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A BASIS FOR THE MODULE OF DIFFERENTIAL
OPERATORS OF ORDER 2 ON THE BRAID
HYPERPLANE ARRANGEMENT

NORIHIRO NAKASHIMA

ABSTRACT. The braid arrangement is one of most important ar-
rangement. The study of the braid arrangement was developed
from several ways. In this article, we prove that the module of dif-
ferential operators on the braid arrangement is free by constructing
a basis. In addition, we discuss the action of the symmetric group
on the elements of the basis.

1. INTRODUCTION

The theory of hyperplane arrangements has been developed by many
researchers. The hyperplane arrangement defined by the direct product
is so called the braid arrangement. The braid arrangement is the Cox-
eter arrangement of type A,_;. It was proved by Saito [6] that Coxeter
arrangements are free. An excellent reference on arrangements is the
book by Orlik and Terao [5].

Let K be a field, and S = K|z1,...,z,] be the polynomial ring of
n variables. Let D(™)(S) := Daj=m SO be the module of differential

operators (of order m) of S, where a € N’ is a multi-index. For
a central arrangement &/, we fix the defining polynomial Q(&) =
Ilzcy P where ker(py) = H. We define the module D™ (&) of

&/ -differential operators of order m as follows:
D'™\(a) := {6 € D™(S) | 9(Q()S) C Q()S} .

In the case m = 1, DW(&/) is the module of 2/-derivations.

Holm began to study D™ (&) in his PhD thesis. Holm proved
the idealizer of the ideal generated by the defining polynomial of a
central arrangement is the direct sum of the module of «-differential
operators. We can describe the ring of differential operators of the
coordinate ring of a central arrangement.

Holm proved that D™ (&) are free for all m > 1 when & is a 2-
dimensional central arrangement. Let &7 be a generic arrangement. It
was already known that D™ (&) is not free if n > 3,|/| > n,m <
|| —n+1, and is free if n > 3,|o| > n,m = || —n+1 [2].In
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addition, the author, Okuyama and Saito [4] proved that D™ (&) is
freeif n > 3, || >n,m > |Z|—-n+ 1L

Let A be the braid arrangement. In this article, we prove that
D®)(A) is free by constructing a basis, and calculate an action of the

symmetric group on D®(A).

2. DETERMINANTS OF MATRICES

Let n > m > 0. Let e, denote the /-th elementary symmetric poly-

nomial in m variables. For n > m and {iy,...,in} C {1,...,n}, we
define row vectors v;, ;. by
(2.1)
Viyooin = ( TR (:L‘il, U 7 REE eennm(.’lia,;l, ey T )y e )OShS'"an—mSm ,
and an (”)-th square matrix E,(21,...,,) as the matrix whose rows
are v;,,. ;. Namely

En(@ivzn) = | Wi | ({inreevim} € {L,....0}).

We agree E,(x1,...,z,) = (1).
Let

A=AZy,...,Zy) = H (z; — z;)

be the difference product.

Theorem 2.1.
det Em(xl, v ,SUn) = cA(m—l),
where ¢ = 1.

To prove the theorem above, we first consider the degree of this
determinant. Let a,,, be the total sum of degrees of polynomials in
the set

(2.2) {ee,---egn_mf0§£1§---52n_m§m}.

Namely
Cpom = Z degey, ---€q, .-

0<b1 <L m<m

un= () ()

Proposition 2.2.
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Proof. 1t is clear that deg (e, - - - €4,) = £1+- - -+ £k. Since the set (2.2)
is equal to the set

(2.3) U {ea-enll<ti<-- < <m},
1<k<n—m

it follows that
Anm = Z (61 + .-+ En—m)

=YY (et

1<k<n—m 0<£1 << <m

Therefore
Anm

= > Y it ) + > (b1 4+ + o)
1<k<n—1-m 0<6, << <m 16 <<Up_m<m

=Up-1m + Z (6 =1+ -+ lp—m— 1))+ (n—m) (:7,_— 11>

1<6<<lp-m<m

=an-1,m+ Z (ﬁl—l—---—i—én_m)—i—(n—m)(n_l)

m-—1
0Ll <Ll m<m—1

n—1
=ln-1,m + Gn-1,m-1 + (n — M) (m 3 1)-

The assertion is completed by induction. tl

To prove Theorem 2.1, we use the following two lemmas. We agree
det Eo =1.

n—2)
m—1 N

. -1
Lemma 2.3. Assume that n > m. The coefficient of xﬁ" l in

det E(z1,...,%,) is equal to
det E_1(xa, ..., x,) - det Epy (22, ..., Ty).

Proof. After fundamental operations, we may assume that the upper
(:;i) rows contain z; and the right (::_11) colums are of indexes 1 <

6 < -+ < lypm < m. Let A be the upper right (::;11) X (::_11)
submatrix of E,,(z1,...,Z,), i.e.,

, A
Em(xh""wn) = [Em(xz,---,zn) *:I .

Since the z,-degree deg, e, - - - €q,_,. (Z1, Zsg, . . ., Tiy,) is equal ton—m
for1 <4 <+ < ¥, n <m and the z,-degree of every component
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which does not appear in A is less than n — m, the term containing
(n-m)(n23) _(=D(273)

x, =1z, appears only in det A - det E,,,(z2, ..., Zy)-
-1 n—2 .

It remains to prove that the coeflicient of xi" (525) in det A is equal

to det Ep,_1(z2,...,Z,). Since
€¢ (xlaxiz’ “e 9$im) = €¢-1 (xiza <o ?xim) T+ e (x‘iza cee 9xim) ’
we have that
€, €, (T1, Tiny -y Tiy) = €11 €n_pi—1 (Tigy -+ -+ Tiy) T+ b
where deg, b < n —m. Therefore we conclude that
_ n—1
det A =det E,,_(zo,... ,xn)m(ln (=) + B
-1 -2

where deg, B < (n—m)("_}) = (n-1)("73). O

In general, the following holds.

Lemma 2.4. Let R be a ring of characteristic zero. Let f € R[y| be
a nonzero polynomial and o € R. Suppose deg f > m. Then (y — a)™
divides f if and only if f®(a) =0 for £=0,1,...,m — 1.

Proof of Theorem 2.1. We will prove the theorem by induction on n.
It is clear that the case n = m. Assume that n > m. By renumbering
V1, U(n) defined by (2.1), we may assume that z,-degrees of all
components of v, are 0 for (:;11) +1<¢<("). Thus we see that for
1<k<(n7) -1

(2.4) det E,.(z1,- - . ,xn)("’) = Z det vék")
bkt =k :

m

where f® = gf’f(f) for any f € S and v® = (v{k),...,vg“)). Since
-a-‘ZT'vj =0 for (*7})+1 < j < (7), we may consider k(:’;:ll)_*_l =
O,...,k(;) = 0Oon (2.4). Forany {is,...,in} € {2,...,t = 1,t+1,...,n},
there exist (*~}) +1 < ¢ < (?) such that

v{l,iz,...,im}|z1=zt = Vq.

A cardinality of {{i,...,im} € {2,...,t — 1,t+1,...,n}} equals (*73).
We have that every term of RHS on (2.4) has k; = 0 with 1 <4 < (7).
Thus we conclude that

det B, (x4, ... axn)(k)‘m:xt =0



139
THE BRAID HYPERPLANE ARRANGEMENT

for 1 <k< (:;21) — 1. By Lemma 2.4,

(2.5) det B (zy,...,2,) € H(a:l — x;)8.
i#1
By the induction hypothesis and Lemma, 2.3, we see that the coefficient
- n—2
of :cg D(n in det B, (1, ...,2,) is

n—2

eA (@2, ,0) WD) - A (2, 2) ) = A (2, 2) () £ 0
where ¢ = £1. So it follows form (2.5) that

det E,(x1,...,2,) € Az, ... ,J;n)(;_—%)S\ {0}.
By Proposition 2.2, the degree of det En(z1,...,z,) equals (2)(773).
Comparing degrees, we see that det E,,(z1,...,%,) = cA(:z:zl). More-
over ¢ = =*1. O

3. ELEMENTS OF THE MODULE OF A-DIFFERENTIAL OPERATORS
ON THE BRAID ARRANGEMENT

Throughout the remaining of this paper, let A be the n-th braid hy-
perplane arrangement, and let D™ (A) be the module of .A-differential
operators which preserve the ideal generated by QQ(A). We assume that
the characteristic of K is zero. By [3, Proposition 2.3] and (3, Theorem
2.4], we have

(3.1) D™(A) = (1) D™ (puS),

HeA

where D™ (pyS) = {6 € D™)(S) | 0(paz®) € pyS for any |a| =m — 1}
for H € A.
Put

hy = (iﬂt - xl) s (ﬂft - $t—1)($t - 113t+1) T (xt - $n)
Proposition 3.1. Let k be a positive integer. The operators

1
(3.2) Nk = My Z Jaa (t=1,...,n)

|et|l=m;a: >k

belong to D™ (A).
Proof. For any 1 < i < j < n such that ¢ # t,j # t and 8 with

|ﬂ|=m"ls
1, o o if B < k
> &° ((xi_xj)x)_{l—lz() if B, > k.

lel=m;at >k
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This implies that hs D 41— m.a>k Lo~ € D™ ((z; ~ z;)S) for any 1 <
i < j < n. It follows from (3.1) that operators (3.2) belong to D™ (A)
as required. O

We consider other polynomials relating with elementary symmetric
polynomials. Let ef = es(y1,...,yx) be the {-th elementary symmetric
polynomial in k variables. For a multi -index o, we define

ef(a) =eb(z1,..., 71,22, ., T2, -, Tpy- .., Tp) €S
where the number of z; is ;.

Proposition 3.2. Let k be a positive integer. For any sequence of

nonnegative integers £y, ... ,4, the operator
1
(3.3) Orrte = efi() - €f (a) —0%.
|a|=m

belongs to D™ (A).

Proof. Since ep(y1,---,Ym) = €e(Y1,-- > Ym-1) + €—1(Y15 - -+ Ym—1)Ym
for1<i< j<mnandBwith |3|=m -1,
Oe,,...0. ((zi — $j)$ﬁ)
=€ (B+e) e (B+e)—el(B+e;) e (B+e))
= (e5(B) + e (B)z:) - - - (€5 (B) + e (B):)
— (e2(B) + €5, (B)z;) - - - (e (B) + € (B)z;) -

.....
.....

,,,,,,,,

by (3.1). O

4. A BASIS FOR D®(A) AND ITS REPRESENTATION

In this section, we assume that the characteristic of K is zero and
K is a algebraically closed. We find a basis for the module D®(A)
relating with the Specht modules. For f,g € S, it is convenient to
write f = g if f = cg for some c € K \ {0}.

Theorem 4.1. Let 1, = ;. The set
(4.1) {m,....m}U{0n, 0., 10< b <o <4, 5 <2}
forms a basis for D) (A).
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Proof. We have already seen, by Proposition 3.1 and Proposition 3.2,

.....

By Saito-Holm criterion [8, Theorem 4.10.}, it is sufficient to show
that
(4.2)
det Mm (nta 931,...,&;_2 I t= ]-7 RN (B 0 < gl <--- < gn—2 < 2) = Q(A)n

where Mm (77t»9£1 ..... Ln_2 l = ]-a"'an’ 0 S el S S en—2 S 2) is the
coefficient matrix of the operators in (4.1). By Theorem 2.1.

In * - Q2 . Qn—2 — Qn,

- 2
det M, = Q 0 Em(z1,...,n)

as required. O

Define the K-vector space

V= Z Kn, + Z Kby, s
=1

0<01 < <lp—2%2

Now we retake a basis which is also a basis for the decomposition of V'
into Specht modules.

Let A = (A,...,A.) (A1 = --- >\, > 0) be a Young diagram of n
cells. We say that A is a partition of n and write A - n. Define Tab()\)
(resp. STab(A)) be the set of Young tableaux (resp. standard tableaux)

of shape .
We say that T'(3, j) is a number in the (7, j)-box (i.e. the box of i-th
row and j-th column) of a tableau T' € Tab(\). Let

M
Ar=]T I (o169 —2rn) €S

J=1 1<4; <i2§/\9

be the Specht polynomial, for T € Tab()\). For each partition A of n,
an K|[S,]-module

= Y KAr
TeTab())
is called the Specht module. The following proposition is well known
(cf. [1]).
Proposition 4.2. Let A+ n.

(1) The set {Ar | T € STab(\)} forms a K-basis for Vj.
(2) The representation Vy is irreducible. FEvery irreducible repre-
sentation is isomorphic to one of V.
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The symmetric group S, acts on the Weyl algebra by
0T = Tg~1(3), g:- 8i = aa-l(i)

for ¢ € S,. Then for any homogeneous differential operator 8 €
D™ (S) and o € S,,

(4.3) (00)(f)=0(8(c7'f) (feS)
We show that the symmetric group also acts on D™ (A);

Proposition 4.3.
Sn..D'™(A) C D™ (A).

Proof. Let # € D™ (A) and o € S,,. For f € S, there exist g € S such
that
0 (sen(c)Q(0"11)) = Qg.

We see that
(00) (Qf) = 0 (8(c~(Qf))) = o (8(sgn(c Qo '(f)))
= 0(Qg) = sgn(0)Q - og € QS
by (4.3). Therefore 6 € D™ (A). O

Let 6 € {Hgl _____ b |0 <0 <l 9 < 2}. It is clear that o6 = 6
for 0 € S5,. So we see that K@ is isomorphic to V() = K.

It only remains to decompose W = Y"" | K7, into Specht modules.
For i < j, a transposition (7, j) acts on n’s as follows:

(Z’J)Th =5, (%])773 =, (za])nk = Nk (k 7é Z,])

We have that W is isomorphic to the K|[S,]-module of homogeneous
polynomials of degree 1. So it is well-known a K|S, }-module decom-
position

W=Km+-+n)® > Km—n) = Vin)® Viar)-
t=2
We retake a basis for for D?)(A).
Corollary 4.4. The set
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{m+-+nm—m..om—m}U{ly,.bn, [0Sl <o < by <2}

forms a basis for D@ (A).
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