Blow-up set for a semilinear heat equation with exponential nonlinearity

東北大学大学院理学研究科数学専攻 藤嶋 陽平 (Yohei Fujishima)¹
Mathematical Institute, Tohoku University

1 Introduction

We consider the blow-up problem for a semilinear heat equation

(1.1)
$$\begin{cases} \partial_t u = \epsilon \Delta u + e^u, & x \in \Omega, \ t > 0, \\ u(x,t) = 0, & x \in \partial \Omega, \ t > 0, \\ u(x,0) = \varphi_{\epsilon}(x) \ge 0 \ (\not\equiv 0), & x \in \Omega, \end{cases}$$

where $\partial_t = \partial/\partial t$, $\epsilon > 0$, $N \ge 1$, Ω is a bounded domain in \mathbf{R}^N , and the initial function φ_{ϵ} is a nonnegative bounded continuous function in $\overline{\Omega}$. Let T_{ϵ} be the maximal existence time of the unique classical solution u_{ϵ} of problem (1.1). If $T_{\epsilon} < \infty$, then we define the set B_{ϵ} by

$$B_{\epsilon} := \big\{ x \in \overline{\Omega} : \text{ there exists a sequence } \{(x_n, t_n)\} \subset \overline{\Omega} \times (0, T_{\epsilon}) \\ \text{ such that } \lim_{n \to \infty} (x_n, t_n) = (x, T_{\epsilon}) \text{ and } \lim_{n \to \infty} |u(x_n, t_n)| = \infty \big\}.$$

We call T_{ϵ} and B_{ϵ} the blow-up time and the blow-up set, respectively. We remark that, if ϵ is sufficiently small, then $T_{\epsilon} < \infty$ and the solution u_{ϵ} blows up in a finite time.

The blow-up problem for a semilinear heat equation has been studied by many mathematicians. We refer to a survey [6] and references therein. Among others, the author of this paper and Ishige in [3] studied the blow-up problem for

(1.2)
$$\begin{cases} \partial_t u = \epsilon \Delta u + u^p, & x \in \Omega, \ t > 0, \\ u(x,t) = 0, & x \in \partial \Omega, \ t > 0, \\ u(x,0) = \varphi_{\epsilon}(x) \ge 0 \ (\not\equiv 0), & x \in \Omega, \end{cases}$$

where p > 1. Consider a family of initial functions $\{\varphi_{\epsilon}\}$ satisfying

$$\liminf_{\epsilon \to 0} \|\varphi_\epsilon\|_{L^\infty(\Omega)} > 0, \quad \limsup_{\epsilon \to 0} \|\varphi_\epsilon\|_{L^\infty(\Omega)} < \infty, \quad \varphi_\epsilon = 0 \ \, \text{on} \ \, \partial\Omega,$$

and

$$\lim_{\epsilon \to 0} \sup \left\{ |\varphi_{\epsilon}(x) - \varphi_{\epsilon}(y)| : x, y \in \overline{\Omega}, |x - y| \le \epsilon^{1/2 - A} \right\} = 0 \text{ for some } A > 0.$$

¹e-mail: sa8m31@math.tohoku.ac.jp

They studied the location of the blow-up set for problem (1.2), and proved the following: Let u_{ϵ} be the solution of (1.2) satisfying

(1.3)
$$\limsup_{\epsilon \to 0} \sup_{0 < t < T_{\epsilon}} (T_{\epsilon} - t)^{1/(p-1)} ||u_{\epsilon}(t)||_{L^{\infty}(\Omega)} < \infty.$$

Then, for any $\delta > 0$, there holds

$$(1.4) B_{\epsilon} \subset \{x \in \overline{\Omega} : \varphi_{\epsilon}(x) \ge \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} - \delta\}$$

for all sufficiently small $\epsilon > 0$. Since $\delta > 0$ is arbitrary, we see from (1.4) that the solution u_{ϵ} of problem (1.2) blows up only near the maximum points of the initial function φ_{ϵ} if $\epsilon > 0$ is sufficiently small.

Furthermore, if the initial function is independent of ϵ , then we can obtain more precise information on the location of the blow-up set. In fact, the author of this paper and Ishige in [4] proved the following: Let $\varphi \in C^2(\Omega) \cap C(\overline{\Omega})$ be a nonnegative function such that $\varphi \not\equiv 0$ and u_{ϵ} be the solution of (1.2) satisfying (1.3) with the initial function replaced by φ . Assume that there exist two points $\alpha, \beta \in \Omega$ such that $|\Delta \varphi(\alpha)| < |\Delta \varphi(\beta)|$. Then there exists a positive constant δ_* such that

$$B_{\epsilon} \cap \{y \in \overline{\Omega} : |y - \beta| < \delta_*\} = \emptyset$$

for all sufficiently small $\epsilon > 0$. This result implies that the location of the blow-up set for problem (1.2) depends on the mean curvature of the graph of the initial function on its maximum points.

In this paper we consider a semilinear heat equation having exponential nonlinearity (1.1), and study the location of the blow-up set B_{ϵ} of the solution u_{ϵ} . In particular, we refine the argument of [3], and characterize the location of the blow-up set of u_{ϵ} of (1.1) by using the level sets of the initial function φ_{ϵ} .

Before stating our main results, we introduce some notation. For $x \in \mathbb{R}^N$ and r > 0, we put $B(x,r) = \{y \in \mathbb{R}^N : |y-x| < r\}$. Let

$$BC_+(\overline{\Omega}):=\{f\in L^\infty(\Omega): f ext{ is a nonnegative continuous function on } \overline{\Omega}\},$$

$$BUC_{+}(\overline{\Omega}):=\{f\in L^{\infty}(\Omega): f \text{ is a nonnegative uniformly continuous function on } \overline{\Omega}\}.$$

For any $\epsilon > 0$, A > 0, $\eta > 0$, and $\phi \in C(\overline{\Omega})$, put

$$\omega(\epsilon,A,\phi) := \sup\left\{|\phi(x)-\phi(y)|: \, x,y\in\overline{\Omega}, \, |x-y| \leq A\epsilon^{1/2}
ight\}, \ M(\phi,\eta) := \left\{x\in\overline{\Omega}: \, \phi(x) \geq \|\phi\|_{L^{\infty}(\Omega)} - \eta
ight\}.$$

We are ready to state our main result.

Theorem 1.1 Let $N \geq 1$, $\epsilon_0 > 0$, Ω be a domain in \mathbf{R}^N , and $\{\varphi_{\epsilon}\}_{0 < \epsilon < \epsilon_0} \subset BC_+(\overline{\Omega})$ be a family of initial functions satisfying

(1.5)
$$\inf_{0 < \epsilon < \epsilon_0} \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} > 0, \quad \sup_{0 < \epsilon < \epsilon_0} \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} < \infty.$$

Assume the followings:

- there exists a positive constant η such that $M(\varphi_{\epsilon}, \eta) \subset \Omega$ for all $\epsilon \in (0, \epsilon_0)$;
- there exists a family of positive constants $\{A_{\epsilon}\}_{0<\epsilon<\epsilon_0}$ such that

$$\lim_{\epsilon \to 0} A_{\epsilon} = \infty, \quad \lim_{\epsilon \to 0} \omega(\epsilon, A_{\epsilon}, \varphi_{\epsilon}) = 0.$$

For any $\epsilon \in (0, \epsilon_0)$, let u_{ϵ} be the solution of (1.1), and assume that

(1.6)
$$\sup_{0 < \epsilon < \epsilon_0} \sup_{0 < t < T_{\epsilon}} \left[\log(T_{\epsilon} - t) + \|u_{\epsilon}(t)\|_{L^{\infty}(\Omega)} \right] < \infty.$$

Then, for any $\delta > 0$, there exists a positive constant ϵ_{δ} such that

$$B_{\epsilon} \subset M(\varphi_{\epsilon}, \delta) = \{ x \in \overline{\Omega} : \varphi_{\epsilon}(x) \ge \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} - \delta \}$$

for all $\epsilon \in (0, \epsilon_{\delta})$.

The following corollary immediately follows from Theorem 1.1.

Corollary 1.1 Let $N \geq 1$, $\epsilon_0 > 0$, Ω be a domain in \mathbf{R}^N , and $\varphi \in BUC_+(\overline{\Omega})$ satisfying $M(\varphi, \eta) \subset \Omega$ for some $\eta > 0$. For any $\epsilon \in (0, \epsilon_0)$, let u_{ϵ} be the solution of

$$\left\{ \begin{array}{ll} \partial_t u = \epsilon \Delta u + e^u, & x \in \Omega, \ t > 0, \\ u(x,t) = 0, & x \in \partial \Omega, \ t > 0 \quad \text{if} \quad \partial \Omega \neq \emptyset, \\ u(x,0) = \varphi(x), & x \in \Omega, \end{array} \right.$$

and assume that (1.6) holds. Then, for any $\delta > 0$, there exists a positive constant ϵ_{δ} such that

$$B_{\epsilon} \subset M(\varphi, \delta) = \{x \in \overline{\Omega} : \varphi(x) \ge \|\varphi\|_{L^{\infty}(\Omega)} - \delta\}$$

for all $\epsilon \in (0, \epsilon_{\delta})$.

By Theorem 1.1 and Corollary 1.1 we see that the location of the blow-up set for problem (1.1) is characterized by using the level sets of the initial function.

For the proof of Theorem 1.1, we refine the argument of [3], which is a modification of [7], and construct a supersolution \overline{u}_{ϵ} with the following properties:

- (a) \overline{u}_{ϵ} exists in $\Omega \times (0, T_{\epsilon})$;
- (b) For any $\delta > 0$, \overline{u}_{ϵ} is bounded in $M(\varphi_{\epsilon}, \delta) \times (0, T_{\epsilon})$ if $\epsilon > 0$ is sufficiently small.

However, the argument of [3] heavily depends on the nonlinearity, and it seems difficult to apply the argument to problem (1.1), which has exponential nonlinearity, directly. In order to generalize the argument of [3], we consider the blow-up problem for a generalized semilinear heat equation

(1.7)
$$\begin{cases} \partial_t u = \epsilon \Delta u + f(u), & x \in \Omega, \ t > 0, \\ u(x,t) = 0, & x \in \partial \Omega, \ t > 0 \text{ if } \partial \Omega \neq \emptyset, \\ u(x,0) = \varphi_{\epsilon}(x) \ge 0, \ x \in \Omega. \end{cases}$$

We find a sufficient condition of f such that a supersolution satisfying properties (a) and (b) can be constructed for problem (1.7), and construct a supersolution \overline{u}_{ϵ} for problem (1.1). Thus we prove Theorem 1.1.

2 Outline of the proof of Theorem 1.1

In this section we explain the outline of the proof of Theorem 1.1. In order to prove Theorem 1.1, we construct a supersolution \overline{u}_{ϵ} for some semilinear heat equation with the following properties:

- (a) \overline{u}_{ϵ} is a smooth function defined in $\Omega \times (0, T_{\epsilon})$;
- (b) For any $\delta > 0$, there holds

$$\sup \left\{ \overline{u}_{\epsilon}(x,t) : (x,t) \in \left[\Omega \setminus M(\varphi_{\epsilon},\delta)\right] \times (0,T_{\epsilon}) \right\} < \infty$$

for all sufficiently small $\epsilon > 0$.

By using above properties (a) and (b) and the comparison principle, for any $x_{\epsilon} \notin M(\varphi_{\epsilon}, \delta)$, we can find a constant $r_{\epsilon} > 0$ such that

$$\limsup_{t\nearrow T_\epsilon}\sup_{x\in B(x_\epsilon,r_\epsilon)}u_\epsilon(x,t)\leq \limsup_{t\nearrow T_\epsilon}\sup_{x\in B(x_\epsilon,r_\epsilon)}\overline{u}_\epsilon(x,t)<\infty.$$

This together with the definition of the blow-up set B_{ϵ} implies that $x_{\epsilon} \notin B_{\epsilon}$, and we have

$$B_{\epsilon} \subset M(\varphi_{\epsilon}, \delta) = \left\{ x \in \overline{\Omega} : \varphi_{\epsilon}(x) \ge \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} - \delta \right\}$$

for all sufficiently small $\epsilon > 0$.

In order to construct a supersolution \overline{u}_{ϵ} , we impose the following condition (F) on the nonlinear term f:

$$\begin{cases} f \in C^2((0,\infty)) \cap C^1([0,\infty)), \\ f(s), f'(s), f''(s) > 0 \text{ for all } s > 0, \\ \int_1^\infty \frac{ds}{f(s)} < \infty, \\ \limsup_{u \to \infty} f'(u)F(u) < \infty, \\ \limsup_{u \to \infty} \frac{f(u+M)}{f(u)} < \infty \text{ for some } M > 0, \end{cases}$$

where

$$F(u) := \int_{u}^{\infty} \frac{ds}{f(s)} < \infty.$$

Under condition (F), we can generalize the argument of [3], and construct a supersolution \overline{u}_{ϵ} satisfying properties (a) and (b).

Remark 2.1 The following functions satisfy condition (F):

- $f(u) = (u + \lambda)^p$ with p > 1 and $\lambda \ge 0$;
- $f(u) = u^p + u^q$ with p > q > 1;

- $f(u) = (u+1)^p [\log(u+1)]^q$ with p > 1 and q > 1;
- $f(u) = e^{\alpha u}$ with $\alpha > 0$.

In the rest of this section we give some comments on condition (F). The third condition $F(1) < \infty$ is a necessary condition for a finite time blow-up of the solution. If $F(1) = \infty$, then the solution for the following ordinary differential equation

$$\begin{cases} \partial_t \zeta = f(\zeta), & t > 0, \\ \zeta(0) = \lambda > 0, \end{cases}$$

exists globally in time. Therefore, if $F(1) = \infty$, by the comparison principle we see that the solution of (1.1) does not blow-up in a finite time.

Furthermore, we can give examples of f which do not satisfy the fourth condition and the fifth condition. The function define by $f(u) = e^{u^2}$ satisfies

$$\lim_{u\to\infty}\frac{f(u+M)}{f(u)}=\infty\quad\text{for any}\quad M>0,$$

and f does not satisfies (F).

On the other hand, the function defined by $f(u) = (u+1)[\log(u+1)]^{\alpha}$ ($\alpha > 1$) satisfies

$$\lim_{u \to \infty} f'(u)F(u) = \infty,$$

and f does not satisfy (F). However, if $\alpha = 2$, then a regional blow-up may occur even if the initial function has the only one maximum point (see [5]). We suspect that Theorem 1.1 does not hold for problem (1.1) with $f(u) = (u+1)[\log(u+1)]^2$.

3 Blow-up problem for generalized semilinear heat equation

In this section we consider the blow-up problem for (1.7), and generalize the result of Section 1. Using the argument of Section 2, we have the following theorem.

Theorem 3.1 Let $N \ge 1$, $\epsilon_0 > 0$, Ω be a domain in \mathbf{R}^N , and $\{\varphi_{\epsilon}\}_{0 < \epsilon < \epsilon_0} \subset BC_+(\overline{\Omega})$ be a family of initial functions satisfying (1.5). Assume the followings:

- there exists a positive constant η such that $M(\varphi_{\epsilon}, \eta) \subset \Omega$ for all $\epsilon \in (0, \epsilon_0)$;
- there exists a family of positive constants $\{A_{\epsilon}\}_{0<\epsilon<\epsilon_0}$ such that

$$\lim_{\epsilon \to 0} A_{\epsilon} = \infty, \quad \lim_{\epsilon \to 0} \omega(\epsilon, A_{\epsilon}, \varphi_{\epsilon}) = 0.$$

Let f be a function satisfying (F). For any $\epsilon \in (0, \epsilon_0)$, let u_{ϵ} be the solution of (1.7). Furthermore assume that there exists a constant $c_* > 0$ such that

(3.1)
$$||u_{\epsilon}(t)||_{L^{\infty}(\Omega)} \leq F^{-1}(c_{*}(T_{\epsilon}-t))$$

for all $t \in (0, T_{\epsilon})$ and $\epsilon \in (0, \epsilon_0)$, where F^{-1} is the inverse function of F. Then, for any $\delta > 0$, there exists a positive constant ϵ_{δ} such that

$$B_{\epsilon} \subset M(\varphi, \delta) = \{ x \in \overline{\Omega} : \varphi(x) \ge \|\varphi\|_{L^{\infty}(\Omega)} - \delta \}$$

for all $\epsilon \in (0, \epsilon_{\delta})$.

Theorem 3.1 is a generalization of Theorem 1.1. In fact, it is easy to show that the functions $f(u) = u^p$ (p > 1) and $f(u) = e^u$ satisfy (F). Furthermore, (3.1) is equivalent to (1.3) if $f(u) = u^p$ (p > 1) and (1.6) if $f(u) = e^u$.

Remark 3.1 (i) Let f and g be functions satisfying (F). Then, for any $\alpha > 0$ and $\beta > 0$, the function $\alpha f + \beta g$ also satisfies (F).

(ii) Let $\epsilon_0 > 0$ and $\{\varphi_{\epsilon}\}_{0 < \epsilon < \epsilon_0} \subset BC_+(\overline{\Omega}) \cap C^1(\Omega) \setminus \{0\}$ satisfying

$$\lim_{\epsilon \to 0} \epsilon^{1/2} \|\nabla \varphi_{\epsilon}\|_{L^{\infty}(\Omega)} = 0.$$

Put $A_{\epsilon} = [\epsilon^{1/2} \| \nabla \varphi_{\epsilon} \|_{L^{\infty}(\Omega)}]^{-1/2}$. Then $\lim_{\epsilon \to 0} A_{\epsilon} = \infty$ and there holds

$$|\varphi_{\epsilon}(x) - \varphi_{\epsilon}(y)| \leq \|\nabla \varphi_{\epsilon}\|_{L^{\infty}(\Omega)} |x - y| \leq \epsilon^{1/2} \|\nabla \varphi_{\epsilon}\|_{L^{\infty}(\Omega)} \cdot A_{\epsilon} = A_{\epsilon}^{-1} \to 0 \quad as \quad \epsilon \to 0$$

for all $x, y \in \overline{\Omega}$ with $|x - y| \le A_{\epsilon} \epsilon^{1/2}$, that is, $\{A_{\epsilon}\}_{0 < \epsilon < \epsilon_0}$ and $\{\varphi_{\epsilon}\}_{0 < \epsilon < \epsilon_0}$ satisfy (1.5).

(iii) Let $\epsilon_0 > 0$, Ω be a C^2 smooth domain, f be a function satisfying (F), and $\{\varphi_{\epsilon}\}_{0<\epsilon<\epsilon_0} \subset C^2(\Omega)$ be a family of nonnegative functions satisfying (1.5), and $\varphi_{\epsilon} = 0$ on $\partial\Omega$. Furthermore assume that there exist a function $F \in C^2([0,\infty])$ and a positive constant c such that

$$\left\{ \begin{array}{ll} F(s)>0, \quad F'(s)\geq 0, \quad F''(s)\geq 0 \quad \text{in} \quad s\in [0,\infty), \\ f'(s)F(s)-f(s)F'(s)\geq cF'(s)F(s) \quad \text{in} \quad s\in (0,\infty), \\ \int_{1}^{\infty}\frac{ds}{F(s)}<\infty, \end{array} \right.$$

which was introduced by Friedman and McLeod in [1]. If there holds either

(a) f(0) = 0 and there exists a constant $\delta \in (0,1)$ such that $\epsilon \Delta \varphi_{\epsilon} + f(\varphi_{\epsilon}) \geq \delta f(\varphi_{\epsilon})$ in Ω for all sufficiently small $\epsilon > 0$

or

(b) there exist a subdomain $\Omega' \subset\subset \Omega$ and positive constants C and δ such that

$$u_{\epsilon}(x,t) \leq C \text{ in } [\Omega \setminus \overline{\Omega'}] \times (0,T_{\epsilon}), \quad \epsilon \Delta \varphi_{\epsilon} + f(\varphi_{\epsilon}) \geq \delta \text{ in } \Omega,$$

for all sufficiently small $\epsilon > 0$,

then we can prove the uniform blow-up estimate (3.1) by using the same argument as in [1]. Condition (b) is verified if Ω is a bounded convex domain and there exist positive constants C and δ such that

$$|\nabla^2 \varphi_{\epsilon}| \leq C \ \ near \ \partial \Omega, \quad \partial \varphi_{\epsilon}/\partial \nu \leq -\delta \ \ on \ \partial \Omega, \quad \epsilon \Delta \varphi_{\epsilon} + f(\varphi_{\epsilon}) \geq \delta \ \ in \ \Omega,$$

for all sufficiently small $\epsilon > 0$, where ν is the outer normal unit vector to $\partial\Omega$.

4 Remarks

In this section we discuss the application of Theorem 1.1, and give an extension of Theorem 1.1 for more general superlinear heat equations.

Consider

(4.1)
$$\begin{cases} \partial_t v = \Delta v + e^v, & x \in \mathbf{R}^N, \ t > 0, \\ v(x,0) = \phi(x) \ge 0, \ x \in \mathbf{R}^N, \end{cases}$$

where $N \ge 1$ and $\phi \in BC_+(\mathbf{R}^N)$. Let T be the blow-up time of v, and assume that there exists a positive constant C such that

$$(4.2) \qquad \log(T-t) + \|v(t)\|_{L^{\infty}(\Omega)} \le C$$

for all $t \in (0,T)$. Here we remark that the solution of (4.1) blows up in a finite time since the initial function ϕ is nonnegative. Let $\epsilon > 0$ be a sufficiently small constant and put

$$u_{\epsilon}(x,t) = \log \epsilon + v(x,T-\epsilon+\epsilon t)$$
 in $\mathbf{R}^N \times [0,1)$,
 $\varphi_{\epsilon}(x) = u_{\epsilon}(x,0) = \log \epsilon + v(x,T-\epsilon)$ in \mathbf{R}^N .

Then u_{ϵ} blows up at t=1 and satisfies

$$\begin{cases} \partial_t u_{\epsilon} = \epsilon \Delta u_{\epsilon} + e^{u_{\epsilon}} & \text{in} \quad \mathbf{R}^N \times (0, 1), \\ u_{\epsilon}(x, 0) = \varphi_{\epsilon}(x) & \text{in} \quad \mathbf{R}^N, \end{cases}$$

and by (4.2) we obtain

$$u_{\epsilon}(x,t) \leq \log \epsilon + \|v(t)\|_{L^{\infty}(\mathbf{R}^N)} \leq \log \epsilon + [C - \log(T - (T - \epsilon + \epsilon t))] \leq C - \log(1 - t)$$

for all $(x,t) \in \mathbf{R}^N \times (0,1)$, which implies the uniform blow-up estimate for u_{ϵ} . Therefore, under suitable assumptions on ϕ and ϵ , we can apply Theorem 1.1 to obtain the location of the blow-up set of v. Similar argument was employed in [4] for a semilinear heat equation with power nonlinearity, and the author of this paper and Ishige succeeded in obtaining the location of the blow-up set (see also Remark 1.2 (ii) in [3]).

On the other hand, the above argument can be applied to study the location of the blow-up set even if the equation does not have a self-similarity. For this purpose, we give an extension of Theorem 1.1 for more general superlinear heat equation whose nonlinear term depends on ϵ . Consider

(4.3)
$$\begin{cases} \partial_t u = \epsilon \Delta u + f_{\epsilon}(u), & x \in \Omega, \ t > 0, \\ u(x,t) = 0, & x \in \partial \Omega, \ t > 0 \text{ if } \partial \Omega \neq \emptyset, \\ u(x,0) = \varphi_{\epsilon}(x) \ge 0 \ (\not\equiv 0), & x \in \Omega, \end{cases}$$

where $\epsilon_0 > 0$, $\{\varphi_{\epsilon}\}_{0 < \epsilon < \epsilon_0} \subset BC_+(\overline{\Omega})$ satisfies (1.5), and $\{f_{\epsilon}\}_{0 < \epsilon < \epsilon_0} \subset C^1([0,\infty)) \cap C^2((0,\infty))$ satisfies

$$(F_{\epsilon}) \begin{cases} \lim \inf_{\epsilon \to 0} f_{\epsilon}(s), \lim \inf_{\epsilon \to 0} f_{\epsilon}'(s), \lim \inf_{\epsilon \to 0} f_{\epsilon}''(s) > 0 & \text{for all} \quad s \in (0, \infty), \\ \lim \sup_{\epsilon \to 0} f_{\epsilon}(s), \lim \sup_{\epsilon \to 0} f_{\epsilon}'(s), \lim \sup_{\epsilon \to 0} f_{\epsilon}''(s) < \infty & \text{for all} \quad s \in (0, \infty), \\ \lim \sup_{\epsilon \to 0} F_{f_{\epsilon}}(s) < \infty & \text{for all} \quad s > 0, \\ \lim \sup_{u \to \infty} \sup_{0 < \epsilon < \epsilon_{0}} f_{\epsilon}(u) F_{f_{\epsilon}}(u) < \infty, \\ \lim \sup_{u \to \infty} \sup_{0 < \epsilon < \epsilon_{0}} \frac{f_{\epsilon}(u + M)}{f_{\epsilon}(u)} < \infty & \text{for some} \quad M > 0. \end{cases}$$

Then we can prove the following theorem with a slight modification of the argument of this paper, which is an extension of Theorem 1.1.

Theorem 4.1 Let $N \geq 1$, $\epsilon_0 > 0$, Ω be a domain in \mathbb{R}^N , and $\{\varphi_{\epsilon}\}_{0 < \epsilon < \epsilon_0} \subset BC_+(\overline{\Omega})$ satisfying (1.5). Let $\{f_{\epsilon}\}_{0 < \epsilon < \epsilon_0}$ be a family of functions satisfying (F_{ϵ}) . For any $\epsilon \in (0, \epsilon_0)$, let u_{ϵ} be the solution of (4.3), and assume that there exists a positive constant c_* such that

$$||u_{\epsilon}(t)||_{L^{\infty}(\Omega)} \leq F_{f_{\epsilon}}^{-1}(c_{*}(T_{\epsilon}-t))$$

for all $t \in (0, T_{\epsilon})$ and all $\epsilon \in (0, \epsilon_0)$. Then, for any $\delta > 0$, there holds

$$B_{\epsilon} \subset M(\varphi_{\epsilon}, \delta) = \left\{ x \in \overline{\Omega} : \varphi_{\epsilon}(x) \ge \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} - \delta \right\}$$

for all sufficiently small $\epsilon > 0$.

We apply Theorem 4.1 to the blow-up problem for a semilinear heat equation

(4.4)
$$\begin{cases} \partial_t v = \Delta v + v^p + v^q, & x \in \Omega, \ t > 0, \\ v(x,t) = 0, & x \in \partial \Omega, \ t > 0 \quad \text{if} \quad \partial \Omega \neq \emptyset, \\ v(x,0) = \phi(x) \ge 0, & x \in \Omega, \end{cases}$$

where 1 < q < p and $\phi \in BC_+(\overline{\Omega})$. Assume that the solution of (4.4) blows up at some time $t = T < \infty$ and that there exists a positive constant C such that

(4.5)
$$||v(t)||_{L^{\infty}(\Omega)} \le C(T-t)^{-\frac{1}{p-1}}$$

for all $t \in (0,T)$. Let $\epsilon > 0$ be a sufficiently small constant and put

$$\begin{split} u_{\epsilon}(x,t) &= \epsilon^{\frac{1}{p-1}} v(x,T-\epsilon+\epsilon t) \quad \text{in} \quad \mathbf{R}^N \times [0,1), \\ \varphi_{\epsilon}(x) &= u_{\epsilon}(x,0) = \epsilon^{\frac{1}{p-1}} v(x,T-\epsilon) \quad \text{in} \quad \mathbf{R}^N, \\ f_{\epsilon}(s) &= s^p + \epsilon^{\frac{p-q}{p-1}} s^q \quad \text{in} \quad (0,\infty). \end{split}$$

Then $\{f_{\epsilon}\}_{0<\epsilon<\epsilon_0}$ satisfies (F_{ϵ}) for some positive constant ϵ_0 , and u_{ϵ} satisfies

$$\left\{ egin{array}{ll} \partial_t u_\epsilon = \epsilon \Delta u_\epsilon + f_\epsilon(u_\epsilon) & ext{in} & \Omega imes (0,1), \ u_\epsilon(x,t) = 0 & ext{on} & \partial \Omega imes (0,1), \ u_\epsilon(x,0) = arphi_\epsilon(x) & ext{in} & \Omega. \end{array}
ight.$$

Furthermore, by (4.5) we have

$$||u_{\epsilon}(t)||_{L^{\infty}(\Omega)} \leq C(1-t)^{-\frac{1}{p-1}}$$

for all $t \in (0,1)$. This yields

$$||u_{\epsilon}(t)||_{L^{\infty}(\Omega)} \leq F_{f_{\epsilon}}^{-1}(c_{*}(1-t))$$

for some constant $c_* > 0$, provided that $\epsilon > 0$ is sufficiently small. Therefore, under suitable assumptions, we can apply Theorem 4.1 to problem (4.4), and obtain the location of the blow-up set of v by using the maximum points of the solution just before the blow-up time.

References

- [1] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447.
- [2] Y. Fujishima, Location of the blow-up set for a superlinear heat equation with small diffusion, to appear in Differential Integral Equations.
- [3] Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation with small diffusion, J. Differential Equations **249** (2010), 1056–1077.
- [4] Y. Fujishima and K. Ishige, Blow-up set for a semilinear heat equation and pointedness of the initial data, to appear in Indiana Univ. Math. J.
- [5] V. A. Galaktionov and J. L. Vázquez, Regional blow up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal. 24 (1993), 1254–1276.
- [6] P. Quittner and P. Souplet, "Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts: Basler Lehrbücher Birkhäuser Verlag, Basel, 2007.
- [7] H. Yagisita, Blow-up profile of a solution for a nonlinear heat equation with small diffusion, J. Math. Soc. Japan 56 (2004), 993-1005.