Trees and Branching Axioms

Akito Tsuboi (坪井明人)
University of Tsukuba, Institute of Mathematics
(筑波大学数学域)

1 Introduction

First we recall the definition of trees. An ordered set O = (O, <) is called a tree if, for any $a \in I$, the initial segment $O_a = \{b \in O : b < a\}$ is linearly ordered. A mapping $\sigma: O \to O'$, where O and O' are trees, is called a tree embedding if σ preserves <-structure, i.e. $\eta < \nu$ if and only if $\sigma(\eta) <' \sigma(\nu)$. We are mainly interested in trees of the form $\alpha^{<\beta}$, where α and β are ordinals and its order is $<_{ini}$: $\eta <_{ini} \nu \iff \eta$ is a proper initial segment of ν . The lexicographic order on $\alpha^{<\beta}$ is denoted by $<_{lex}$. The meet operator \cap is a binary function that gives the greatest common lower bound.

We introduce the following notations:

- $A \simeq_{l.i.} B$ for expressing that A and B have the seme $\{<_{lex}, <_{ini}\}$ -atomic type.
- $A \simeq_{l.i.c.} B$ for expressing that A and B have the same $\{<_{lex}, <_{ini}, \cap\}$ -atomic type.

Now let M be an L-structure. We consider a set $A \subset M$ whose elements are indexed by a tree. So A has the form $A = (a_{\eta})_{\eta \in O}$, where O is a tree. Such an indexed set is also called a tree. We introduce the notion of indiscernibility for such a tree A.

- A is l.i-indiscernible if whenever $X \simeq_{l.i.} Y$ then $\operatorname{tp}_L(a_X) = \operatorname{tp}_L(a_Y)$, where $a_X = (a_n)_{n \in X}$.
- A is l.i.c-indiscernible if whenever $X \simeq_{l.i.} Y$ then $\operatorname{tp}_L(a_X) = \operatorname{tp}_L(a_Y)$.

In this short note, we seek to find sufficient conditions for $\Gamma(x_{\eta})_{\eta \in O}$ to be realized by an indiscernible tree.

2 Indiscernible Trees

Throughout, let $\sigma^*:\omega^{<\omega}\to\omega^{<\omega}$ be the mapping defined by

$$\langle m_0,\ldots,m_{n-1}\rangle \mapsto \langle 0,m_0,\ldots,0,m_{n-1}\rangle.$$

This σ^* preserves $<_{ini}$, hence it is a tree embedding. $<_{lex}$ is also preserved by σ^* .

Remark 1 Let η, ν be two $<_{ini}$ -incomparable elements. Then $\sigma^*(\eta \cap \nu)$ is a proper initial segment of $\sigma^*(\eta) \cap \sigma^*(\nu)$. So, A and σ^*A do not have the same l.i.c.-atomic type, unless A is linearly ordered.

Definition 2 Let $A \subset \omega^{<\omega}$ be a finite set. We say that A is a broom set if there are $\eta_0, ..., \eta_{n-1}$ such that

- 1. $\eta_i \cap \eta_j = \eta_{i'} \cap \eta_{j'}$ for any i < j < n and i' < j' < n,
- 2. $A \subset \bigcup_{i < n} \{ \eta_i | j : j \in \omega \}.$

Lemma 3 Let $A, B \subset \omega^{<\omega}$.

- 1. Suppose that A and B be broom sets. Then $A \simeq_{l.i.} B \Rightarrow \sigma^* A \simeq_{l.i.c} \sigma^* B$.
- 2. Suppose $AC \simeq_{l.i.} BC$, where A and B are broom sets. Suppose that for any incomparable $\eta_1, \eta_2 \in A$ and any $\eta \in C$, $\eta_1 \cap \eta <_{ini} \eta_1 \cap \eta_2$. Then $\sigma^*(AC) \simeq_{l.i.c} \sigma^*(BC)$.
- 3. $A \simeq_{l.i.c.} B \Rightarrow \sigma^* A \simeq_{l.i.c} \sigma^* B$.

Proof: 2. We consider the most typical case, where $A = \{\eta_1, \eta_2, \eta_3, \nu\}$, $C = \{\eta\}$, $\nu <_{ini} \eta_i$ (i = 1, 2, 3), $\nu <_{ini} \eta$ and $\eta_1 \cap \eta_2 = \eta_2 \cap \eta_3 = \eta_3 \cap \eta_1$. The l.i.-atomic type of $\sigma^*(A)$ is determined by this data. Moreover, we have $\sigma^*(\nu) <_{ini} \sigma^*(\eta_i) \cap \sigma^*(\eta_j)$ for any i < j, and $\sigma^*(\nu) <_{ini} \sigma^*(\eta_i) \cap \sigma^*(\eta)$. So the l.i.c.-atomic type of $\sigma^*(A)$ is also determined. This argument proves $A \simeq_{l.i.} B \Rightarrow \sigma^*A \simeq_{l.i.} \sigma^*B$.

3. Easy by the remark above.

Now we prepare the variables x_{η} , where η is a member of some fixed tree O. Usually, we are interested in the case $O = \omega^{<\omega}$. Let $\Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$ be a set of L-formulas with free variables from x_{η} 's.

Definition 4 We say that $\Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$ has the subtree property if whenever $I = (a_{\eta})_{\eta \in \omega^{<\omega}}$ realizes $\Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$ and $\sigma : \omega^{<\omega} \to \omega^{<\omega}$ is a tree embedding preserving l.i.c.-structure then $I_{\sigma} = (a_{\sigma(\eta)})_{\eta \in \omega^{<\omega}}$ realizes $\Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$.

Lemma 5 Let $\Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$ be a consitent set having the subsequence property. Let λ be an infinite cardinal. Then there is a set $J = (a_{\eta})_{\eta \in \lambda^{<\omega}}$ such that for any $\{<_{lex}, <_{ini}, <_{len}, P_n\}$ -embedding $\sigma : \omega^{<\omega} \to \lambda^{<\omega}$ the set $J_{\sigma} = (a_{\sigma(\eta)})_{\eta \in \omega^{<\omega}}$ realizes $\Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$.

Proof: For $A, B \subset \lambda^{<\omega}$, we write $A \simeq^+ B$ if A and B have the same atomic type in the language $L_{l.i.c.l.} \cup \{P_n\}_{n \in \omega}$. We prepare new variables x_{η} $(\eta \in \lambda^{<\omega} \setminus \omega^{<\omega})$. Let $\Gamma^*((x_{\eta})_{\eta \in \lambda^{<\omega}})$ be the set obtained from $\Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$ by adding all formulas $\varphi(x_A)$ with $A \subset \lambda^{<\omega}$ such that $\varphi(x_B) \in \Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$ for some $B \simeq^+ A$. First we show

Claim A Γ^* is consistent.

Otherwise, there are $\varphi_i(x_{A_i})$ and B_i (i < n) such that

1.
$$A_i \simeq^+ B_i$$
 and $\varphi_i(x_{B_i}) \in \Gamma((x_{\eta})_{\eta \in \omega^{<\omega}})$ $(i < n)$, and

2.
$$\Gamma \vdash \bigvee_{i < n} \neg \varphi_i(x_{A_i})$$
.

By compactness, there is a finite set $\Gamma_0 \subset \Gamma$ such that $\Gamma_0 \vdash \bigvee_{i < n} \neg \varphi_i(x_{A_i})$. Hence, we can assume A_i 's are subsets of $\omega^{<\omega}$. Let $N = \max\{\eta(n) : \eta \in \bigcup_i B_i, n \in \omega\}$ and let σ_N be the shift function mapping $\eta = \langle \eta(0), ..., \eta(n-1) \rangle$ to $\langle \eta(0) + N, ..., \eta(n-1) + N \rangle$. Then, by the subtree property, we have

$$\Gamma((x_{\eta})_{\eta \in \omega^{<\omega}}) \vdash \Gamma((x_{\sigma_N(\eta)})_{\eta \in \omega^{<\omega}}) \vdash \bigvee_{i < n} \neg \varphi_i(x_{\sigma_N(A_i)}).$$

From this, by replacing A_i with σA_i , we can assume that $A_i \subset (\omega \setminus N)^{<\omega}$. Hence, for each i, there is a tree embedding σ_i that maps B_i to A_i . Choose a set $(a_{\eta})_{\eta \in \omega < \omega}$ realizing Γ . By the property 2, there is i < n such that $\neg \varphi(a_{A_i})$ holds. On the other hand, we have $\varphi(x_{B_i}) \in \Gamma$ and $\sigma_i(B_i) = A_i$. Therefore, by the subtree property, we must have $\varphi(a_{A_i})$. A contradiction.

Claim B Let $(a_{\eta})_{\eta}$ be a realization of Γ^* . Then $(a_{\eta})_{\eta}$ has the desired condition.

Lemma 6 Let $\Gamma((x_{\eta})_{\eta \in \omega} < \omega)$ be consistent and suppose that Γ has the subtree property. Then Γ is realized by an l.i.c.-indiscernible tree.

Proof: By Theorem 2.6 of [2, AP], since the width of the tree can be made arbitrarily large, we may assume that the tree $(a_{\eta})_{\eta \in \omega^{<\omega}}$ is an indiscernible tree in Shelah's sense. So, by Ramsey's theorem, we can choose an indiscernible tree $I = (a_{\eta})_{\eta \in \omega^{<\omega}}$ satisfying Γ such that if A and B have the same atomic type in the language $L_{l.i.c.l.} = L_{l.i.c.} \cup \{<_{len}\}$ then a_A and a_B have the same L-type, where $\eta <_{len} \nu$ means that the length of η is less than that of ν .

By compactness, we can assume that the index set of I is $\omega^{<\kappa}$, where κ is very large. By induction on $n \in \omega$, we show that there is an l.i.-preserving mapping σ_n from $\omega^{< n}$ to I such that if $\eta <_{lex} \nu$ then $\sigma_n(\eta) <_{len} \sigma_n(\nu)$.

Suppose we have defined σ_n . Since κ is sufficiently large, there is $\kappa_0 < \kappa$ such that the lengths of $\sigma_n(\eta)$ ($\eta \in \text{dom}(\sigma_n)$) are all less than κ_0 . Now we define σ_{n+1} by the equation

$$\sigma_{n+1}(\langle i \rangle \hat{ } \eta) = \underbrace{\langle i, i, \dots \rangle}_{\kappa_0 \cdot i} \hat{ } \sigma_n(\eta).$$

This definition implies that $\kappa_0 \cdot i \leq len(\sigma_{n+1}(\langle i \rangle \hat{\eta})) < \kappa_0 \cdot (i+1)$. So, in particular, we have $len(\sigma_{n+1}(\langle i \rangle \hat{\eta}) < len(\sigma_{n+1}(\langle i' \rangle \hat{\eta}'))$, if i < i'. By induction on the length of η , we can prove:

Claim A $\sigma_{n+1}(\eta^{\hat{}}\nu) = \sigma_n(\eta)^{\hat{}}\sigma_n(\nu)$, if $\eta, \nu \in \text{dom}(\sigma_n)$.

So, σ_{n+1} preserves *l.i.c.*-structure of the tree. Now we show:

Claim B
$$\eta <_{lex} \eta' \Rightarrow \sigma_{n+1}(\eta) <_{len} \sigma_{n+1}(\eta')$$
.

For proving this claim, let $\nu = \eta \cap \eta'$. If $\eta <_{len} \eta'$ (i.e. $\nu = \eta$), then clearly we have $\sigma_{n+1}(\eta) <_{len} \sigma_{n+1}(\eta')$. So we can assume $len(\nu) > 0$, $\eta = \nu^{\hat{}}\langle i \rangle^{\hat{}} \eta_0$, $\eta' = \nu^{\hat{}}\langle i' \rangle^{\hat{}} \eta'_0$, and i < i'. By Claim A, using the induction hypothesis, we have

$$len(\sigma_{n+1}(\eta)) = len(\sigma_n(\nu)) + len(\sigma_n(\langle i \rangle \hat{\eta}_0))$$

$$< len(\sigma_n(\nu)) + len(\sigma_n(\langle i' \rangle \hat{\eta}_0'))$$

$$= len(\sigma_{n+1}(\eta')).$$

Thus Claim B was shown, and σ_{n+1} has the required property. We have shown the existence of σ_n 's for all n. We fix n and put $b_{\eta} = a_{\sigma_n(\eta)}$. We prove:

Claim C Let $A, B \subset \text{dom}(\sigma_n)$ satisfy $A \simeq_{l.i.c} B$. Then $\text{tp}(b_A) = \text{tp}(b_B)$.

By $A \simeq_{l.i.c.} B$, we have $\sigma_n(A) \simeq_{l.i.c.} \sigma_n(B)$. So, by Claim B, we have

$$\sigma_n(A) \underset{l.i.c.l.}{\simeq} \sigma_n(B).$$

By the *l.i.c.l*-indiscernibility of I, we have $\operatorname{tp}(a_{\sigma_n(A)}) = \operatorname{tp}(a_{\sigma_n(B)})$. Hence, from the definition $b_{\eta} = a_{\sigma_n(\eta)}$, we conclude $\operatorname{tp}(b_A) = \operatorname{tp}(b_B)$.

Now, by compactness and Claim C, we have the existence of l.i.c.indiscernible trees realizing Γ .

Theorem 7 Let $I = (a_{\eta})_{\eta \in \omega^{<\omega}}$ be an l.i.c.-indiscernible tree. Let σ^* be the mapping described before. Let $J = (b_{\eta})_{\eta} = \sigma^* I$.

- 1. J is an l.i.c.-indiscernible tree.
- 2. J is l.i.-indiscernible for broom sets: Suppose $AC \simeq_{l.i.} BC$, where A and B are broom sets. Suppose that for any incomparable $\eta_1, \eta_2 \in A$ and any $\nu \in C$, $\eta_1 \cap \nu <_{ini} \eta_1 \cap \eta_2$. Then $\operatorname{tp}((b_{\eta})_{\eta \in AC})) = \operatorname{tp}((b_{\eta})_{\eta \in BC})$.

Proof: 1. Assume $A \simeq_{l.i.c.} B$. Then, by Lemma 3, $\sigma^*A \simeq_{l.i.c.} \sigma^*B$. By the tree indiscernibility, we have $\operatorname{tp}((a_{\eta})_{\eta \in \sigma^*A}) = \operatorname{tp}((a_{\eta})_{\eta \in \sigma^*B})$. The last equation is equivalent to

$$\operatorname{tp}((a_{\sigma^*(\eta)})_{\eta \in A}) = \operatorname{tp}((a_{\sigma^*(\eta)})_{\eta \in B}).$$

2. Clear by Lemma 3.

References

- [1] Kota Takeuchi and Akito Tsuboi, On the Existence of Indiscernible Trees, submitted.
- [2] Saharon Shelah, Classification Theory and the Number of Non-Isomorphic Models, North-Holland, 1990