<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Trees and Branching Axioms (Model Theory of Fields and its Applications)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Tsuboi, Akito</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2012), 1794: 50-54</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/172870</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
Kyoto University Research Information Repository
Trees and Branching Axioms

Akito Tsuboi (坪井明人)
University of Tsukuba, Institute of Mathematics
(筑波大学数学域)

1 Introduction

First we recall the definition of trees. An ordered set $O = (O, <)$ is called a tree if, for any $a \in I$, the initial segment $O_a = \{b \in O : b < a\}$ is linearly ordered. A mapping $\sigma : O \rightarrow O'$, where O and O' are trees, is called a tree embedding if σ preserves $<$-structure, i.e. $\eta < \nu$ if and only if $\sigma(\eta) < ' \sigma(\nu)$.

We are mainly interested in trees of the form $\alpha^{<\beta}$, where α and β are ordinals and its order is $<_{ini}: \eta <_{ini} \nu \iff \eta$ is a proper initial segment of ν. The lexicographic order on $\alpha^{<\beta}$ is denoted by $<_{lex}$. The meet operator \cap is a binary function that gives the greatest common lower bound.

We introduce the following notations:

- $A \simeq_{l.i} B$ for expressing that A and B have the same $\{<_{lex}, <_{ini}\}$-atomic type.
- $A \simeq_{l.i.c.} B$ for expressing that A and B have the same $\{<_{lex}, <_{ini}, \cap\}$-atomic type.

Now let M be an L-structure. We consider a set $A \subset M$ whose elements are indexed by a tree. So A has the form $A = (a_\eta)_{\eta \in O}$, where O is a tree. Such an indexed set is also called a tree. We introduce the notion of indiscernibility for such a tree A.

- A is $l.i.$-indiscernible if whenever $X \simeq_{l.i.} Y$ then $tp_L(a_X) = tp_L(a_Y)$, where $a_X = (a_\eta)_{\eta \in X}$.
- A is $l.i.c.$-indiscernible if whenever $X \simeq_{l.i.c.} Y$ then $tp_L(a_X) = tp_L(a_Y)$.

In this short note, we seek to find sufficient conditions for $\Gamma(x_\eta)_{\eta \in O}$ to be realized by an indiscernible tree.
2 Indiscernible Trees

Throughout, let \(\sigma^*: \omega^{<\omega} \to \omega^{<\omega} \) be the mapping defined by
\[
\langle m_0, \ldots, m_{n-1} \rangle \mapsto \langle 0, m_0, \ldots, 0, m_{n-1} \rangle.
\]
This \(\sigma^* \) preserves \(<_{ini} \), hence it is a tree embedding. \(<_{lex} \) is also preserved by \(\sigma^* \).

Remark 1 Let \(\eta, \nu \) be two \(<_{ini} \)-incomparable elements. Then \(\sigma^*(\eta \cap \nu) \) is a proper initial segment of \(\sigma^*(\eta) \cap \sigma^*(\nu) \). So, \(A \) and \(\sigma^*A \) do not have the same l.i.c.-atomic type, unless \(A \) is linearly ordered.

Definition 2 Let \(A \subset \omega^{<\omega} \) be a finite set. We say that \(A \) is a broom set if there are \(\eta_0, \ldots, \eta_{n-1} \) such that
1. \(\eta_i \cap \eta_j = \eta_i' \cap \eta_j' \) for any \(i < j < n \) and \(i' < j' < n \),
2. \(A \subset \bigcup_{i<n} \{ \eta_i | j : j \in \omega \} \).

Lemma 3 Let \(A, B \subset \omega^{<\omega} \).
1. Suppose that \(A \) and \(B \) be broom sets. Then \(A \simeq_{l.i.c} B \Rightarrow \sigma^*A \simeq_{l.i.c} \sigma^*B \).
2. Suppose \(AC \simeq_{l.i.c} BC \), where \(A \) and \(B \) are broom sets. Suppose that for any incomparable \(\eta_1, \eta_2 \in A \) and any \(\eta \in C \), \(\eta_1 \cap \eta <_{ini} \eta_1 \cap \eta_2 \). Then \(\sigma^*(AC) \simeq_{l.i.c} \sigma^*(BC) \).
3. \(A \simeq_{l.i.c} B \Rightarrow \sigma^*A \simeq_{l.i.c} \sigma^*B \).

Proof: 2. We consider the most typical case, where \(A = \{ \eta_1, \eta_2, \eta_3, \nu \} \), \(C = \{ \eta \} \), \(\nu <_{ini} \eta_i \ (i = 1, 2, 3) \), \(\nu <_{ini} \eta \) and \(\eta_1 \cap \eta_2 = \eta_2 \cap \eta_3 = \eta_3 \cap \eta_1 \). The l.i.-atomic type of \(\sigma^*(A) \) is determined by this data. Moreover, we have \(\sigma^*(\nu) <_{ini} \sigma^*(\eta_i) \cap \sigma^*(\eta_j) \) for any \(i < j \), and \(\sigma^*(\nu) <_{ini} \sigma^*(\eta_i) \cap \sigma^*(\eta) \). So the l.i.c.-atomic type of \(\sigma^*(A) \) is also determined. This argument proves \(A \simeq_{l.i.c} B \Rightarrow \sigma^*A \simeq_{l.i.c} \sigma^*B \).
3. Easy by the remark above.
Now we prepare the variables \(x_{\eta} \), where \(\eta \) is a member of some fixed tree \(O \). Usually, we are interested in the case \(O = \omega^{<\omega} \). Let \(\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \) be a set of \(L \)-formulas with free variables from \(x_{\eta} \)'s.

Definition 4 We say that \(\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \) has the subtree property if whenever \(I = (a_{\eta})_{\eta\in\omega^{<\omega}} \) realizes \(\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \) and \(\sigma : \omega^{<\omega} \to \omega^{<\omega} \) is a tree embedding preserving \(l.i.c.-\)structure then \(I_{\sigma} = (a_{\sigma(\eta)})_{\eta\in\omega^{<\omega}} \) realizes \(\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \).

Lemma 5 Let \(\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \) be a consisten set having the subsequence property. Let \(\lambda \) be an infinite cardinal. Then there is a set \(J = (a_{\eta})_{\eta\in\lambda^{<\omega}} \) such that for any \(\{<\text{lex}, <\text{ini}, <\text{len}, P_{n}\} \)-embedding \(\sigma : \omega^{<\omega} \to \lambda^{<\omega} \) the set \(J_{\sigma} = (a_{\sigma(\eta)})_{\eta\in\omega^{<\omega}} \) realizes \(\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \).

Proof: For \(A, B \subset \lambda^{<\omega} \), we write \(A \simeq^{+} B \) if \(A \) and \(B \) have the same atomic type in the language \(L_{l.i.c.l} \cup \{P_{n}\}_{n\in\omega} \). We prepare new variables \(x_{\eta} \) (\(\eta \in \lambda^{<\omega} \setminus \omega^{<\omega} \)). Let \(\Gamma^{*}((x_{\eta})_{\eta\in\lambda^{<\omega}}) \) be the set obtained from \(\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \) by adding all formulas \(\varphi(x_{A}) \) with \(A \subset \lambda^{<\omega} \) such that \(\varphi(x_{B}) \in \Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \) for some \(B \simeq^{+} A \). First we show

Claim A \(\Gamma^{*} \) is consistent.

Otherwise, there are \(\varphi_{i}(x_{A_{i}}) \) and \(B_{i} \) (\(i < n \)) such that

1. \(A_{i} \simeq^{+} B_{i} \) and \(\varphi_{i}(x_{B_{i}}) \in \Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \) (\(i < n \)), and

2. \(\Gamma \vdash \bigvee_{i<n} \neg\varphi_{i}(x_{A_{i}}) \).

By compactness, there is a finite set \(\Gamma_{0} \subset \Gamma \) such that \(\Gamma_{0} \vdash \bigvee_{i<n} \neg\varphi_{i}(x_{A_{i}}) \). Hence, we can assume \(A_{i} \)'s are subsets of \(\omega^{<\omega} \). Let \(N = \max\{\eta(n) : \eta \in \bigcup_{i}B_{i} \setminus \omega \} \) and let \(\sigma_{N} \) be the shift function mapping \(\eta = \langle \eta(0), ..., \eta(n-1) \rangle \) to \(\langle \eta(0) + N, ..., \eta(n-1) + N \rangle \). Then, by the subtree property, we have

\[
\Gamma((x_{\eta})_{\eta\in\omega^{<\omega}}) \vdash \Gamma((x_{\sigma_{N}(\eta)})_{\eta\in\omega^{<\omega}}) \vdash \bigvee_{i<n} \neg\varphi_{i}(x_{\sigma_{N}(A_{i})}).
\]

From this, by replacing \(A_{i} \) with \(\sigma A_{i} \), we can assume that \(A_{i} \subset (\omega \setminus N)^{<\omega} \). Hence, for each \(i \), there is a tree embedding \(\sigma_{i} \) that maps \(B_{i} \) to \(A_{i} \). Choose a set \((a_{\eta})_{\eta\in\omega^{<\omega}} \) realizing \(\Gamma \). By the property 2, there is \(i < n \) such that \(\neg\varphi(a_{A_{i}}) \) holds. On the other hand, we have \(\varphi(x_{B_{i}}) \in \Gamma \) and \(\sigma_{i}(B_{i}) = A_{i} \). Therefore, by the subtree property, we must have \(\varphi(a_{A_{i}}) \). A contradiction.
Claim B Let \((a_\eta)_\eta\) be a realization of \(\Gamma^*\). Then \((a_\eta)_\eta\) has the desired condition.

Lemma 6 Let \(\Gamma((x_\eta)_{\eta\in\omega<\omega})\) be consistent and suppose that \(\Gamma\) has the subtree property. Then \(\Gamma\) is realized by an l.i.c.-indiscernible tree.

Proof: By Theorem 2.6 of [2, AP], since the width of the tree can be made arbitrarily large, we may assume that the tree \((a_\eta)_{\eta\in\omega<\omega}\) is an indiscernible tree in Shelah’s sense. So, by Ramsey’s theorem, we can choose an indiscernible tree \(I = (a_\eta)_{\eta\in\omega<\omega}\) satisfying \(\Gamma\) such that if \(A\) and \(B\) have the same atomic type in the language \(L_{i.c.l.} = L_{i.c.} \cup \{<_{\text{len}}\}\) then \(a_A\) and \(a_B\) have the same \(L\)-type, where \(\eta <_{\text{len}} \nu\) means that the length of \(\eta\) is less than that of \(\nu\).

By compactness, we can assume that the index set of \(I\) is \(\omega^\kappa\), where \(\kappa\) is very large. By induction on \(n \in \omega\), we show that there is an l.i.-preserving mapping \(\sigma_n\) from \(\omega^{<\kappa}\) to \(I\) such that if \(\eta <_{\text{lex}} \nu\) then \(\sigma_n(\eta) <_{\text{len}} \sigma_n(\nu)\).

Suppose we have defined \(\sigma_n\). Since \(\kappa\) is sufficiently large, there is \(\kappa_0 < \kappa\) such that the lengths of \(\sigma_n(\eta)\) (\(\eta \in \text{dom}(\sigma_n)\)) are all less than \(\kappa_0\). Now we define \(\sigma_{n+1}\) by the equation

\[
\sigma_{n+1}(\langle i \rangle^\kappa_0 \eta) = (i, i_1, \ldots, \sigma_n(\eta)).
\]

This definition implies that \(\kappa_0 \cdot i \leq \text{len}(\sigma_{n+1}(\langle i \rangle^\kappa_0 \eta)) < \kappa_0 \cdot (i + 1)\). So, in particular, we have \(\text{len}(\sigma_{n+1}(\langle i \rangle^\kappa_0 \eta)) < \text{len}(\sigma_{n+1}(\langle i' \rangle^\kappa_0 \eta'))\), if \(i < i'\). By induction on the length of \(\eta\), we can prove:

Claim A \(\sigma_{n+1}(\eta^\kappa \nu) = \sigma_n(\eta)^\kappa \sigma_n(\nu)\), if \(\eta, \nu \in \text{dom}(\sigma_n)\).

So, \(\sigma_{n+1}\) preserves l.i.c.-structure of the tree. Now we show:

Claim B \(\eta <_{\text{lex}} \eta' \Rightarrow \sigma_{n+1}(\eta) <_{\text{len}} \sigma_{n+1}(\eta')\).

For proving this claim, let \(\nu = \eta \cap \eta'\). If \(\eta <_{\text{len}} \eta'\) (i.e. \(\nu = \eta\), then clearly we have \(\sigma_{n+1}(\eta) <_{\text{len}} \sigma_{n+1}(\eta')\). So we can assume \(\text{len}(\nu) > 0\), \(\eta = \nu^\langle i \rangle^\kappa_0 \eta_0\), \(\eta' = \nu^\langle i' \rangle^\kappa_0 \eta'_0\), and \(i < i'\). By Claim A, using the induction hypothesis, we have

\[
\begin{align*}
\text{len}(\sigma_{n+1}(\eta)) &= \text{len}(\sigma_n(\nu)) + \text{len}(\sigma_n(\langle i \rangle^\kappa_0 \eta_0)) \\
&= \text{len}(\sigma_n(\nu)) + \text{len}(\sigma_n(\langle i' \rangle^\kappa_0 \eta'_0)) \\
&= \text{len}(\sigma_{n+1}(\eta')).
\end{align*}
\]

Thus Claim B was shown, and \(\sigma_{n+1}\) has the required property. We have shown the existence of \(\sigma_n\)'s for all \(n\). We fix \(n\) and put \(b_\eta = a_{\sigma_n(\eta)}\). We prove:
Claim C Let $A, B \subset \text{dom}(\sigma_n)$ satisfy $A \simeq_{l.i.c} B$. Then $\text{tp}(b_A) = \text{tp}(b_B)$.

By $A \simeq_{l.i.c} B$, we have $\sigma_n(A) \simeq_{l.i.c} \sigma_n(B)$. So, by Claim B, we have
$$\sigma_n(A) \simeq_{l.i.c} \sigma_n(B).$$

By the $l.i.c.l$-indiscernibility of I, we have $\text{tp}(a_{\sigma_n(A)}) = \text{tp}(a_{\sigma_n(B)})$. Hence, from the definition $b_\eta = a_{\sigma_n(\eta)}$, we conclude $\text{tp}(b_A) = \text{tp}(b_B)$.

Now, by compactness and Claim C, we have the existence of $l.i.c.$-indiscernible trees realizing Γ.

Theorem 7 Let $I = (a_\eta)_{\eta \in \omega^{<\omega}}$ be an $l.i.c.$-indiscernible tree. Let σ^* be the mapping described before. Let $J = (b_\eta)_\eta = \sigma^*I$.

1. J is an $l.i.c.$-indiscernible tree.

2. J is $l.i.$-indiscernible for broom sets: Suppose $AC \simeq_{l.i.} BC$, where A and B are broom sets. Suppose that for any incomparable $\eta_1, \eta_2 \in A$ and any $\nu \in C$, $\eta_1 \cap \nu <_{\text{ini}} \eta_1 \cap \eta_2$. Then $\text{tp}((b_\eta)_{\eta \in AC}) = \text{tp}((b_\eta)_{\eta \in BC})$.

Proof:

1. Assume $A \simeq_{l.i.c} B$. Then, by Lemma 3, $\sigma^*A \simeq_{l.i.c} \sigma^*B$. By the tree indiscernibility, we have $\text{tp}((a_\eta)_{\eta \in \sigma^*A}) = \text{tp}((a_\eta)_{\eta \in \sigma^*B})$. The last equation is equivalent to
$$\text{tp}((a_{\sigma^*(\eta)})_{\eta \in A}) = \text{tp}((a_{\sigma^*(\eta)})_{\eta \in B}).$$

2. Clear by Lemma 3.

References
