6.2921, 2.3099$)$ which is
asymptotically stable. Fig.4 shows that the numerical simulation trajectory of (2.3) with

the initial value $(X_{0}, C_{0}, N_{0})=(1.57,0,0)$ fits the experimental data in [24] well.
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Figure 3: The experimental data and the trajectory of (2.3) when the nitrogen source is potassium nitrate and carbon-
to-nitrogen mass ratio is 20:1

$0$ 10 20 $30$ $W$ $50$ 60 70
$T$

Figure 4: The experimental data and the trajectory of (2.3) when the nitrogen source is ammonium chloride and
carbon-to-nitrogen mass ratio is 10:1

Case (IV) Nitrogen source is potassium nitrate and carbon-to-nitrogen mass ratio is
10:1. The parameters in (2.3) can be chosen as follows,

$r=0.279,$ $k_{1}=6.819,$ $k_{2}=0.145,$ $f=0.003,$ $\alpha=0.2925,$ $a=0.521,$ $\beta=0.0846$ ,

$b=0.1539,$ $r_{1}=0.45,$ $r_{2}=0.13,$ $\theta_{1}=0.8,$ $\theta_{2}=0.6,$ $\theta_{3}=0.8,$ $d_{1}=d_{2}=d_{3}=0.01$ .

(2.3) has the positive equilibrium $E^{*}=(X^{*}, C^{*}, N^{*})\approx$ (58.4398, 14.6835, 5.1652) which
is asymptotically stable. Fig.5 shows that the numerical simulation trajectory of (2.3)

with the initial value $(X_{0}, C_{0}, N_{0})=(1.8,0,0)$ fits the experimental data in [24] well.
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Figure 5: The experimental data and the trajectory of (2.3) when the nitrogen source is potassium nitrate and carbon-
to-nitrogen mass ratio is 10:1

4.2 Discussions

First, the numerical simulations show that the dynamic model (2.3) can describe the
growth status of Chlorella in the culture vessel in [24] very well. The numerical sim-
ulations further suggest that, in the culture of Chlorella, the growth of Chlorella is
in delay phase from $0$ hour to 12 hours, in the accelerated phase from 12 hours to
24 hours, in exponential growth phase from 24 hours to 40 hours, and in decelera-
tion phase from 40 hours to 60 hours. Furthermore, we have from Fig.$s2-5$ that, for
Cases (I), (II), (III) and (IV) in Subsection 4.1, the saturated biomass of Chlorella
are about $X^{*}\approx 62.5998,$ $X^{*}\approx 47.3691,$ $X^{*}\approx 58.1376$ and $X^{*}\approx 58.4398$ , respec-
tively. When the culture time is limited 36 hours (see, for example, [24]), the experi-

mental data shows that the biomass of Chlorella in the culture vessel are approximately
53.51% $($ 33.5/62.5998 $\approx 0.5351)$ , 56.15% $($ 26.6/47.3691 $\approx 0.5615)$ , 60.31%(35.06/58.1376
$\approx 0.6031)$ and 53.65 %(31.35/58.4399 $\approx$ 0.5365) of the saturated biomass, respectively. If
the culture time is extended to 60 hours, the numerical simulations in Subsection 4.1 shows
that the biomass of Chlorella are approximately 95.93% $(60.05/62.5998\approx 0.9593)$ , 97.68%
$(46.27/47.3691\approx 0.9768)$ , 97.56%(56.72/58.1376 $\approx$ 0.9756) and 97.62%(57.05/58.4399 $\approx$

0.9762) of the saturated biomass, respectively.

Remark 5. The purpose of the paper is to model the growth of Chlorella USTBOI which
have some special characteristics in applications and proposes an ordinary differential
equation model (2.3) according to the experimental procedures in [24]. The model (2.3)
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can be revised as the following more general form with time delays,

$\{\begin{array}{l}\dot{X}(t)=\theta_{1}(\frac{re^{-d_{1}\tau}C(t-\tau)N(t-\tau)X(t-\tau)}{(k_{1}+C(t-\tau))(k_{2}+N(t-\tau))}-d_{1}X(t)-fX^{2}(t)),\dot{N}(t)=\theta_{3}(\beta X(t)+b-d_{3}N(t)-\frac{(k_{1+C(t}r_{1}C(t)N(t)X(t)r{}_{2}C(t\{_{N(t)x(t)}^{)(k_{2}+N(t))}}{(k_{1}+C(t))(k_{2}+N(t))}+\rho_{2}X(t-\sigma))(t)=\theta_{2}(\alpha X(t)+a-d_{2}C(t)-\frac+\rho_{1}X(t-\sigma)),.\end{array}$ (4.1)

In (4.1), the constants $\rho_{1}\geq 0$ and $\rho_{2}\geq 0$ are the rate constants at which carbon source and
nitrogen source are recycled because of the death of Chlorella. The constant $\tau\geq 0$ denotes
the time delay involved in the conversion of nutrients to Chlorella. The constant $\sigma\geq 0$

is a fixed time during which carbon source and nitrogen source are released completely
from dead Chlorella. The factor $e^{-d_{1}\tau}$ represents the approximate proportion of Chlorella
that remain in the culture vessel during the conversion process.

Theoretical analysis on stability of the equilibria of (4.1) and its applications in the
research of the control strategies of algal toxins of blooms of the local lakes and rivers in
Beijing city shall be given in the other papers.
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