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Blow-up set for a semilinear heat equation
with exponential nonlinearity
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1 Introduction
We consider the blow-up problem for a semilinear heat equation

Owu = €Au + €%, zeQ, t>0,
(1.1) u(z,t) =0, z €N t>0,
u(z,0) = pc(z) 20(£0), z€Q,

where 0; = 3/0t, ¢ > 0, N > 1, () is a bounded domain in R, and the initial function Ve
is a nonnegative bounded continuous function in £2. Let 7. be the maximal existence time
of the unique classical solution u, of problem (1.1). If T, < o0, then we define the set B,
by

B, := {z € Q2 : there exists a sequence {(Zn,,)} C O x (0,T)

such that lim (zn,t,) = (z,T¢) and lim |u(zn,t,)| = co}.
n—oeo n—co

We call T, and B, the blow-up time and the blow-up set, respectively. We remark that, if
€ is sufficiently small, then T, < oo and the solution u, blows up in a finite time.

The blow-up problem for a semilinear heat equation has been studied by many math-
ematicians. We refer to a survey [6] and references therein. Among others, the author of
this paper and Ishige in [3] studied the blow-up problem for

Oiu = eAu + uP, zeN, t>0,
(1.2) u(z,t) =0, ze€0f), t>0,
u(z,0) = pe(z) >20(Z£0), z€Q,

where p > 1. Consider a family of initial functions {¢} satisfying

liminf |locl| Lo ) > 0, lim sup l@ell o) < o0, @e =0 on 09,
€—

and

lin(1)sup {|<p5(ac) -0z, ye |z -yl < (:1/2"’4} =0 for some A > 0.
€—>
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They studied the location of the blow-up set for problem (1.2), and proved the following:
Let u, be the solution of (1.2) satisfying

(13) limsup sup (T, — £)"/®fue(t) | om(ey < 0.
e—0 0<t<T:

Then, for any ¢ > 0, there holds

(1.4) B. C {z € 2: pc(x) > ||pelipo) — 0}

for all sufficiently small € > 0. Since § > 0 is arbitrary, we see from (1.4) that the solution
ue of problem (1.2) blows up only near the maximum points of the initial function . if
€ > 0 is sufficiently small.

Furthermore, if the initial function is independent of ¢, then we can obtain more precise
information on the location of the blow-up set. In fact, the author of this paper and Ishige
in [4] proved the following: Let ¢ € C?(€2) N C(Q) be a nonnegative function such that
v # 0 and u, be the solution of (1.2) satisfying (1.3) with the initial function replaced by
. Assume that there exist two points a, 8 € § such that |Ap(a)| < |Ap(B8)|. Then there
exists a positive constant 4, such that

Bn{yeQ:ly-pl<d}=0

for all sufficiently small € > 0. This result implies that the location of the blow-up set for
problem (1.2) depends on the mean curvature of the graph of the initial function on its
maximum points.

In this paper we consider a semilinear heat equation having exponential nonlinearity
(1.1), and study the location of the blow-up set B of the solution u.. In particular, we
refine the argument of [3], and characterize the location of the blow-up set of u, of (1.1)
by using the level sets of the initial function ..

Before stating our main results, we introduce some notation. For z € RY and r > 0,
we put B(z,r) = {y e RN : |y — z| < r}. Let

BC.(R) := {f € L°(f2) : f is a nonnegative continuous function on Q},

BUC,(Q) := {f € L™(Q) : f is a nonnegative uniformly continuous function on Q}.

For any € >0, A> 0, > 0, and ¢ € C(R), put

w(e,4,9) = sup {|4(z) — $(w)| : 7,y €V, |z — | < 472},
M(¢,n) = {z € Q: ¢(z) > ||PllLo) —n} -
We are ready to state our main result.

Theorem 1.1 Let N > 1, ¢g > 0, 2 be a domain in RN, and {¢c}o<eces C BCL(Q) be a
family of initial functions satisfying

1. inf o 0 s .
(1.5) odnf lpell Loy > O, 0P ll@ell Loo(2) < 00

Assume the followings:
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e there exists a positive constant n such that M (pe,m) C 2 for all € € (0, €);
e there exists a family of positive constants { A }o<e<e, Such that

lim A, =00, limw(e, Ae, ) = 0.
e—0 e—0

For any € € (0,¢p), let uc be the solution of (1.1), and assume that

(1.6) sup sup [log(Te —t)+ ”UE(t)”Loo(Q)] < 0.
O<e<eg 0<t< T

Then, for any § > 0, there exists a positive constant €5 such that
B. C M(pc,8) = {z € Q: @c(x) = ||pellpoor) — 6}
for all € € (0,¢5).
The following corollary immediately follows from Theorem 1.1.

Corollary 1.1 Let N > 1, ¢g > 0, Q be a domain in RN, and ¢ € BUC.(Q) satisfying
M(p,n) C Q for some n > 0. For any € € (0,¢p), let ue be the solution of
Ou=€eAu+e*, €, t>0,
u(z,t) =0, zed, t>0 if N#D,
u(z,0) =p(z), zE€9Q,
and assume that (1.6) holds. Then, for any 6 > 0, there exists a positive constant €5 such

that
Be C M(p,0) ={z € Q: o(z) = |l@llLe(n) — 0}

for all e € (0,¢;5).

By Theorem 1.1 and Corollary 1.1 we see that the location of the blow-up set for
problem (1.1) is characterized by using the level sets of the initial function.

For the proof of Theorem 1.1, we refine the argument of [3], which is a modification of
[7], and construct a supersolution %, with the following properties:

(a) T exists in Q x (0,T);

(b) For any 6 > 0, @, is bounded in M (g, ) x (0,T;) if € > 0 is sufficiently small.
However, the argument of [3] heavily depends on the nonlinearity, and it seerns difficult
to apply the argument to problem (1.1), which has exponential nonlinearity, directly. In
order to generalize the argument of [3]|, we consider the blow-up problem for a generalized
semilinear heat equation

Ou=eAu+ f(u), z€Q, t>0,
(1.7) u(z,t) =0, zedN, t>0 if 9N#0,
u(z,0) = p(z) >0, z€
We find a sufficient condition of f such that a supersolution satisfying properties (a) and

(b) can be constructed for problem (1.7), and construct a supersolution %, for problem
(1.1). Thus we prove Theorem 1.1.
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2 Outline of the proof of Theorem 1.1

In this section we explain the outline of the proof of Theorem 1.1. In order to prove
Theorem 1.1, we construct a supersolution %, for some semilinear heat equation with the
following properties:

(a) T is a smooth function defined in 2 x (0,7%);
(b) For any é > 0, there holds
sup {Uc(z,t) : (z,t) € [\ M(pe,0)] x (0,T.)} < 00
for all sufficiently simall € > 0.
By using above properties (a) and (b) and the comparison principle, for any z. ¢ M (g, 6),
we can find a constant r. > 0 such that

limsup sup u(z,t) <limsup sup T(x,t) < oo.
t/'Te zEB(Te,re) t/Te zEB(ze,re)

This together with the definition of the blow-up set B, implies that z, € B, and we have
B C M(pe,0) = {w €N: g(x) > l@ell Loy — (5}

for all sufficiently small € > 0.
In order to construct a supersolution ., we impose the following condition (F) on the
nonlinear term f:

( f € C%((0,00)) N C([0, 00)),

f(s), f'(s), f'(s) >0 for all s> 0,
*® ds

Vhore <™

limsup f'(u)F(u) < oo,

uU—00
T e M)
| Hmsup =

< oo for some M > 0,

where o
ds

—_— < 00.
u f(8)
Under condition (F), we can generalize the argument of [3], and construct a supersolution
U, satisfying properties (a) and (b).

F(u) :=

Remark 2.1 The following functions satisfy condition (F):
o f(u)=(u+ AP withp>1and A >0;

o f(u)=uP+u? withp>qg>1,
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e f(u) = (u+1)P[log(u+1)]? withp > 1 and g > 1;
o f(u) =e*" with a > 0.

In the rest of this section we give some comments on condition (F). The third condition
F(1) < o0 is a necessary condition for a finite time blow-up of the solution. If F(1) = oo,
then the solution for the following ordinary differential equation

atC = f(C)a t> Oa
¢(0) =Ar>0,

exists globally in time. Therefore, if F(1) = oo, by the comparison principle we see that
the solution of (1.1) does not blow-up in a finite time.

Furthermore, we can give examples of f which do not satisfy the fourth condition and
the fifth condition. The function define by f(u) = ¥’ satisfies

lim ~ji(—qf—_*_——]\/—[—)zoo for any M > 0,

w—oo  f(u)

and f does not satisfies (F).
Oun the other hand, the function defined by f(u) = (u+ 1)[log(u+1)]* (@ > 1) satisfies

lim f'(u)F(u) = oo,

u—0o0

and f does not satisfy (F). However, if a = 2, then a regional blow-up may occur even if
the initial function has the only one maximum point (see [5]). We suspect that Theorem 1.1
does not hold for problem (1.1) with f(u) = (u + 1)[log(u + 1)]2.

3 Blow-up problem for generalized semilinear heat equation

In this section we consider the blow-up problem for (1.7), and generalize the result of
Section 1. Using the argument of Section 2, we have the following theorem.

Theorem 3.1 Let N > 1, ¢ > 0,  be a domain in RN, and {petoce<e, C BC.(9) be a
family of initial functions satisfying (1.5). Assume the followings:

o there exists a poéitz’ve constant n) such that M(pe,n) C 2 for all € € (0,€p);
e there erists a family of positive constants { Ac}o<e<e, Such that

lim A, = oo, lir%w(e,Ae, we) =0.

e—0

Let f be a function satisfying (F). For any € € (0,€p), let u. be the solution of (1.7).
Furthermore assume that there exists a constant c. > 0 such that

(3.1) llete (@)l zoo() < F~Heu(Te — 1))
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for allt € (0,T.) and € € (0,¢), where F~1 is the inverse function of F. Then, for any
d > 0, there exists a positive constant €5 such that

B. C M(p,0) ={z € Q: p(z) > ol oo 2y — 6}
for all € € (0,¢5).

Theorem 3.1 is a generalization of Theorem 1.1. In fact, it is easy to show that the
functions f(u) =u? (p > 1) and f(u) = e* satisfy (F). Furthermore, (3.1) is equivalent to
(1.3) if f(u) =uP (p > 1) and (1.6) if f(u) = €*.

Remark 3.1 (i) Let f and g be functions satisfying (F). Then, for any a > 0 and § > 0,
the function af + Bg also satisfies (F).

(ii) Let €g > 0 and {pe}o<e<e, € BC+(2) N CL(N) \ {0} satisfying

lim /2| Vel Loy = 0.
Put A = [1/2|| V|| me)]"l/ 2. Then limo A = oo and there holds
loe(@) = 0e@)] < IV@ell Loyl — yl < €2 Vel Leoqqr) - Ae = AT' =0 as €—0

for allz, y € Q with |z — y| < A€l/?, that s, {Ac}o<e<es and {@Pelo<e<e, satisfy (1.5).

(iii) Let g > 0, 2 be a C? smooth domain, f be a function satisfying (F), and {@c}o<e<es C
C?(2) be a family of nonnegative functions satisfying (1.5), and ¢ = 0 on 09Q2. Furthermore
assume that there exist a function F € C?([0,00]) and a positive constant c such that

F(s)>0, F'(s)>0, F’(s)>0 in s€[0,00),
f'()F(s) — f(s)F'(s) > cF'(s)F(s) in s € (0,00),
* ds
/1 5 <
which was introduced by Friedman and McLeod in [1]. If there holds either

(a) f(0) =0 and there exists a constant 6 € (0,1) such that eApe + f(pe) > 6f(pe) in 2
for all sufficiently small e > 0

or
(b) there ezxist a subdomain ¥ CC Q and positive constants C and é such that
ue(z,t) < C in [Q \W] X (0,Te), €Ape+ f(pe) =6 in Q,
for all sufficiently small e > 0,

then we can prove the uniform blow-up estimate (3.1) by using the same argument as in [1].
Condition (b) is verified if () is a bounded convex domain and there ezist positive constants
C and 6 such that

[V2p¢| < C near 8%, 08¢ /v < —6 on 0N, eAp+ f(pe) >3 in Q,

for all sufficiently small € > 0, where v is the outer normal unit vector to 0.



4 Remarks

In this section we discuss the application of Theorem 1.1, and give an extension of Theo-
rem 1.1 for more general superlinear heat equations.
Consider

(41) { O = Av + €Y, zeRY, ¢t>0,

v(z,0) = ¢(z) >0, zeRY,

where N > 1 and ¢ € BC4(R"). Let T be the blow-up time of v, and assume that there
exists a positive constant C such that

(4.2) log(T — t) + [[v()l|zoey < C

for all t € (0,T). Here we remark that the solution of (4.1) blows up in a finite time since
the initial function ¢ is nonnegative. Let € > 0 be a sufficiently small coustant and put

ue(z,t) =loge+v(z, T —e+et) in RN x[0,1),
©e(z) = ue(x,0) =loge+v(z, T —¢) in RV,

Then u, blows up at t = 1 and satisfies

Oiue = eAu. +e¥% in RN x (0,1),
ue(z,0) = pe() in RN7

and by (4.2) we obtain
uc(z,t) < loge + [[v(t)]| peomny < loge + [C — log(T — (T — € +€t))] < C —log(1 —t)

for all (x,t) € RN x (0,1), which implies the uniform blow-up estimate for u.. Therefore,
under suitable assumptions on ¢ and ¢, we can apply Theorem 1.1 to obtain the location of
the blow-up set of v. Similar argument was employed in [4] for a semilinear heat equation
with power nonlinearity, and the author of this paper and Ishige succeeded in obtaining
the location of the blow-up set (see also Remark 1.2 (ii) in [3]).

On the other hand, the above argument can be applied to study the location of the
blow-up set even if the equation does not have a self-similarity. For this purpose, we give
an extension of Theorem 1.1 for more general superlinear heat equation whose nonlinear
term depends on ¢. Consider

Oru = eAu + fe(u), ze, t>0,
(4.3) u(z,t) =0, z€edN, t>0 if N#0,
u(z,0) = ¢e(z) 2 0(#0), z€,

137
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where €9 > 0, {Qeclocecee, C BC+(Q) satisfies (1.5), and {fe}oceceo C C'([0,00)) N
C?%((0,0)) satisfies

( lim inf fe(s), lim inf fl(s), lim inf f(s) >0 forall se (0,00),

limsup f.(s), limsup f/(s), limsup f/'(s) < oo forall s € (0,),
e—0 €— e—0

limsup Fy,(s) < oo forall s>0,

(Fe) { e—0 f ( )

limsup sup fe(u)Fy (u) < oo,
u—oo 0<e<ep

limsup sup M < oo forsome M >0.
u—oo O<e<eq Je(ut)

\

Then we can prove the following theorem with a slight modification of the argument of
this paper, which is an extension of Theorem 1.1.

Theorem 4.1 Let N > 1, g > 0, 2 be a domain in RY, and {©pc}o<e<ee € BC+()
satisfying (1.5). Let {f<}o<e<eo e a family of functions satisfying (Fe). For any € € (0, €0),
let u be the solution of (4.3), and assume that there exists a positive constant c, such that

llee (@)l ooy < F, ' (ea(Te — ¢))
for allt € (0,T.) and all € € (0,€p). Then, for any 6 > 0, there holds
Be C M(pe,0) = {x €e: pe(z) > ”‘P6||L°°(SZ) - 5}
for all sufficiently small € > 0.
We apply Theorem 4.1 to the blow-up problem for a semilinear heat equation

ov=Av+vP+vi, €, t>0,
(4.4) v(z,t) =0, z€eoN, t>0 if 00 #0,
v(z,0) = ¢(z) >0, z€,

where 1 < g < p and ¢ € BC, (). Assume that the solution of (4.4) blows up at some
time t = T < oo and that there exists a positive constant C such that

__1
(4.5) vl oy < C(T —t) 771
for all t € (0,T). Let € > 0 be a sufficiently small constant and put
ue(z,t) = ep+1v(a:,T —e+et) in RN x[0,1),

Pe(z) = ue(z,0) = ez’+lv(x,T —¢) in RV,
f(s) =sP+er-is? in (0,00).



Then {fc}o<e<e, satisfies (Fe) for some positive constant ¢, and wu, satisfies

Oue = €Aue + fe(ue) in Qx(0,1),
ue(z,t) =0 on 80 x(0,1),
Ue(z, 0) = @e(z) in Q.

Furthermore, by (4.5) we have
S
lue()ll Lo () < C(1 —t) 71
for all ¢ € (0,1). This yields
lue@)ll Loy < F7 e (1 — 1))
f

for some constant ¢, > 0, provided that ¢ > 0 is sufficiently small. Therefore, under
suitable assumptions, we can apply Theorem 4.1 to problem (4.4), and obtain the location
of the blow-up set of v by using the maximum points of the solution just before the blow-up
time.
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