goooboooobgon
0 17900 20120 72-82

SOME RESULTS IN THE EXTENSION WITH A
COHERENT SUSLIN TREE

DILIP RAGHAVAN AND TERUYUKI YORIOKA

ABSTRACT. We show that under PFA(S), the coherent Suslin tree
S (which is a witness of the axiom PFA(S)) forces that there are
no we-Aronszajn trees. We also determine the values of cardinal
invariants of the continuum in this extension.

1. INTRODUCTION

In [20], Stevo Todoréevié introduced the forcing axiom PFA(.S), which
says that there exists a coherent Suslin tree S such that the forcing ax- -
iom holds for every proper forcing which preserves S to be Suslin, that
is, for every proper forcing P which preserves S to be Suslin and ¥;-
many dense subsets D,, a € w;, of P, there exists a filter on P which
intersects all the D,. PFA(S)[S] denotes the forcing extension with the
coherent Suslin tree S which is a witness of PFA(S). Since the preser-
vation of a Suslin tree by the proper forcing is closed under countable
support iteration (due to Tadatoshi Miyamoto [15]), it is consistent
relative to some large cardinal assumption that PFA(S) holds.

The first appearance of such a forcing axiom is in the paper [13] due
to Paul B. Larson and Todorc¢evié. In this paper, they introduced the
weak version of PFA(S), called Souslin’s Axiom (in which the proper-
ness is replaced by the cccness), and under this axiom, the coherent
Suslin tree S, which is a witness of the axiom, forces a weak fragment of
Martin’s Axiom. In [20), it is also proved that under PFA(S), S forces
the open graph dichotomy () and the P-ideal dichotomy. Namely,
many consequences of PFA are satisfied in the extension with S under
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1This is the so called open coloring axiom [18, §8].
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PFA(S). On the other hand, many people proved that some conse-
quences from <} are satisfied in the extension with a Suslin tree (e.g.
[16, Theorem 6.15.]). In particular, the pseudo-intersection number p is
N; in the extension with a Suslin tree. In fact, the extension with S un-
der PFA(S) is designed as a universe which satisfied some consequences
of & and PFA simultaneously. By the use of this model, Larson and
Todorcevié proved that the affirmative answer to Katétov’s problem is
consistent [13].

In this note, we point out the values of cardinal invariants of the
continuum (e.g. in [2, 6]) in the extension with S under PFA(S). And
we show that under PFA(S), S forces that there are no wy-Aronszajn
trees. In [19], Todorcevié demonstrated that many consequences of PFA
are deduced from PID plus p > 8;. In [17], the first author proved that
PID plus p > R; implies the failure of O, ,, whenever cf(k) > w;. It is
not yet known whether PID plus p > N; implies the failure of [0, .
Since [, », is equivalent to the existence of a special wy-Aronszajn
tree, our result concludes that it is consistent that PID holds, p = ¥;
and O, ., fails.

At last in the introduction, we introduce a coherent Suslin tree. A
coherent Suslin tree S consists of functions in w<“! and is closed under
finite modifications. That is,

e forany sandtin S, s <gtiff s C ¢,
e S is closed under taking initial segments,
e for any s and ¢ in S, the set

{a € min{lv(s),Iv()}; s(a) # t(a)}
is finite (here, Iv(s) is the length of s, that is, the size of s), and
e for any s € S and t € wM®), if the set {a € Iv(s);s(a) # t(a)}
is finite, then ¢ € S also.
For a countable ordinal a, let S, be the set of the a-th level nodes, that
is, the set of all members of S of domain e, and let S<, := Us<a Ss-
For s € S, we let -
Sls:={ue S;s<su}.

We note that ¢, or adding a Cohen real, builds a coherent Suslin
tree. A coherent Suslin tree has canonical commutative isomorphisms.
Let s and ¢t be nodes in S with the same level. Then we define a
function 1, ; from S|s into S|t such that for each v € SJs,

'lps,t(v) =tV (Uf[lV(S) ) IV(’U)))

(here, v[[lv(s) , Iv(v)) is the function v restricted to the domain [Iv(s) , Iv(v))).

We note that 1,; is an isomorphism, and if s, ¢, u are nodes in S of
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the same level, then 9, ¥, and 1, , commute. (On a coherent Suslin
tree, see e.g. [10, 12].)

2. CARDINAL INVARIANTS

Proposition 2.1 ([20, 4.3 Theorem|). PFA(S) implies that p = add(N)
= ¢ = N holds.

Proof. A forcing with property K doesn’t destroy a Suslin tree ([14,
Theorem 11.]). So, since a o-centered forcing satisfies property K and
p = m(o-centered) (due to Bell, see e.g. in [6, 7.12 Theorem]), PFA(S)
implies p > N;.

To see that PFA(S) implies add(N') > ®;, here we consider the char-
acterization of the additivity of the null ideal by the amoeba forcing A
as follows (see [2, 6.1 Theorem] or [3, Theorem 3.4.17)).

add(N) = min {|D| : D is a set of dense subsets of A such that

there are no filters of A which meet every member of D}.

Since the amoeba forcing is o-linked (so satisfies property K), PFA(S)
implies add(N) > ®;.

A proof that PFA(S) implies ¢ = R, is same to one for PFA due
to Todorcevié [5, 3.16 Theorem] (see also [9, Theorem 31.25]). We
note that PFA(S) implies OCA ([8, Lemma 4]), so b = R, holds ([18,
8.6 Theorem], also [9, Theorem 29.8]). In a proof that b = ¢ holds
under PFA, an iteration of a o-closed forcing and a ccc forcing which
is defined by an unbounded family in w* is used. A o-closed forcing
doesn’t destroy a Suslin tree (see e.g. [15]). Since the cccness of the
second iterand comes from the unboundedness of a family in w*, this
preserves a Suslin tree because a Suslin tree doesn’t add new reals.
So this iteration doesn’t destroy a Suslin tree. Therefore b = ¢ holds
under PFA(S). d

Proposition 2.2 ([8, Lemma 2.]). t = X, holds in the ertension with
a Suslin tree.

Proof. Suppose that T is a Suslin tree, and let = be an order preserv-
ing function from T into the order structure ([w]™,2*) such that if
members s and t of T are incomparable in T, then n(s) N w(¢) is fi-
nite. Then for a generic branch G through T, the set {n(s) : s € G} is
a C*-decreasing sequence which doesn’t have its lower bound in [w]X
(because T doesn’t add new reals). O

Proposition 2.3. Under PFA(S), S forces that add(N) = ¢ = R,.
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Proof. Since S doesn’t add new reals and preserves all cardinals, by
Proposition 2.1, S forces that ¢ = 8, (|20, 4.4 Corollary.]).

To see that S forces add(N) > Ny, here we consider another char-
acterization of the additivity of the null ideal (see [1], also [2, 3]). A
function in the set [T, ([w]<"™*\ {0}) is called a slalom, and for a
function f in w* and a slalom ¢, we say that ¢ captures f (denoted by
f E o) if for all but finitely many n € w, f(n) € p(n). Then

add(N) = min {lFI :F Cuw”

& Vo e [[ (W \ (0})3f e F(FZ o) }

new

Let X be an S-name for a set of N;-many functions in w*. For each
s €S, let

Yszz{wa“’:sll-g“fEX”}.

Since X is an S-name for a set of size Ny, Y is of size at most N; for
each s € S, so is the set [ J, 4 Ys. And we note that

“_S“XQUY:S”'

seS

By add(N) > R, (Proposition 2.1), there exists a slalom ¢ which cap-
tures all functions in the set | J, 5 Ys. Then

IFs “¢ captures all functions in X 7,
which finishes the proof. O
Proposition 2.4. Under PFA(S), S forces that h = R,.

Proof. By Proposition 2.1, h = R, holds in the ground model because
of the inequality p < t < h < ¢ (see e.g. [6, §6]).

Let Xa, for each o € wy, be an S-name for a dense open subset of
[w]¥. For ¢ € w and s € S, let

Ya,s = {CUE [w]NO :dte S (3 Sst & t”_S“.Z’ EXQ”)} )
Then we note that each Y, ; is a dense open subset of [w]*°, and

s “ () Yas € Xa”

seS
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Since h > Ny, for each a € wy, the set (,¢,, ;s Ya,s is @ dense open
subset of [w]®0, in particular, it is nonempty. Therefore
s () Xa #07,
acwl

which finishes the proof. O

We note that b is less than or equal to many standard cardinal
invariants, like a, s, etc. See e.g. [3, 6, 7].

3. wy-ARONSZAJN TREES

Theorem 3.1. Under PFA(S), S forces that there are no wy-Aronszajn
trees.

Proof. An outline of the proof is same to the proof due to Baumgartner
in [4] (see also [9, Theorem 31.32.]). So this theorem follows from the

following two claims.

Claim 3.2. Let P be a o-closed forcing notion, and let T be an S-name
for an wy-Aronszajn tree. Then P adds no S-names for cofinal chains
through T whenever ¢ > X; holds.

Proof of Claim 3.2. At first, we see an easy proof by the result of
product forcing (|9, Lemma 15.9] or {11, Ch.VIII, 1.4.Theorem]). We
note that the two step iteration P * S is equal to the two step iteration
S+PY (2). In the extension with S, since ¢ > ®;, a o-closed forcing PV
doesn’t add a cofinal branch through the value of T by the generic of
S, which is an wo-Aronszajn tree (this can be proved as in [9, Lemma
27.10]). Therefore > doesn’t add an S-name for a cofinal chain through
T.

At last, we see a direct proof. In fact, we show that if P is o-closed
and T is an S-name for an wy-tree, then P adds no new S-names for
cofinal chains through T" whenever ¢ > ¥; holds.

Suppose that P adds a new S-name for a cofinal chain through T,
that is, there exists a sequence (24; @ € ws) of P-names for S-names for
members of T such that

IFp“ ks “Va < B < wa, 2o <j 28

and for every S-name B for a subset of T (in the ground model),

IFp ¢ Ibs“B # {2a;0 € wa} 7.

2In fact, in the first argument, we use a o-forcing Fn(w;,ws,N;), which col-
lapses w2 to w; by countable approximations. S doesn’t add new countable sets, so
Fn(w;,ws, R;) doesn’t change in the extension with S.
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We note that we look at 7" as an object in the ground model even in
the extension with P. So for any P-name ¢ for an S-name for a member
of T and p € P, densely many extensions of p in IP decides the value of ¢
as an S-name for a member of 7. By induction on ¢ € 2<¢, we choose
a condition p, in P, an S-name z, for a member of T" and countable
ordinals o and B such that

e for o and 7 in 2<% with o C 7, pr <p Po,
o lFp“IFs“t, € {24;a € wy} "7 for each o € 2<¥,
e lI-s “both 2,~( and Z,~(y are above i, in T” for each o €
2<w,
e ks “Z,~ () and £, ~ ) are incomparable in T foreach o € 2<v ,
e for each n € w and o € 2", every a,-th level node of S decides
the value of z, which is of level less than 3, in 7.
This can be done because of the property of the sequence (2,;a € w,)
and the cccness of S as a forcing notion.

Since P is o-closed, for any f € 2, there is py € P such that py <p
Pfn holds for every n € w. Since it is forced with P that (2,;a € ws)
is a cofinal chain through T, there exists an S-name z; for a member
of T which is of level sup,.c., Bn such that

Dy ”‘p “ ”’5 “if € {2'!,1; o € wg} .
Then it holds that

pslFp“ ks “i; is above &y, in T for every n € w

»n

We note that the phrase -5 “ % is above Zf, in T for every n € w” is
also true in the ground model, so we conclude that

ks “{&s: f € 2“} is a subset of the set of the members of T
whose levels are sup 3,, and is of size ¢ > N;”,

new
which contradicts to the assumption that T is an S-name for an wa-tree.
- Claim 3.2

Claim 3.3. Let T be an S-name for a tree of size Ry and of height w,
which doesn’t have uncountable (i.e. cofinal) chains through T. Then
there erists a ccc forcing notion which preserves S to be Suslin and
forces T to be special (i.e. to be a union of countably many antichains

through T ).

We note that this claim has been known if 7' is an S-name for an
wi-Aronszajn tree.
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Proof of Claim 3.3. For simplicity, we assume that T is an S-name
for an order structure on wy, that is, <z is an S-name such that

Fs“T = (w1, <z) 7,
and that for any s € Sand a, finwy, if slks“a Ly 87 and a < 3,
then s lFs “a <4 B”. Since S is a cce forcing notion, there exists a club
C on w; such that for every § € C, every node of S of level § decides
<pN (6 x9). .
We define the forcing notion Q(7',C) = Q which consists of finite
partial functions p from S into the set U ([w1]<N°) such that
o€[w]<Ro

o for every s € dom(p) and n € dom(p(s)),
p(s)(n) C sup(C Nlv(s))

and
s ks “p(s)(n) is an antichain in T,

o for every s and t in dom(p), if s <g t, then for every n €
dom(p(s)) N dom(p(t)),

t IFs “p(s)(n) Up(t)(n) is an antichain in T,
ordered by extensions, that is, for each p and ¢ in Q,
p<eq¢:<=p21gq

We note that Q adds an S-name which witnesses that 7" is special in
the extension with S. We will show that if Q x S has an uncountable
antichain, then some node of S forces that T has an uncountable chain,
which finishes the proof of the claim.

Suppose that a family {(pe, s¢) : € € w1} is an uncountable antichain
in Q x S. By shrinking it and extending each member of the family if
necessary, we may assume that

e for each £ € wy, dom(pe) C S<s, for some J; € wy,

o the sequence (0¢; € € wy) is strictly increasing,

o for each { € w; and s € dom(pg), there exists ¢t € dom(pg) N Ss,
such that s <g ¢,

e for each £ € wi, s € dom(pg) and t € dom(pg) N Ss,, if s <s t,

then pg(s) C pe(t),
e all sets dom(pe) N S;, are of size n, and say dom(pg) N Ss, =

{t£ 0 En}
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e for each i € n, all dom(p,(t)) are same, call it o;, and for each
k € o;, the size of each p; (t5)(k) is constant, call it m;; and say
pe(t)(k) = {afu(i) : j € min },

o for each £ € wy, Iv(s¢) > &,

e there exists v € w; such that

— for each £ and n in wy, sy = sy =: u_y,
— for each £ € wy and t € dom(pg), t[[y, Iv(t)) = sel[y, Iv(2)),
— for each € and 7 in w; and ¢ € n, tf[’y =]y =: u
(this can be done because of the coherency of ),
e for each i € n and k € oy, the set {pg(tf)(k) Fq= wl} is pair-

wise disjoint (by ignoring the root of the A-system), and
o the set {s¢ : £ € w;} is dense above u_; in S.

We note that for each distinct £ and 7 in wy, since (pe, s¢) Loxs (Pn; Sn),
s¢ Lg sy or there are ¢ € n, k € o; and jy and j; in m;; such that
t¢ Yst? and

t:Ut! kg« Otf,k(jo) Lo (G1)”

(where 5 U7 is the longer one of ¢ and ¢7).
Let

U_q gl g = {f Ew s € G}, which is uncountable”,

and U/ an S-name for a uniform ultrafilter on j_l. We note that ug
forces that the S-name

Yuorao(l1) = {€ € wr uo U (sl (se)) € G}

is an uncountable subset of w;. For each £ € wy, kK € 09, [ and j in
Mo, we define ‘

ug IFs “whenever £ € d)u_l,uo(jq),

Yty = {n € vu suo(l0) € UL hs “af () Ly 00, ()" } 7
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(%) and define

€ € d}u 1,uo U Ok,] g ¢u 1,uo( )
k€og
l,jemg i )
g s “ Iy i= ¢ if it is in Wy_ 4 (U) - case 1 7,

{6 evunol) : Y50, evu @}
which is in ,_, 4, () for some Iy, ko and jo
\ otherwise - - - case 2

If the case 2 happens, then we can make an S-name for a cofinal chain
through T (which is forced by some node above ug in S), so we are
done. Whenever the case 1 happens, we repeat this procedure, that is,
given I; for some i € n — 1, we define, for each € € wq, k € 0441, | and

J in miqq,

Ui41 Iks “whenever § € w’Ui,ui+1 (I)

R « -\ 9 ”
Yfi—l k,J {77 € ¢uz,u1+1 (I) . z+1 U tz+1 ”_S af+1,k(l) lT a?+1,k(.7) }

and
.
§€ ¢ui,ui+1 (Ii) : U z+1 kg ¢ wu—l,uzﬂ (U)
k€oit+1
Lj€mity )
Uit1 ks “ Ly i= 4 if it is in Py_, 0, (U) -+ casel 7
. iy .
{§ E /‘/juhuz—l-l (I) Y;i‘lzt—kh.h-kl wu 1,Ui41 (u)}
which is in 9,_, 4, +1(Z,{) for some [;;1, k,+1 and ji1
{ otherwise - -+ case 2

We show that for some i € n— 1, the case 2 happens in the construc-
tion of jz'+1> which finishes the proof. Suppose that the case 1 happens
in the construction of all the fi+1. We take v € S and £ € w; such that
Un—1 <g v and

vlkg “€ € Iy (which is in the set ¥y_, ,_,())”

3We note that by the property of the club C, for each ¢ and 7 in wy, if tﬁ utd € S,
then this decides whether ag’ (D) L4 ag (5) or not.
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Then it follows that

v 25 Un1 U (sel[y, V(sg))) =5 th s
We take v' € S and 1 € w; such that v >g v and

v'IFs“n € wu~l,un—l(j_1) \ Uwui,un—l( U Y;,él’cl,g)

iENn {ceai
lvjemi,k

(which is in the set ¥,_, ,._, (U))”.

Then for every i € n, u; U (v'][y, v(v'))) is above both ¢, ¢7,
uU(s¢[[7, v(se))) and u;U(s, ][y, v(sy))). Then it follows that s¢ Ls sy,
and by the property of the club set C, for every i € n and k € o,

£5 Ut? ks “pe(£5) (k) U py(¢7) (k) is an antichain in 7.

Therefore (pe,s¢) and (p,,s,) are compatible in Q x S, which is a
contradiction. - Claim 3.3 [J
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