
Mapping class group, Donaldson-Thomas
theory and S-duality

Kentaro Nagao

Apri15, 2012

Abstract
We study Donaldson-Thomas theory associated to a triangulated

surface. We show that the generating function of the Donaldson-
Thomas invariants is “invariant“ under an action of the mapping class
group, which is identified with the mapping class group action in the
(decorated) Teichm\"uller theory. This gives an example of constraints
of the generating function induced by the derived auto-equivalences.
From the view point of string theory, this is nothing but S-duality
of the BPS spectrum of the $4d$ gauge theory given by Gaiotto-type
construction.

Introduction
The DT invariant for a Calabi-Yau 3-fold $Y$ is a counting invariant of coherent
sheaves on $Y$ , which is introduced in [ThoOO] as a holomorphic analogue of
the Casson invariant on a rea13-manifold. Although the category of coherent
sheaves on $Y$ is an Abelian category, it has been known that we take it as a
counting invariant of objects in the derived category.

An ideal application of this formulation might be the following: The de-
rived category sometimes have a non-trivial auto-equivalence group. In such
a case, the generating function might have a good transformation formula
with respect to this action, which would help us to determine the generating
function.

In this notes, we will show a new examplel of such a phenomenon. We
study Donaldson-Thomas theory associated to a triangulated surface. The
mapping class group acts on the derived category and the generating function
of the Donaldson-Thomas invariants is “invariant“ under this action.

lAs far as the author understand, it is the first example.
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Plan
In \S 1, we briefly review the construction in [FST08. LF09] of quivers with

potential associated to triangulated surfaces. In \S 2, we study the mapping
class group actions on the derived category and the associated Poisson torus.
The later is identified with the mapping class group action on the decorated
Teichm\"uller space as is shown in \S 5. The main result of this paper appears
In \S 3. Finally, we explain an interpretation of the main result in terms of
S-duality ([Gai]) in \S 4.
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1 QP for a triangulated surface
In this section, we briefly explain how to associate a quiver with a potential
for a triangulated surface [FST08, LF09].

1.1 Ideal triangulations of a surface
Let $\Sigma$ be a compact connected oriented surface with (possibly non-empty)
boundary and $M$ be a finite set of points on $\Sigma$ . called marked points. We
assume that $M$ is non-empty and has at least one point on each connected
component of the boundary of $\Sigma$ . The marked points that lie in the interior
of $\Sigma$ will be called punctures, and the set of punctures of $(\Sigma, M)$ will be
denoted P. 2

We decompose $\Sigma$ into “triangles“ (in the topological sense) so that each
edge is either

2We will always assume that $(\Sigma, M)$ is none of the following:
$\bullet$ a sphere with less than five punctures;
$\bullet$ an unpunctured monogon, digon or triangle;
$\bullet$ a once-punctured monogon.

Here, by a monogon (resp. digon, triangle) we mean a disk with exactly one (resp. two,
three) marked point(s) on the boundary.

145



$\bullet$ a curve (which is called an arc) whose endpoints are in $M$ or

$\bullet$ a connected component of $\partial\Sigma\backslash M$ .

A triangle may contains exactly two arcs (see Figure 1). Such a triangle (and
its doubled arc) is said to be self-folded.

Figure 1: A self-folded triangle

Given a triangulation $\tau$ and a (non self-folded) arc $i$ , we can flip $i$ to get
a new triangulation $f_{i}(\tau)$ (see Figure 2).

–

Figure 2: A flip of a triangulation

Theorem 1.1 ([FST08]). Any two triangulations are related by a sequence
of flips.

1.2 Quiver for a triangulation
Let $\tau$ be a triangulation. We will define a quiver $Q(\tau)$ without loops and
2-cycles whose vertex set $I$ is the set of arcs in $\tau$ .

Let $\pi:\tau_{1}arrow\tau_{1}$ be the map which is the identity on the set of non-self-
folded arcs and sends the a self-folded arc to the unique loop of $\tau$ enclosing
it.

For a triangle $\triangle$ and arcs $i$ and $j$ , we define a skew-symmetric integer
matrix $B^{\Delta}$ by

1 $\triangle$ has sides $\pi(i)$ and $\pi(j)$ , with $\pi(i)$ following $\pi(j)$ in the clockwise order,
$B_{i,j}^{\Delta}:=$ $\{$ $-1$ the same holds, but in the counter-clockwise order,

$0$ otherwise.
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We put

$B( \tau):=\sum_{\Delta}B^{\Delta}$

where the sum is taken over all triangles in $\tau$ . Let $Q(\tau)$ denote the quiver
without loops and 2-cycles associated to the matrix $B(\tau)$ .

Theorem 1.2 ([FST08]). Given a triangulation $\tau$ and its (non self-folded)
arc $i$ , we have

$Q(f_{i}(r))=\mu_{i}(Q(\tau))$

where $\mu_{i}$ denote the mutation of the quiver at the vertex $i$ .

1.3 Potential for a triangulation
For a triangle $\triangle$ in $\tau$ , we define a potential $\omega_{\Delta}$ as in Figure 3. For a puncture

$Q(\lrcorner\tau)$

$arrow$

$\triangle$ $\omega_{\triangle}$

Figure 3: $\omega_{\triangle}$

$P$ in $\tau$ , we define a potential $\omega_{P}$ as in Figure 4. We omit the definitions of

$\lrcorner\tau$ $Q(\lrcorner\tau)$

$e_{2}$ $e_{1}$ $e_{2}$ $e_{1}$

$e_{l}$

$arrow$
$-\cdot\cdot\cdot\cdot\cdot$

:

$P$ $\omega_{P}$

Figure 4: $\omega_{P}$

$\omega_{\Delta}$ and $\omega_{P}$ in the cases when self-folded arcs appear (see [LF09, \S 3]).
Finally, we put

$\omega(\tau):=\sum_{\Sigma}\omega_{\Sigma}+\sum_{P}\omega_{P}$ .
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Theorem 1.3 ([LF09]). Given a triangulation $\tau$ and its (non self-folded) arc
$i$ , we have

$\omega(f_{i}(r))=\mu_{i}(\omega(\tau))$

where $\mu_{i}$ denote the mutation of the potential at the vertex $i$ in the sense of
$[DWZ08J$.

2 Mapping class group action

2.1 Mapping class group
We define

Diffeo$(\Sigma, M)$ $:=$ { $\phi:\Sigmaarrow\Sigma|\phi$ : diffeomorphism, $\phi(M)=M$}.

Let Diffeo $(\Sigma, M)_{0}$ denote the connected component of Diffeo $(\Sigma, M)$ which
contains id$\Sigma$ . The quotient

MCG $(\Sigma, M)$ $:=Diffeo(\Sigma, M)/Diffeo(\Sigma, M)_{0}$

is called the mapping class group.

2.2 Derived category for a triangulation

Let $\Gamma(\tau)$ be Ginzburg‘s dg algebra associated to the quiver with the potential
$(Q(\tau), \omega(\tau))$ and $\mathcal{D}(\tau)=\mathcal{D}\Gamma(\tau)$ be the derived category of right dg-modules
over $\Gamma$ . By the result of Keller ([Kelll]), $\Gamma(\tau)$ and $\Gamma(f_{i}(\tau))$ are equivalent3.

For a triangulation $\tau$ and an element $\phi\in$ MCG $(\Sigma, M)$ , we get another tri-
angulation $\phi(\tau)$ . Note that $(Q(\tau), \omega(\tau))$ and $(Q(\phi(\tau)), \omega(\phi(\tau)))$ (and hence
$\mathcal{D}(\tau)$ and $\mathcal{D}(\phi(\tau)))$ are canonically identified.

By Theorem 1.1, $\tau$ and $\phi(\tau)$ are related by a sequence of flips. Each flips
gives a derived equivalence. By composing the derived equivalences, we get
a derived equivalence

$\Psi_{\phi}:\mathcal{D}(\tau)arrow^{\sim}\mathcal{D}(\phi(\tau))=\mathcal{D}(\tau)$ .

Thanks to the result [FST08, Theorem 3.10] and the pentagonal identity for
the derived equivalences, $\Psi_{\phi}$ is independent of choices of a sequence of flips
and well-defined. Finally we get an action of the mapping class group on the
derived category:

$\Psi$ : MCG$(\Sigma, M)arrow$ Aut $(\mathcal{D}(\tau))$ .

3Since we have two derived equivalences, we have to choose one of them. Given a
sequence of flips, we have a canonical choice. See [Nag, \S 2.2].
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2.3 Cluster transformation
We put $T=T(\tau)$ $:=\mathbb{C}[x_{i}, x_{i}^{-1}]_{i\in I}$ . We define $CT_{k}:T(f_{k}(\tau))arrow^{\sim}T(\tau)$ by

$CT_{k}(x_{i}’)=\{\begin{array}{ll}(x_{k})^{-1}(\prod(x_{j})^{Q(j,k)}+\prod(x_{j})^{Q(k,j)}) i=k,x_{i} i\neq k\end{array}$

where $Q(i, k)$ is the number of arrows from $i$ to $k$ and $x_{i}’$ is the generator of
$T(f_{k}(\tau))$ .

In the same way as the previous section, we get

$CT_{\phi}:T(\phi(\tau))arrow^{\sim}T(\tau)$ .

Under the identification $T(\phi(\tau))=T(\tau)$ induced by $\Psi_{\phi}$ , we get

CT: MCG $(\Sigma, M)arrow$ Aut $(T(\tau))$ .

Remark 2.1. As we will explain in \S 5, this is compatible with the action of
mapping class group on the decomted Teichmuller space.

3 Donaldson-Thomas theory
Let $J_{\tau}$ be the Jacobi algebra associated to the quiver with the potential
$(Q(\tau), W(\tau))$ .

Let $P_{\tau}^{i}$ be the indecomposable projective $J_{\tau}$-module associated to $i\in I$ .
For $v\in Z_{\geq 0}^{I}$ , we define

$Hilb_{\tau}^{i}(v)$ $:=\{P_{\tau}^{i}arrow V|\underline{\dim}V=v\}$ .

This is called the Hilbert scheme4.
Definition 3.1. We define $DT_{\tau}:Tarrow\sim T$ by

$DT_{\tau}(x_{i}):=(x_{i})^{-1}\cdot\sum_{v}Eu(Hilb_{\tau}^{i}(v))\cdot y^{-v}$

where
$y^{-v}:= \prod_{i}(y_{i})^{-v_{i}}$

,
$y_{i}:= \prod_{j}(x_{i})^{Q(i,j)}$

.

As a direct application of the main theorem in [Nag], we get the following:

Theorem 3.2. For any element $\phi\in$ MCG $(\Sigma, M)$ , we have

$DT_{\tau}\circ CT_{\phi}=CT_{\phi}\circ DT_{\tau}$ .

4The name comes from the Hilbert scheme in algebraic geometry which parameterizes
quotient sheaves of the structure sheaf.
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4 S-duality interpretation

4.1 Gaiotto functor
Let $\mathcal{F}$ is an n-dimensional quantum field theory. Then for any fixed k-
dimensional manifold $K$ , the correspondence

$M\mapsto \mathcal{F}(K\cross M)$

provides an $(n-k)$-dimensional quantum field theory.
We take a $6d\mathcal{N}=(2,0)$ quantum field theory $S_{G}$ , where $G$ is compact

Lie group of type $ADE$ . Fixing a Riemann surface $C$ , we get a $4d\mathcal{N}=2$

theory by the construction above. Let $S_{G,C}$ denote this theory ([Gai]).
In summary, $6d\mathcal{N}=(2,0)$ theory provides the following correspondence

:
{Riemann surfaces} $arrow$ $\{4d\mathcal{N}=2$ QFT $\}$

$C$ $rightarrow$ $S_{G,C}$ .

Following Y. Tachikawa, we call this “Gaiotto fUnctor”5 (see [MT]).

4.2 $4d$ BPS spectrum
In this paper, we have studied the DT theory associated to a triangulation
of a surface $C$ . It is expected that the generating function provides the BPS
spectrum of the $4d$ QFT $S_{SU(2),C}$ $([GMN, ACC^{+}a, ACC^{+}b])$ . $6$

Remark 4.1. For $BPS$ spectrum of the $4dQFT$, there should be a wall-
crossing theorw which is compatible with those of $DT$ theory under the expec-
tation above $[GMN, Moo]$.

4.3 S-duality
Fixing a topological type of a 2-dimensional manifold, the Teichm\"uller space
is the space of complex structures on it. The mapping class group acts on
the Teichm\"uller space so that the quotient space gives the moduli space of
complex structures.

Under Gaiotto functor, Teichm\"uller space should give the space of pa-
rameters7 of 4-dimensional quantum field theories. Since two points on a
mapping class group orbit in the Teichm\"uller space give a common complex

5This is not a functor of categories in mathematical sense.
6For $S_{SU(N),C}$ , we need to take the triangulations which appear in the higher Te-

ichm\"uller space ([FG06]).
7parameter space of exactly marginal gauge couplings.
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structure, they provide a common $4d$ theory. This is the S-duality in the
sense of Gaiotto ([Gai]).

Remark 4.2. The original S-duality is the duality between strongly/weakly
coupled regions in the space ofpammeters. Strongly or weakly coupled regions
appear as neighborhoods of cusps $m$ the fundamental regeon.

Combining the observations in \S 4.2, we get an interpretation of Theorem
3.2 as the S-duality on the BPS spectrum.

Remark 4.3. In this paper, we understand the mapping class group ac-
tion in $DT$ theory via wall-crossing. We can understand the S-duality as a
consequence of wall-crossing of $4dQFT$, without passing through $DT$ theory
(Figure 5).

$4d$ QFT $S_{SU(2),C}$ $=$

:
:

(wall-crossing) $=$ (wall-crossing)

:.:
Figure 5: Summary

5 Appendix: Teichm\"uller theory

Let $\mathcal{T}(\Sigma)$ denote the Teichm\"uller space and $\tilde{\mathcal{T}}(\Sigma)$ denote the decorated Te-
ichm\"uller space, which is a $(\mathbb{R}_{>0})^{s}$-bundle over $\mathcal{T}(\Sigma)$ whose fiber is the set of
s-tuples of horocycles around each of the marked points ([Pen87, Pen92]).

We assume that a triangulation $\tau$ does not contain self-folded arcs. Let
$\tau_{1}$ be the set of edges of a triangulation $\tau$ . Each edge $e$ in $\tau_{1}$ , we take
the (unique) geodesic represents $e$ . The coordinate $l_{e}(P)$ is defined as the
hyperbolic length of the segment of the geodesic that lies between the two
horocycles surrounding the punctures connected by $e$ , taken with positive
sign if the two horocycles are disjoint, with negative sign otherwise.

Theorem 5.1. [Pen87, Pen92]
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(1) For an ideal triangulation $\tau$ without self-folded arcs, the function
$l:arrow\tilde{\mathcal{T}}(\Sigma)arrow \mathbb{R}^{\tau_{1}}$ , $P\mapsto(l_{e}(P))_{e\in\tau_{1}}$

is a homeomorphism. (This is called the Penner coordinate of the dec-
omted Teichmuller space.)

(2) We put
$\lambda_{e}:=\sqrt{2}\exp(l_{e}/2)$

which is called the Lambda length of $e$ . Let $\tau’$ be the triangulation
obtained by flipping the edge $e$ . The coordinates associated to $\tau$ and $\tau’$

agree for each edge which the two triangulations have in common, and

$\lambda_{e’}=\frac{\lambda_{a}\lambda_{c}+\lambda_{b}\lambda_{d}}{\lambda_{e}}$ .

We define the inclusion
$\tilde{\mathcal{T}}(\Sigma)$

$\simeq$
$\mathbb{R}^{\mathcal{T}1}$ $\mapsto$ $(\mathbb{C}^{*})^{\tau_{1}}$ $\simeq$ $Spec(T(\tau))$

$(l_{e})$ $\mapsto$ $(x_{e})=(\lambda_{e})$

We call $T(\tau)$ as the complexified decomted Teichmuller space. The mapping
class group action on $Spec(T(\tau))$ given in \S 2.3 preserves $\tilde{\mathcal{T}}(\Sigma)$ . If we can
realize all the mapping classes by a sequence of flips without self-folded arcs
then restricted action coincides with the geometric one.

Remark 5.2. In [NTMJ, we study hyperbolic structures on the mapping torus
of a pseudo-Anosov mapping class $g$ of a surface. We show that a fixed point
on $T(\tau)$ with respect to the action of $g$ gives a hyperbolic structures on the
mapping torus, while the fixed point set on $\tilde{\mathcal{T}}(\Sigma)$ is empty due to the Nielsen-
Thurston classification.
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