NOTES ON MIYAMOTO'S FORCING AXIOMS

TOSHIMICHI USUBA

ABSTRACT. In this short paper, we prove that Miyamoto's forcing axiom FA^{*}(σ -closed) is equivalent to MA⁺(σ -closed). We also study some variants of FA^{*}(σ -closed).

1. INTRODUCTION

Throughout this note, θ will denote a sufficiently large regular cardinal. For submodels $M, N \prec H_{\theta}, M \prec_{\omega_1} N$ means that $M \subseteq N$ and $M \cap \omega_1 = N \cap \omega_1$. Miyamoto ([1]) introduced the following forcing axiom FA^{*}(σ -closed):

Definition 1.1. FA^{*}(σ -closed) is the assertion that for every σ -closed poset \mathbb{P} , every countable $M \prec H_{\theta}$ with $\mathbb{P} \in M$, every (M, \mathbb{P}) -generic condition p, and every dense subsets $\langle D_i : i < \omega_1 \rangle$ in \mathbb{P} , there exists a directed set $F \subseteq \mathbb{P}$ such that:

- (1) $|F| \leq \omega_1$,
- (2) $F \cap D_i \neq \emptyset$ for every $i < \omega_1$,
- (3) $q \in F$ for some $q \leq p$,
- (4) $M \prec_{\omega_1} M(F)$.

Where $M(F) = \{h(F) : h : \mathcal{P}(\mathbb{P}) \to H_{\theta}, h \in M\} \prec H_{\theta}$. M(F) is the minimal elementary submodel of H_{θ} containing $M \cup \{F\}$.

He showed that $FA^*(\sigma\text{-closed})$ implies $MA^+(\sigma\text{-closed})$, where:

Definition 1.2. MA⁺(σ -closed) is the assertion that for every σ -closed poset \mathbb{P} , every \mathbb{P} -name \dot{S} of a stationary subset of ω_1 , and every dense subsets $\langle D_i : i < \omega_1 \rangle$ in \mathbb{P} , there exists a filter $F \subseteq \mathbb{P}$ such that $F \cap D_i \neq \emptyset$ for $i < \omega_1$ and the set $S = \{\alpha < \omega_1 : \exists p \in F (p \Vdash ``\alpha \in \dot{S}")\}$ is stationary in ω_1 .

We show that the converse direction is also true, hence we have:

Theorem 1.3. $FA^*(\sigma\text{-closed}) \iff MA^+(\sigma\text{-closed}).$

On the other hand, we shall consider some variants of FA^{*}(σ -closed), which are also suggested by Miyamoto.

Definition 1.4. FA'(σ -closed) is the assertion that for every σ -closed poset \mathbb{P} , every countable $M \prec H_{\theta}$ with $\mathbb{P} \in M$, and every dense subsets $\langle D_i : i < \omega_1 \rangle$ in \mathbb{P} , there exists a directed set $F \subseteq \mathbb{P}$ such that

(1) $|F| \leq \omega_1$,

- (2) $F \cap D_i \neq \emptyset$ for every $i < \omega_1$,
- (3) F contains an (M, \mathbb{P}) -generic condition,
- (4) $M \prec_{\omega_1} M(F)$.

Definition 1.5. FA⁰(σ -closed) is the assertion that for every σ -closed poset \mathbb{P} , every countable $M \prec H_{\theta}$ with $\mathbb{P} \in M$, and every dense subsets $\langle D_i : i < \omega_1 \rangle$ in \mathbb{P} , there exists a directed set $F \subseteq \mathbb{P}$ such that:

- (1) $|F| \leq \omega_1$,
- (2) $F \cap D_i \neq \emptyset$ for every $i < \omega_1$,
- (3) $M \prec_{\omega_1} M(F)$.

Obviously $FA^*(\sigma\text{-closed}) \Rightarrow FA'(\sigma\text{-closed}) \Rightarrow FA^0(\sigma\text{-closed})$.

We prove that $FA'(\sigma$ -closed) and $FA^0(\sigma$ -closed) can be characterized by known reflection principles.

Definition 1.6 (Shelah [2]). For $\kappa > \omega_1$ and $S \subseteq [\kappa]^{\omega}$, let $\hat{S} = \{x \in [\kappa]^{\omega} : \exists a \in S \ (a \subseteq x \text{ and } a \cap \omega_1 = x \cap \omega_1)\}$. SSR (Semi-Stationary Reflection principle) is the assertion that for every cardinal $\kappa > \omega_1$ and every stationary $S \subseteq [\kappa]^{\omega}$, there is $X \subseteq \kappa$ such that $|X| = \omega_1 \subseteq X$ and $\hat{S} \cap [X]^{\omega}$ is stationary in $[X]^{\omega}$.

Definition 1.7. IRP (Internally approachable Reflection Principle) is the assertion that for every θ and every stationary $S \subseteq [H_{\theta}]^{\omega}$, there is an internally approachable continuous sequence $\langle M_i : i < \omega_1 \rangle$ of countable submodels of H_{θ} such that $\{i < \omega_1 : M_i \in S\}$ is stationary in ω_1 .

We will show the following equivalences:

Theorem 1.8. (1) $FA'(\sigma\text{-closed}) \iff IRP$. (2) $FA^0(\sigma\text{-closed}) \iff SSR$.

2. Proofs

Proof of Theorem 1.3. The direction $FA^*(\sigma\text{-closed}) \Rightarrow MA^+(\sigma\text{-closed})$ is known, so we show only the converse direction. Suppose $MA^+(\sigma\text{-closed})$. Let \mathbb{P} be a $\sigma\text{-closed}$ poset. Let S be the set of all countable $M \prec H_{\theta}$ such that $\mathbb{P} \in M$ but there are an (M, \mathbb{P}) -generic condition p_M and dense subsets $\langle D_i^M : i < \omega_1 \rangle$ in \mathbb{P} such that there is no directed set $F \subseteq \mathbb{P}$ satisfying (1)-(4) in the definition of FA*($\sigma\text{-closed}$). We see that S is non-stationary in $[H_{\theta}]^{\omega}$, this suffices to prove the theorem.

Suppose otherwise. Let \dot{T} be a \mathbb{P} -name such that $\Vdash ``\dot{T} = \{M \in S : p_M \in \dot{G}\}``.$

Claim 2.1. There is $p \in \mathbb{P}$ such that $p \Vdash "\dot{T}$ is stationary in $[H_{\theta}^V]^{\omega}$ ".

Proof. Suppose otherwise. Then there is a \mathbb{P} -name \dot{f} such that $\Vdash ``\dot{f} : [H^V_{\theta}]^{<\omega} \to H^V_{\theta}$ such that there is no $x \in \dot{T}$ closed under \dot{f} . Take a sufficiently large another regular cardinal $\chi > \theta$. Take a countable $N \prec H_{\chi}$ such that $N \cap H_{\theta} \in S$ and $\dot{f} \in N$. Then p_M is also an (N, \mathbb{P}) -generic condition. Thus $p_M \Vdash ``N \cap H_{\theta} \in \dot{T}$ but is closed under \dot{f} . This is a contradiction.

Pick $p \in \mathbb{P}$ such that $p \Vdash ``T$ is stationary in $[H^V_{\theta}]^{\omega}$. By replacing \mathbb{P} by the suborder $\{q \in \mathbb{P} : q \leq p\}$ and p_M by $p_M \wedge p$ for $M \in S$, we may assume that $\Vdash ``T$ is stationary in $[H^V_{\theta}]^{\omega}$. Let $\dot{\mathbb{Q}}$ be a \mathbb{P} -name of a σ -closed poset which adds a bijection from ω_1 to H^V_{θ} . Take a $(V, \mathbb{P} * \dot{\mathbb{Q}})$ -generic G * H and work in V[G * H]. Let T be the interpretation of \dot{T} by G * H. Since \mathbb{Q} is σ -closed, T remains stationary in $[H^V_{\theta}]^{\omega}$. We know $|H^V_{\theta}| = \omega_1$, thus we can find a club $\langle M_i : i < \omega_1 \rangle$ in $[H^V_{\theta}]^{\omega}$ such that $E = \{i < \omega_1 : i = M_i \cap \omega_1, M_i \in T\}$ is stationary in ω_1 . Let \dot{E} be a name of E, and \dot{M}_i of M_i .

Return to V. Notice that for $\langle p,q \rangle \in \mathbb{P} * \dot{\mathbb{Q}}, i < \omega_1$, and $M \in S$, if $\langle p,q \rangle \Vdash i \in \dot{E}$ and $M = M_i$, then p is compatible with p_M . For $i < \omega_1$, let $D_i = \{ \langle p, q \rangle \in \mathbb{P} * \mathbb{Q} :$ $\langle p,q \rangle$ decides " $i \in E$ " and if $\langle p,q \rangle \Vdash$ " $i \in E$ " then $\exists M \in S(\langle p,q \rangle \Vdash$ " $\dot{M}_i = M$ " and $p \leq p_M$. D_i is dense in $\mathbb{P} * \mathbb{Q}$. For $i, j < \omega_1$, let $D_{ij} = \{ \langle p, q \rangle \in D_i : if$ $\exists M \in S(\langle p,q \rangle \Vdash "i \in \dot{E} \land M_i = M"), \text{ then } p \in D_j^M \}.$ Each D_{ij} is also dense in $\mathbb{P} * \mathbb{Q}$. By MA⁺(σ -closed), we can find a directed set $F' \subseteq \mathbb{P} * \mathbb{Q}$ such that $|F'| = \omega_1, \ D_i \cap F' \neq \emptyset, \ D_{ij} \cap F' \neq \emptyset \text{ for each } i, j < \omega_1, \text{ and } E^* = \{i < \omega_1 : i < \omega_1 : i < \omega_1 \}$ $\exists \langle p,q \rangle \in F'(\langle p,q \rangle \Vdash "i \in \dot{E}") \}$ is stationary in ω_1 . Let F be the projection of F'into \mathbb{P} . F is a directed set in \mathbb{P} with $|F| = \omega_1$. For $i \in E^*$, there is $M_i \in S$ and $\langle p,q\rangle \in F'$ such that $\langle p,q\rangle \Vdash i \in E$ and $M_i = M_i$ and $p \leq p_{M_i}$. Thus we may assume that $p_{M_i} \in F$ for $i \in E^*$. Moreover, for $i \in \lim(E^*) \cap E^*$, it is easy to check that $M_i = \bigcup_{j \in E^* \cap i} M_j$, and for each $i \in E^*$ and $j < \omega_1$, we have $D_j^{M_i} \cap F \neq \emptyset$. Now take a countable $N \prec H_{\theta}$ such that $N \cap \omega_1 \in E^*$ and $\langle M_i : i \in E^* \rangle, F \in N$. Let $i^* = N \cap \omega_1$. Then $M_{i^*} \prec_{\omega_1} N$, thus we have $M_{i^*} \prec_{\omega_1} M_{i^*}(F)$. This is a contradiction.

Proof of (1) of Theorem 1.8. First we prove $FA'(\sigma\text{-closed}) \Rightarrow IRP$. Fix a stationary $S \subseteq [H_{\theta}]^{\omega}$. Let \mathbb{P} be a $\sigma\text{-closed}$ poset adding a bijection from ω_1 to H_{θ} . Fix $\mathbb{P}\text{-names} \langle \dot{M}_i : i < \omega_1 \rangle$ such that $\Vdash ``\langle \dot{M}_i : i < \omega_1 \rangle$ is an internally approachable club in $[H_{\theta}^V]^{\omega''}$.

Fix another large regular cardinal $\chi > \theta$ and $N \prec H_{\chi}$ with $\theta, S, \mathbb{P}, \langle \dot{N}_i : i < \omega \rangle \in N$ and $N \cap H_{\theta} \in S$. Let $M = N \cap H_{\theta}$ and $i^* = M \cap \omega_1$. Note that if $p \in \mathbb{P}$ is an (N, \mathbb{P}) -generic condition, then $p \Vdash M = \dot{M}_{i^*}$. For $i < \omega_1$, let $D_i = \{p \in \mathbb{P}: \exists M' (p \Vdash M' = \dot{M}_i)\}$. D_i is dense in \mathbb{P} . Applying FA'(σ -closed), we can find a directed set $F \subseteq \mathbb{P}$ such that $F \cap D_i \neq \emptyset$, F contains an (N, \mathbb{P}) -generic condition, and $N \prec_{\omega_1} N(F)$. For each $i < \omega_1$ define M_i as $\exists p \in F(p \Vdash M_i = M_i)$. Then

 $\langle M_i : i < \omega_1 \rangle$ is an internally approachable continuous sequence and $\langle M_i : i < \omega_1 \rangle \in N(F)$. Moreover, since F contains an (N, \mathbb{P}) -generic condition, we have $M_{i^*} = M$. Finally we see that $\{i < \omega_1 : M_i \in S\}$ is stationary, but this follows from that $M_{i^*} \cap \omega_1 = M \cap \omega_1 = N \cap \omega_1$ and $N \prec_{\omega_1} N(F)$.

Next we prove the converse direction IRP \Rightarrow FA'(σ -closed). Fix a σ -closed poset \mathbb{P} . Fix a well-ordering Δ on H_{θ} . Let S be the set of all countable $M \prec \langle H_{\theta}, \in, \Delta \rangle$ such that: there are dense open subsets $\langle D_i^M : i < \omega_1 \rangle$ of \mathbb{P} such that there is no directed set F satisfying (1)–(4) in the definition of FA'(σ -closed). We claim that S is non-stationary, which completes our proof. Suppose to contrary that S is stationary. By IRP, we can find an internally approachable continuous sequence $\langle N_i : i < \omega_1 \rangle$ with $E = \{i < \omega_1 : N_i \in S\}$ stationary. Since it is internally approachable, we may assume that for each $i < j < \omega_1$, $\langle D_k^{N_i} : k < \omega_1 \rangle \in N_j$, where we are letting $D_k^{N_i} = \mathbb{P}$ for $i \notin E$. By induction on $i < \omega_1$, we would define a descending sequence $\langle p_i : i < \omega_1 \rangle$ such that p_i is (N_i, \mathbb{P}) -generic and $p_{i+1} \in D_k^{N_j}$ for $k, j \leq i$.

First, take the Δ -least (N_0, \mathbb{P}) -generic condition p_0 . Since $N_0 \in N_1$, we have $p_0 \in N_1$. Moreover, since $\langle D_k^{N_0} : k < \omega_1 \rangle \in N_1$, there is the Δ -least condition $p_1 \leq p_0$ with $p_1 \in D_0^{N_0}$. Repeating this procedure ω_1 -times; When $i < \omega_1$ is limit and $\langle p_j : j < i \rangle$ was defined, then p_i is the Δ -least lower bound of the p_j 's. Then we know that p_i is (N_i, \mathbb{P}) -generic and $p_i \in N_{i+1}$. Thus we can take $p_{i+1} \in N_{i+1}$ as intended.

Now we have a descending sequence $\langle p_i : i < \omega_1 \rangle$ such that p_i is (N_i, \mathbb{P}) -generic and for every $i, k < \omega_1$, there is some j with $p_j \in D_k^{N_i}$. Let $F = \{p_i : i < \omega_1\}$. F is a directed set with size $\leq \omega_1$. Take a countable $M \prec \langle H_{\theta}, \in, \Delta \rangle$ such that $F, \langle N_i : i < \omega_1 \rangle \in M$ and $M \cap \omega_1 \in E$. Let $i^* = M \cap \omega_1$. Then $N_{i^*} \prec_{\omega_1} M$, in particular we have $N_{i^*} \prec_{\omega_1} N_{i^*}(F)$. However F contradicts $N_{i^*} \in S$.

Proof of (2) of Theorem 1.8. First we prove $\operatorname{FA}^0(\sigma\operatorname{-closed}) \Rightarrow \operatorname{SSR}$. Suppose $\operatorname{FA}^0(\sigma\operatorname{-closed})$. Fix $\kappa \geq \omega_2$ and $\sigma\operatorname{-closed}$ poset \mathbb{P} which adds a bijection from ω_1 to κ . Fix a $\mathbb{P}\operatorname{-name} \dot{\pi}$ such that $\Vdash ``\dot{\pi}$ is a surjection from ω_1 to κ ''. To show that SSR, take a stationary $S \subseteq [\kappa]^{\omega}$. We will find $X \subseteq \kappa$ such that $|X| = \omega_1 \subseteq X$ and $\hat{S} \cap [X]^{\omega}$ is stationary in $[X]^{\omega}$.

Take a countable $M \prec H_{\theta}$ with $\mathbb{P}, \dot{\pi}, S \in M$ and $M \cap \kappa \in S$. For $i < \omega_1$, let $D_i = \{p \in \mathbb{P} : \exists j < \omega_1 \ (p \Vdash ``\dot{\pi}(j) = i")\}$, and for $\alpha \in M \cap \kappa$, let $E_{\alpha} = \{p \in \mathbb{P} : \exists i < \omega_1 \ (p \Vdash ``\dot{\pi}(i) = \alpha")\}$. Each D_i and E_{α} are dense in \mathbb{P} . By FA⁰(σ -closed), we can find a directed set $F \subseteq \mathbb{P}$ such that $|F| = \omega_1, M \prec_{\omega_1} M(F)$, and F intersects each D_i and E_{α} . Let $X = \{\alpha < \kappa : \exists p \in F \exists i < \omega_1 \ (p \Vdash ``\dot{\pi}(i) = \alpha")\}$. Then $X \in M(F)$, and by the choice of the D_i 's and the E_{α} 's, we have $|X| = \omega_1 \subseteq X$ and

 $M \cap \kappa \subseteq X$. Then $M(F) \cap X \in \hat{S} \cap [X]^{\omega}$. By the elementarity of M(F), $\hat{S} \cap [X]^{\omega}$ is stationary in $[X]^{\omega}$. This completes the proof of one direction.

For the converse, let \mathbb{P} be a σ -closed poset. Let S be the set of all countable $M \prec H_{\theta}$ such that $\mathbb{P} \in M$ but there are dense subsets $\langle D_i : i < \omega_1 \rangle$ in \mathbb{P} such that there is no directed set F satisfying (1)–(3) in the definition of FA⁰(σ -closed). We see that S is non-stationary in $[H_{\theta}]^{\omega}$, which completes the proof.

Suppose to contrary that S is stationary. By SSR, we can find $X \subseteq H_{\theta}$ such that $|X| = \omega_1 \subseteq X$ and $\hat{S} \cap [X]^{\omega}$ is stationary in $[X]^{\omega}$. Let N be the Skolem hull of X under $\langle H_{\theta}, \in, \Delta \rangle$. Then we can take a club $\langle M_i : i < \omega_1 \rangle$ in $[N]^{\omega}$ such that $M_i \prec H_{\theta}$ for $i < \omega_1$. Since $\hat{S} \cap [X]^{\omega}$ is stationary, we have $E = \{i < \omega_1 : M_i \cap X \in \hat{S}\}$ is stationary in ω_1 . Notice that for each $i \in E$, M_i belongs to S; Since $M_i \cap X \in \hat{S}$, there is $M' \prec H_{\theta}$ with $M' \prec_{\omega_1} M_i$. If $\langle D_j : j < \omega_1 \rangle$ are dense subsets in \mathbb{P} witnessing $M' \in S$, then it also witnesses that $M_i \in S$. For each $i \in E$, fix dense subsets $\langle D_j^i : j < \omega_1 \rangle$ witnessing $M_i \in S$. Now take a countable $N \prec H_{\theta}$ such that $\langle M_i : i < \omega_1 \rangle, E, \langle D_j^i : i \in E, j < \omega_1 \rangle \in N$ and $N \cap \omega_1 \in E$. Let $i^* = N \cap \omega_1$. Then $M_{i^*} \prec_{\omega_1} N$. Since \mathbb{P} is σ -closed, we can find a directed set $F \in N$ such that $|F| = \omega_1$ and $F \cap D_j^i \neq \emptyset$ for $i \in E$ and $j < \omega_1$. Then, since $M_{i^*} \prec_{\omega_1} N$ and $F \in N$, we have that $M_i \prec_{\omega_1} M_i(F)$. This is a contradiction. \Box

References

- [1] T. Miyamoto, A Forcing Axiom and Chang's Conjecture, RIMS 2011.
- [2] S. Shelah, Proper and improper forcing, Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1998.

Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan

E-mail address: usuba@math.cm.is.nagoya-u.ac.jp