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VARIATIONS OF FODOR REFLECTION PRINCIPLES

BERNHARD KONIG

ABSTRACT. Fodor-type Reflection Principles claim the existence
of an wj-club in P, ws such that every element contains a fixed
ladder sequence converging to its own supremum. We formulate
some variations, all of which follow from MM, e.g. one in which the
elements of the w;-club have finite intersection with their ladder
sequence. Some of the variations given do not involve the reflec-
tion of stationary sets of ordinals, but we show that even those
variations are not a consequence of PFA.

1. THE FODOR-TYPE REFLECTION PRINCIPLE

The following principle has been introduced and studied in [3]. The
abbreviation FRP stems from the term Fodor-type Reflection Principle.

FRP(w,) is the statement that for every system (C, : a € S) where
S C{a<wy:cfla) =w} =257
is stationary there is a v € S} and a filtration (Fg : € < w;) of v such
that
o sup(f;) € S
L4 sup(F) - F, £
for stationarily many £ < wy.

We need some definitions to understand the above statement. If ~y
is a set of size N;, then a continuous C-chain (F; : £ < wy) is called
a filtration of vy if each Fg is countable and J,_,, F¢ = 7. S; is the
collection of all ordinals of cofinality w;, below ws.

FRP?(ws) is the statement that for every ladder system (C, : a € S9)
there is a v € S3 and a filtration (Fg : £ < w;) of y such that

b sup(Fy) C F, ¢
for stationarily many £ < wy.

Now we need the following Lemma:
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1 Lemma. Assume that 8 is large enough. If S C S is stationary and
(Cyp : a € 8S) a ladder system of w-sequences, then the sets

En(S) = {N € [wy)™ :sup(N) € S and Ceup(n) C© N}
Eout(S) = {N € [wo]™ : sup(N) € S and Coup(ny € N}
Ein(S) = {N € [wo]™® : sup(N) € S and Coyp(vy N N is finite}
are all projectively stationary.

Proof. Let E C w; be stationary, f : ws<¥ — wy a function and
assume that M; (i < w) is a sequence of models of size N; such that
M;Nw; = §; and § = sup,, 0; € S. Also assume that E, f € M, and
set M J,., Mi. In M we can build a continuous chain N¢ (£ < w;) of
countable models such that Cs C Ny. Then there is £ < w; such that
N¢Nw; € E, which proves the Lemma for the set &y(S). To show the
claim for the set £4,(S), we use a game from [6, p.272]. This game is
as follows:

1| Iné 5,6 D6 Ié
IT| o M H2 U3

where the I;’s are intervals in wy of the form [+;,%;] and with the prop-
erty that & € I;. The p;’s are ordinals below ws. We also require that
Wi < 7vi+1. Player I wins the game if

Y = clp(&)icw

has the property that
yC|JLiandynw € E.

i<w
[6] shows that Player I has a winning strategy in this game.

Having such a winning strategy ¢ € M,, it is straightforward to
apply it for our purposes. Player I plays intervals [7;,%;] such that
a final segment of Cs is disjoint from |J,_,[v:,7:]. This suffices by
the definition of the winning condition and note that the responses of
Player I to [v;,7%;] will be in the structure M; as long as «; and 4; are
2 Remark. The following holds:

(1) MM implies FRP(w3)
(2) FRP(w,) implies FRP®(w,)
Proof. (2) is clear and for (1): it is well-known that MM implies that

every projectively stationary set contains a continuous w;-chain (see
[2]), so FRP(w;) can be deduced using Lemma 1. The reader will
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notice that we can even replace ”stationarily many £ < w;” with ”all
§ < wy” in the statement of FRP(ws) and still deduce this from MM
with the same argument. See also Remark 4. U

The natural poset to force the negation of FRP°(w5) is the following:
conditions of P are of the form

(Co:a < pycf(a) =w), (F 1 € <wi,y €83)
where
(1) p<wy

(2) for each w-cofinal o < p, C, is a cofinal w-sequence in o
(3) for each y € S3, Coup(r7) ¢ F for all £ < w.

We note that the poset P is < wo-strategically closed. The argument
is similar to the argument that the standard forcing to add O, is
< wyp-strategically closed (see for example [4, p.255]).

The following theorem shows two things of interest. On the one hand
it shows that even though FRP fails after forcing our counterexample to
FRP®(w,), a strong version of ordinal reflection may still hold. It shows
on the other hand that FRP? is not a consequence of PFA. It is easy
to see that FRP is not a consequence of PFA since PFA is consistent
with a non-reflecting subset of S§ (see [1]), but the consistency of PFA
with FRP? requires the following argument. Remember that Fr*(w,)
is the statement that for every stationary S C S9 there is an w;-cofinal
ordinal ¥ < wy such that SN« is club in 7. See [5, p.524] for more
information on this statement.

3 Theorem. Assume V |= MM. Let P be as in the previous paragraph.
Then

VP |= PFA + Fr*(w;) + =FRP(w,).
Proof. First notice that the P-generic object is a counterexample to
FRP®(w,).
3.1 Claim. VP = Frt(w,)

Proof of Claim 3.1. Let S be a P-name for a stationary subset of S5.
Now add a continuous w;-chain through Eout(S'). Note that by Lemma
1, this can be done with a forcing IE‘out(S') which preserves stationary
subsets of w;. We briefly describe that forcing: conditions of Foy(S)
are continuous chains of the form

(Fe: £<0),

where
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(1) { <w; and for all £ < ¢
(2) F is a countable subset of wy
(

3) sup(F;) € S
(4) Coup(re) € Fe.

This basically shoots a filtration through wy that avoids the ladder
system given to us by the poset PP and such that sup(F; Nwy) € S
for all £ < w;. Now apply MM to the iteration P % F,(S) and get a
sufficiently generic G C P % IFout(S").

3.1.1 Subclaim. G [ P extends to a condition pg € P.

Proof of Subclaim 3.1.1. This is because we have forced a good filtra-
tion for G | P, so it can be extended to a condition. O

3.1.2 Subclaim. pg I {sup(F;) : £ < w:} is an wi-club in S.

Proof of Subclaim 3.1.2. Clear because the filtrations given by filters
for Fout(S) are continuous chains. O

This last Subclaim finishes the proof of Fr*(w,) in VP, ]
3.2 Claim. VP = PFA.

Proof of Claim 3.2. Assume that P IF Q is proper. Then look at the
iteration P x Q x F where F = Foy(53).

3.2.1 Subclaim. P x Q x F is proper.

Proof of Subclaim 3.2.1. Let N < Hy containing everything in sight
and set v = N Nwy, 6 = sup(N Nwsy). Given an N-generic sequence
for the iteration, we make sure that the P-entries of that sequence are
extended with a ladder C5 ¢ N. This is easily possible and makes

sure that the F-entries of our N-generic sequence of conditions will be
extendable since the requirement for that will be

CagF7=NOW2.
0O

This subclaim basically suffices, the rest of the argument is similar
to Claim 3.1, i.e. reprove Subclaims 3.1.1 and 3.1.2. O

O
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2. A puaL 1O FRP

In this section we turn our attention to a statement that is dual
to FRP. This dual statement asks for a filtration whose countable
members meet each ladder sequence only on a finite set and we denote
it by dFRP.

dFRP(w;) says that for every ladder system (C, : o € S) where
S C S is stationary there is a y € S} and a filtration (Fy : &€ < w;) of
v such that
o sup(F;) € S
° Csup(pg) N F¢ is finite
for stationarily many £ < w;.

We mention two variations of dFRP. dFRP*(w,) is the same as
dFRP(w) except that the last line in the definition is replaced by ”...
for all £ < w;”.

dFRP°(w,) says that for every ladder system (Cy : o € S9) there is
a7y € 8; and a filtration (F; : ¢ < w;) of v such that

® sup(Fg) N Fg is ﬁnite

for stationarily many ¢ < w;.

4 Remark. The following holds:
(1) MM implies dFRP™ (w5)
(2) dFRP*(w,) implies dFRP(ws)
(3) dFRP(ws) implies dFRP°(w5)

Proof. Similar to Remark 2, Lemma 1 for £,(S) shows (1). The rest
is fairly clear. O

Similar to (1) in Remark 2, Lemma 1 for £g,(S) shows that MM
implies the statement dFRP™ (w,).

It is interesting to note that a statement analogous to dFRP* for
w; would say the following: for every ladder system on w; there is a
club C' C w; such that C intersects each ladder only on a finite set.
This statement is known to follow from PFA (see e.g. [5, p.133]) and
is sometimes referred to as "negation of &, (club)”.

We can use the techniques described earlier to get an interesting
result: though &, (club) fails under PFA, even the weakest form of
dFRP(w,) is independent of PFA.

5 Theorem. PFA is consistent with the negation of dAFRP%(ws,).
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Proof. This is using the exact same arguments as in the proof of Theo-
rem 3, except that we need to modify the definition of P in the obvious
way: conditions have the property that for each v € S3, Cyyy( F N Fg

is unbounded in sup(Fy) for all { < w;. O
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