VARIATIONS OF FODOR REFLECTION PRINCIPLES

BERNHARD KÖNIG

ABSTRACT. Fodor-type Reflection Principles claim the existence of an ω_1-club in $\mathcal{P}_{\omega_1}\omega_2$ such that every element contains a fixed ladder sequence converging to its own supremum. We formulate some variations, all of which follow from MM, e.g. one in which the elements of the ω_1-club have finite intersection with their ladder sequence. Some of the variations given do not involve the reflection of stationary sets of ordinals, but we show that even those variations are not a consequence of PFA.

1. THE FODOR-TYPE REFLECTION PRINCIPLE

The following principle has been introduced and studied in [3]. The abbreviation FRP stems from the term Fodor-type Reflection Principle.

FRP(ω_2) is the statement that for every system $\langle C_\alpha : \alpha \in S \rangle$ where

$S \subseteq \{\alpha < \omega_2 : \text{cf}(\alpha) = \omega\} = S_2^0$

is stationary there is a $\gamma \in S_2^1$ and a filtration $\langle F_\xi : \xi < \omega_1 \rangle$ of γ such that

- $\sup(F_\xi) \in S$
- $C_{\sup(F_\xi)} \subseteq F_\xi$

for stationarily many $\xi < \omega_1$.

We need some definitions to understand the above statement. If γ is a set of size \aleph_1, then a continuous \subseteq-chain $\langle F_\xi : \xi < \omega_1 \rangle$ is called a filtration of γ if each F_ξ is countable and $\bigcup_{\xi<\omega_1} F_\xi = \gamma$. S_2^1 is the collection of all ordinals of cofinality ω_1 below ω_2.

FRP$^0(\omega_2)$ is the statement that for every ladder system $\langle C_\alpha : \alpha \in S_2^0 \rangle$ there is a $\gamma \in S_2^1$ and a filtration $\langle F_\xi : \xi < \omega_1 \rangle$ of γ such that

- $C_{\sup(F_\xi)} \subseteq F_\xi$

for stationarily many $\xi < \omega_1$.

Now we need the following Lemma:

Part of this research was conducted while the author was visiting Nagoya University in November 2009.
1 Lemma. Assume that \(\theta \) is large enough. If \(S \subseteq S_2^0 \) is stationary and \((C_\alpha : \alpha \in S) \) a ladder system of \(\omega \)-sequences, then the sets

\[
\mathcal{E}_{\text{in}}(S) = \{ N \in [\omega_2]^\omega : \sup(N) \in S \text{ and } C_{\sup(N)} \subseteq N \} \\
\mathcal{E}_{\text{out}}(S) = \{ N \in [\omega_2]^\omega : \sup(N) \in S \text{ and } C_{\sup(N)} \not\subseteq N \} \\
\mathcal{E}_{\text{fin}}(S) = \{ N \in [\omega_2]^\omega : \sup(N) \in S \text{ and } C_{\sup(N)} \cap N \text{ is finite} \}
\]

are all projectively stationary.

Proof. Let \(E \subseteq \omega_1 \) be stationary, \(f : \omega_2^{<\omega} \rightarrow \omega_2 \) a function and assume that \(M_i (i < \omega) \) is a sequence of models of size \(\aleph_1 \) such that \(M_i \cap \omega_2 = \delta_i \) and \(\delta = \sup_{i<\omega} \delta_i \in S \). Also assume that \(E, f \in M_0 \) and set \(M = \bigcup_{i<\omega} M_i \). In \(M \) we can build a continuous chain \(N_\xi (\xi < \omega_1) \) of countable models such that \(C_\delta \subseteq N_0 \). Then there is \(\xi < \omega_1 \) such that \(N_\xi \cap \omega_1 \in E \), which proves the Lemma for the set \(\mathcal{E}_{\text{in}}(S) \). To show the claim for the set \(\mathcal{E}_{\text{fin}}(S) \), we use a game from [6, p.272]. This game is as follows:

\[
\begin{array}{ccccccc}
I & I_0, \xi_0 & I_1, \xi_1 & I_2, \xi_2 & I_3, \xi_3 & \ldots \\
II & \mu_0 & \mu_1 & \mu_2 & \mu_3 & \ldots \\
\end{array}
\]

where the \(I_i \)'s are intervals in \(\omega_2 \) of the form \([\gamma_i, \overline{\gamma}_i] \) and with the property that \(\xi_i \in I_i \). The \(\mu_i \)'s are ordinals below \(\omega_2 \). We also require that \(\mu_i < \gamma_{i+1} \). Player I wins the game if

\[
y = \text{cl}_f(\xi_i)_{i<\omega}
\]

has the property that

\[
y \subseteq \bigcup_{i<\omega} I_i \text{ and } y \cap \omega_1 \in E.
\]

[6] shows that Player I has a winning strategy in this game.

Having such a winning strategy \(\sigma \in M_0 \), it is straightforward to apply it for our purposes. Player I plays intervals \([\gamma_i, \overline{\gamma}_i] \) such that a final segment of \(C_\delta \) is disjoint from \(\bigcup_{i<\omega} [\gamma_i, \overline{\gamma}_i] \). This suffices by the definition of the winning condition and note that the responses of Player I to \([\gamma_i, \overline{\gamma}_i] \) will be in the structure \(M_\xi \) as long as \(\gamma_i \) and \(\overline{\gamma}_i \) are in \(M_i \).

2 Remark. The following holds:

(1) MM implies \(\text{FRP}(\omega_2) \)

(2) \(\text{FRP}(\omega_2) \) implies \(\text{FRP}^0(\omega_2) \)

Proof. (2) is clear and for (1): it is well-known that MM implies that every projectively stationary set contains a continuous \(\omega_1 \)-chain (see [2]), so \(\text{FRP}(\omega_2) \) can be deduced using Lemma 1. The reader will
VARIATIONS OF FODOR REFLECTION PRINCIPLES

notice that we can even replace "stationarily many $\xi < \omega_1$" with "all $\xi < \omega_1$" in the statement of FRP(ω_2) and still deduce this from MM with the same argument. See also Remark 4.

The natural poset to force the negation of FRP$^0(\omega_2)$ is the following: conditions of \mathbb{P} are of the form

$$\langle C_\alpha : \alpha \leq \mu, \text{cf}(\alpha) = \omega \rangle, \langle F_\xi^\gamma : \xi < \omega_1, \gamma \in S^1_2 \rangle$$

where

1. $\mu < \omega_2$
2. for each ω-cofinal $\alpha \leq \mu$, C_α is a cofinal ω-sequence in α
3. for each $\gamma \in S^1_2$, $C_{\sup(F_\xi^\gamma)} \not\subset F_\xi^\gamma$ for all $\xi < \omega_1$.

We note that the poset \mathbb{P} is $<\omega_2$-strategically closed. The argument is similar to the argument that the standard forcing to add \square_{ω_1} is $<\omega_2$-strategically closed (see for example [4, p.255]).

The following theorem shows two things of interest. On the one hand it shows that even though FRP fails after forcing our counterexample to FRP$^0(\omega_2)$, a strong version of ordinal reflection may still hold. It shows on the other hand that FRP0 is not a consequence of PFA. It is easy to see that FRP is not a consequence of PFA since PFA is consistent with a non-reflecting subset of S^0_2 (see [1]), but the consistency of PFA with FRP0 requires the following argument. Remember that Fr$^+(\omega_2)$ is the statement that for every stationary $S \subseteq S^0_2$ there is an ω_1-cofinal ordinal $\gamma < \omega_2$ such that $S \cap \gamma$ is club in γ. See [5, p.524] for more information on this statement.

3 Theorem. Assume $V \models$ MM. Let \mathbb{P} be as in the previous paragraph. Then

$$V^\mathbb{P} \models \text{PFA} + \text{Fr}^+(\omega_2) + \neg \text{FRP}^0(\omega_2).$$

Proof. First notice that the \mathbb{P}-generic object is a counterexample to FRP$^0(\omega_2)$.

3.1 Claim. $V^\mathbb{P} \models \text{Fr}^+(\omega_2)$

Proof of Claim 3.1. Let \dot{S} be a \mathbb{P}-name for a stationary subset of S^0_2. Now add a continuous ω_1-chain through $\mathcal{E}_{out}(\dot{S})$. Note that by Lemma 1, this can be done with a forcing $\mathbb{F}_{out}(\dot{S})$ which preserves stationary subsets of ω_1. We briefly describe that forcing: conditions of $\mathbb{F}_{out}(\dot{S})$ are continuous chains of the form

$$\langle F_\xi : \xi \leq \zeta \rangle,$$

where
BERNHARD KÖNIG

(1) $\zeta < \omega_1$ and for all $\xi \leq \zeta$
(2) F_ξ is a countable subset of ω_2
(3) $\sup(F_\xi) \in \dot{S}$
(4) $C_{\sup(F_\xi)} \not\subset F_\xi$.

This basically shoots a filtration through ω_2 that avoids the ladder system given to us by the poset \mathbb{P} and such that $\sup(F_\xi \cap \omega_2) \in \dot{S}$ for all $\xi < \omega_1$. Now apply MM to the iteration $\mathbb{P} \ast F_{out}(\dot{S})$ and get a sufficiently generic $G \subseteq \mathbb{P} \ast F_{out}(\dot{S})$.

3.1.1 Subclaim. $G \upharpoonright \mathbb{P}$ extends to a condition $p_G \in \mathbb{P}$.

Proof of Subclaim 3.1.1. This is because we have forced a good filtration for $G \upharpoonright \mathbb{P}$, so it can be extended to a condition. □

3.1.2 Subclaim. $p_G \upharpoonright \{\sup(F_\xi) : \xi < \omega_1\}$ is an ω_1-club in \dot{S}.

Proof of Subclaim 3.1.2. Clear because the filtrations given by filters for $F_{out}(\dot{S})$ are continuous chains. □

This last Subclaim finishes the proof of Fr$^+(\omega_2)$ in $V^\mathbb{P}$.

3.2 Claim. $V^\mathbb{P} \models$ PFA.

Proof of Claim 3.2. Assume that $\mathbb{P} \models \mathbb{Q}$ is proper. Then look at the iteration $\mathbb{P} \ast \mathbb{Q} \ast \mathbb{F}$ where $\mathbb{F} = F_{out}(S_{2}^{0})$.

3.2.1 Subclaim. $\mathbb{P} \ast \mathbb{Q} \ast \mathbb{F}$ is proper.

Proof of Subclaim 3.2.1. Let $N \prec H_\theta$ containing everything in sight and set $\gamma = N \cap \omega_1$, $\delta = \sup(N \cap \omega_2)$. Given an N-generic sequence for the iteration, we make sure that the \mathbb{P}-entries of that sequence are extended with a ladder $C_\delta \not\subset N$. This is easily possible and makes sure that the \mathbb{F}-entries of our N-generic sequence of conditions will be extendable since the requirement for that will be

$$C_\delta \not\subset F_\gamma = N \cap \omega_2.$$

This subclaim basically suffices, the rest of the argument is similar to Claim 3.1, i.e. reprove Subclaims 3.1.1 and 3.1.2. □
2. A DUAL TO FRP

In this section we turn our attention to a statement that is dual to FRP. This dual statement asks for a filtration whose countable members meet each ladder sequence only on a finite set and we denote it by dFRP.

$dFRP(\omega_2)$ says that for every ladder system $\langle C_\alpha : \alpha \in S \rangle$ where $S \subseteq S^0_2$ is stationary there is a $\gamma \in S^1_2$ and a filtration $\langle F_\xi : \xi < \omega_1 \rangle$ of γ such that

- $\sup(F_\xi) \in S$
- $C_{\sup(F_\xi)} \cap F_\xi$ is finite

for stationarily many $\xi < \omega_1$.

We mention two variations of dFRP. $dFRP^+ (\omega_2)$ is the same as dFRP(ω_2) except that the last line in the definition is replaced by "... for all $\xi < \omega_1$".

$dFRP^0 (\omega_2)$ says that for every ladder system $\langle C_\alpha : \alpha \in S^0_2 \rangle$ there is a $\gamma \in S^1_2$ and a filtration $\langle F_\xi : \xi < \omega_1 \rangle$ of γ such that

- $C_{\sup(F_\xi)} \cap F_\xi$ is finite

for stationarily many $\xi < \omega_1$.

4 Remark. The following holds:

1. MM implies $dFRP^+(\omega_2)$
2. $dFRP^+(\omega_2)$ implies $dFRP(\omega_2)$
3. $dFRP(\omega_2)$ implies $dFRP^0(\omega_2)$

Proof. Similar to Remark 2, Lemma 1 for $E_{\text{fin}}(S)$ shows (1). The rest is fairly clear.

Similar to (1) in Remark 2, Lemma 1 for $E_{\text{fin}}(S)$ shows that MM implies the statement $dFRP^+(\omega_2)$.

It is interesting to note that a statement analogous to $dFRP^+$ for ω_1 would say the following: for every ladder system on ω_1 there is a club $C \subseteq \omega_1$ such that C intersects each ladder only on a finite set. This statement is known to follow from PFA (see e.g. [5, p.133]) and is sometimes referred to as "negation of $\clubsuit_{\omega_1}(\text{club})$".

We can use the techniques described earlier to get an interesting result: though $\clubsuit_{\omega_1}(\text{club})$ fails under PFA, even the weakest form of $dFRP(\omega_2)$ is independent of PFA.

5 Theorem. PFA is consistent with the negation of $dFRP^0(\omega_2)$.
Proof. This is using the exact same arguments as in the proof of Theorem 3, except that we need to modify the definition of \mathbb{P} in the obvious way: conditions have the property that for each $\gamma \in S^1_2$, $C_{\sup(F^\gamma_\xi)} \cap F^\gamma_\xi$ is unbounded in $\sup(F^\gamma_\xi)$ for all $\xi < \omega_1$.

REFERENCES