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Smallest complex nilpotent orbits with real
points

Takayuki Okuda®

Abstract

In this paper, we show that there uniquely exists a real minimal
nilpotent orbit in a non-compact simple Lie algebra g if (g,¢) is of
non-Hermitian type. For the cases where g is isomorphic to 5u*(2k),
so(n — 1,1), sp(p, q), eg(—26) OF fa(— 20); the complexification Ommg of
such the real minimal nilpotent orbit in g is not the complex minimal
mlpotent orbit in gc = g + v/—1g. For such cases, we also determine
0% by describing the weighted Dynkin diagram of it.

min,g

1 Introduction and main results

Let gc be a complex simple Lie algebra. In this paper, an adjoint nilpotent
orbit in g¢ will be simply called a complex nilpotent orbit in g¢. It is well-
known that there exists a unique non-zero complex nilpotent orbit OS¢, in
gc, which is called a complex minimal nilpotent orbit, with the following
property: The closure of O%€ in g¢ is just OFS U {0}. By the uniqueness
of such ngn, for any non-zero complex nilpotent orbit O in gc¢, the closure
of O contains OS¢ . In other words, OS¢ is minimum in N/G¢ without the
zero-orbit, where N'/G¢ denotes the set of complex nilpotent orbits in g¢
with the closure ordering.

Let g be a non-compact real form of gc. Namely, g is a non-compact real
simple Lie algebra without complex structures and gc is the complexification
of g. Our concern in this paper is in real minimal nilpotent orbits in g. Here,

we say that a non-zero real nilpotent orbit OF in g is minimal if the closure
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of OF in g is just O¢ LU {0}. In general, real minimal nilpotent orbits are not
unique for real simple g.

If the complex minimal nilpotent orbit (’)ﬁfn in gc meets g, then the
intersection OSE N g is the union of all real minimal nilpotent orbits in g.
It is known that OCS meets g if and only if g is not isomorphic to su*(2k)
(k > 2)’ 50(” - 171) (n > 5)1 5p(pv Q) (p >q2 1)’ f4(—20) Nnor €g(-26) (See
Brylinski (3, Theorem 4.1]). In particular, if (g, ¥) is of Hermitian type, then
OSE, meets g, where g = £+ p is a Cartan decomposition of g. Furthermore,
for the cases where OS¢ meets g, the number of real minimal nilpotent orbits
(i.e. the number of adjoint orbits in OSC N g) is two if (g, ¢) is of Hermitian
type; one if (g, ) is of non-Hermitian type.

In this paper, we study real minimal nilpotent orbits in g including the
cases where OS¢ does not meets g. For any real non-compact simple Lie

algebra g without complex structures, we put
N;/Gc := { Complex nilpotent orbits in gc meeting g }

and consider the closure ordering on it. Our first main result is here:

Theorem 1.1. There uniquely ezists a complex nilpotent orbit ngn’g in gc

which is minimum in N;/Gc without the zero-orbit (i.e. for any non-zero

complex nilpotent orbit O in g, if ONg # 0, then the closure of O in gc
contains (’)g;cn’g). Furthremore, the intersection Ogg,,g N g is the union of all

real minimal nilpotent orbits in g.

We will construct such ©OC€

min,g

as the complex adjoint orbit through a

non-zero longest restricted root vector in g. By the definition of Ofﬁfn,g, the

complex minimal nilpotent orbit @€ is not our (’)gfn’g if and only if OS¢

does not meet g (namely, g is isomorphic to su*(2k) (k > 2), so(n — 1,1)
(n >5), sp(p,q) (p > g > 1), fa—20) OF eg—26)). This means that for such
cases, a non-zero longest restricted root vector in g is not a longest root
vector in gc.

Theorem 1.1 claims that (’)fr’:;cn’g Mg is the union of all real minimal nilpotent
orbits in g. Our second main result is here:

Theorem 1.2. For the cases where the complex minimal nilpotent orbit OSE,

does not meet g, there exists a unique real minimal nilpotent orbit in g.
In particular, the complex nilpotent orbit ngn,g in Theorem 1.1 (which is

not O%€. in these cases) is the complexification of the unique real minimal

min

nilpotent orbit in g.
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Therefore, we have the following corollary:

Corollary 1.3. Let g be a non-compact real simple Lia algebra without com-
plex structures. If (g, ) is of non-Hermitian type, there uniquely exists a real
minimal nilpotent orbit in g. If (g,¢) is of Hermitian type, there are just two
real miniamal nilpotent orbits in g.

By Theorem 1.2, our ngn,g is just the complexification of the unique real

minimal nilpotent orbit in g for the cases where g is isomorphic to su*(2k)
(k > 2), so(n —1,1) (n > 5), sp(p,q) (p = g = 1), fa—20) OF eg(—26). We
will determine our O%€ _ by describing the weighted Dynkin diagram of it

min,g
for such cases (recall that for another cases, ngn,g is just @S¢). The result

is here (see also Table 2 in §2 for the weighted Dynkin diagrams of ngn):

Theorem 1.4. For the cases where OSS = # OSC  the weighted Dynkin

min,g
diagram of OFS.  are the following:

min,g

g dim¢ oﬁfn,g Weighted Dynkin diagram of o,ﬁg,,g

sut(2k)  8k-—8 0199 8830 (k=23
028 (k=2

so(n—1,1) 2n—4 200 - 90 (4s0dd n>5)

0

3_2__9,__9.<§ (n is even, n > 6)

so(pa)  4p+g)-2 9190 0 00 prgz3p2g2
0.2 p=g=1)

e6(—26) 39 1 00 01

I 0
Faa0) 22 0991
Table 1: List of OZE, | for su*(2k), so(n —1,1), sp(p, q),

eg(—26) and fa(—20)-



This works motivated by recent works [7], by Joachim Hilgert, Toshiyuki
Kobayashi and Jan Méllers, on the construction of an L2-model of irreducible
unitary representations of real reductive groups with smallest Gelfand-Kirillov
dimension; and [8], by Toshiyuki Kobayashi and Yoshiki Oshima, on the clas-
sification of reductive symmetric pairs (g, ) with a (g, K)-module which is
discretely decomposable as an (h, H N K)-module.

2 Preliminary results for weighted Dynkin di-
agrams of complex minimal nilpotent or-
bits

In this section, we recall weighted Dynkin diagrams of complex minimal
nilpotent orbits in complex simple Lie algebras.

Let gc be a complex semisimple Lie algebra, and denote by G¢ the inner
automorphism group of g¢. Fix a Cartan subalgebra h¢c of gc. We denote by
A(gc, he) the root system of (gc, hc). Then, the root system A(gc, hc) can
be regarded as a subset of the dual space h* of

h:={Hebc|a(H)eR (Ya € Age, be)) }-

We write W (gc, bc) for the Weyl group of A(gc, hc) acting on §. Take a
positive system A% (gc,hc) of the root system A(gc,bhc). Then, a closed
Weyl chamber

be:={Hebh|a(H)>0"aec A (g b))}

is a fundamental domain of ) under the action of W (gc, bc)-
Let IT be the simple system of A*(gc, hc). Then, for any H € b, we can

define a map
Uy: - R, a— a(H).

We call ¥y the weighted Dynkin diagram corresponding to H € §, and o(H)
the weight on a node a € II of the weighted Dynkin diagram. Since II is a

basis of h*, the map

¥ : h — Map(I,R), H — Uy
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is a linear isomorphism (between vector spaces). Furthermore,
b+ — M&p(H,Rzo), Hw— \I/H

is also bijective.
A triple (H, X,Y) is said to be an sl,-triple in g¢ if

[H,X]=2X, [HY]=-2Y, [X,Y]=H (H XY € gc).

For any sl,-triple (H, X,Y) in gc, the elelements X and Y are nilpotent in
gc, and H is hyperbolic in g¢ (i.e. adg. H € End(gc) is diagonalizable with
only real eigenvalues).

Combining the Jacobson—Morozov theorem with Kostant [9], for any com-
plex nilpotent orbit @¢¢, there uniquely exists an element He of b, with the
following property: There exists X,Y € (Y such that (Hp, X,Y) is an
sl,-triple in gc. Furthermore, by Malcev [10], the following map is injective:

{ Complex nilpotent orbits in g¢ } < by, O — Hp.

The weighted Dynkin diagram corresponding to Hp is called the weighted
Dynkin diagram of @%¢. Dynkin [6] proved that for any complex nilpotent
orbit OS¢, any weight of the weighted Dynkin diagram of ©¢¢ is given by 0,
1 or 2, and classified weighted Dynkin diagrams of complex nilpotent orbits
(More precisely, Dynkin [6] classified sly-triples in gc. See Bala—Carter (2]
for more details).

In the rest of this subsection, we suppose that gc is simple. Let ¢ be the
highest root of A*(gc, hc). Then, the complex minimal nilpotent orbit in g¢

can be written by
OF¢, = Ge - g5\ {0}

We define the element Hyv of h by

2(a, )
(¢, 9)

for any a € h* (where (, ) is the inner product on h* induced by the Killing
form on g¢). Namley, Hyv is the element of h corresponding to the coroot ¢
of ¢. Since ¢ is dominant, Hgv is in . Furthermore, Hyv is the hyperbolic
element corresponding to OFC since we can find X, € g4, Y5 € g_¢ such that
(Hgv, X4, Yy) is an sly-triple. The list of weighted Dynkin diagrams of (’)gfn
for all simple g¢ can be found in Collingwood—McGovern [4, Ch.5.4 and 8.4].

Q(H¢v) =



Recall that our concern in this paper is in real simple Lie algebras su*(2k),
so(n — 1,1), sp(p, q), es(—26) and fa—20). The complexifications of such alge-
bras are sl(2k, C), so(n,C), sp(p + q,C), esc and f4c, respectively. For the
convenience of the reader, we give a list of weighted Dynkin diagrams of
complex minimal nilpotent orbits in such complex simple Lie algebras.

Gc

dc dim¢ O Weighted Dynkin diagram of O |
si(n,C) 2n o009 00031 (n>2
so(n,C) 2n g_i_g___g:,g (nisodd, n>7)
s (n=5)
010 0 J
O__o__o__@ (n is even, n > 6)
sp(n,C) 2n b0 00 0.0 (n22)
e 929 0 00 0O
I 1
e 16 s 0.0 0

Table 2: List of weighted Dynkin diagrams of O%¢ for
5[(na C)a 50(”76)7 5p(na C)a ¢6,C and f4,C-

3 Outline of a proof of Theorem 1.1

Let gc be a complex simple Lie algebra and g a non-compact real form of g
with a Cartan decomposition g = € ® p. In this section, we describe an idea

of the proof of Theorem 1.1.

We fix a maximal abelian subspace a of p (such a is called a maximally
split abelian subspace of g) and write ¥(g, a) for the restricted root system
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for (g,a). For any restricted root £ of ¥(g, a), we define A,v € a by

_ 2(6’7)) v *
n(Agv) = €6 ("n €a’)

(where (, ) is the inner product on a* induced by the Killing form on g).
Namley, Agv is the element of a corresponding to the coroot £V of £&. Then,
the fact below holds:

Fact 3.1. For any restricted root € of £(g,a) and any non-zero Toot vector
Xe in ge, there exists Ye € g_¢ such that (Aev, Xe, Ye) is an sly-triple in g.

We fix an ordering on a and write ¥t (g, a) for the positive system of
¥(g,a) corresponding to the ordering on a. We denote by A the highest
root of ¥*(g,a) with respect to the ordering on a. Next two lemmas give
charactorizations of the highest root A of £+ (g, a) (we omit proofs of the two
lemmas in this paper):

Lemma 3.2. The highest root A of ¥ (g,a) is a unique dominant longest
root of (g, a).

Lemma 3.3. Let £ be a root of £(g,a). If€ is not the highest root A, then for
any non-zero root vector X¢ in g, there exists a positive root n in L(g, a)
and a root vector X, € g, such that [X¢, Xp) # 0. In particular, § = X if and
only if £ +n € a* is not a root of (g, a) for any n € Xt (g,a).

We write G¢ for the inner automorphism group of gc. Then, the following
two propositions hold:

Proposition 3.4. For any non-zero real nilpotent orbit Oy in g. Then, there
exists a non-zero highest root vector X, in g, such that Xy is in the closure
of O in g.

Proposition 3.5. For any two highest root vectors Xy, X} in ga, there ezists
gc € Gc¢ such that gc X = Xj.

Proof of Proposition 3.4. There is no loss of generality in assuming that the
ordering on a is lexicographic. Let us put m = Zi(a). Then, g can be
decomposed as
g=mdac @ ge.
€€X(g,0)



For any X’ € g, we denote by

X'=Xp+Xi+ Y X; (X,em, X,€a, X,€ge).
£€X(g,a)

We put O} to the closure of O} in g and fix an element X’ in 0. Let us
denote by X\’ the highest one of

Sx = {€ € £(g,0) | X} #0}

with respect to the ordering on a (if X’ # 0, then X x+ is not empty since X’
is nilpotent element in g). As a first step of the proof, we shall prove that
the root vector X3, is also in (). We take A’ € a satisfying that

§(A) <XN(A) (eeZx \ (VD).

(such A’ exists since X is highest in Xy with respect to the lexicographic
ordering on a). Let us put
1
X} = VA exp(adg kA) X' (for k € N)
Then, X} is in @E for any k since @70 is stable by positive scalars. Further-
more,

lim X; = lim Z PN A Xt = X1,

k—o0 k—oo
Eele

This means that X}, is in 0). To complete the proof, we only need to show
that there exists X’ € Of such that A’ = A (where X\ is the highest one of
Y x'). Let Ag be the highest one of

To, = {€ € (g,0) | X’ € O such that X; # 0}

(namely, 256 = Uy o1 Y. x/) with respect to the ordering on a. Then, we can

find a root vector X} in gy, N O) by the argument avobe. We assume that
Ao # A. Then, by Lemma 3.3, there exists n € £*(g,a) and X,, € g, such
that [X,, X} ] # 0. In particular, for the element X" := exp(adg(Xy))X}, in
O}, we obtain that

Ao+n€Xxn C Z-O—g.

This contradicts the definition of Ag. Thus, Ay = . O
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Proof of Proposition 3.5. Let Ayv be the element in a corresponding to the
coroot AV of the highest root A\. We put

(gc)e ={X €gc | [Arv, X]=2X}.

Then, g, is included in (gc)s. We note that there exists X,Y € g¢ such that
(Axv, X,Y) is an slp-triple in g¢ (in fact, we can find such X, Y in gy by Fact
3.1). Therefore, we can use Malcev’s theorem. Namely, for any two non-zero
vectors X and X’ in (gc)s, there exists gc € G¢ such that gc X = X'. Since
gx C (gc)2, the proof is completed. 0O

By using Proposition 3.4 and Proposition 3.5, Theorem 1.1 follows by
taking ngn,g as
OGC = GC )Y \ {0}

min,g °

4 Outline of a proof of Theorem 1.2

Let us consider the same setting in §3. Recall that ngn,g is not the complex

minimal nilpotent orbit OF€ if and only if OSC does not meet g. The
proposition below give a characterization of g for which O%€ is not Oﬁg}‘g

(see Proposition 5.6 for another characterizations of it).
Proposition 4.1. The following conditions on g are equivalent:
1. dimg g, > 2.
2. 0% Nng=40.

We can prove the proposition without any classification, but we omit it
in this paper.

Here, we put m := Zy(a) and denote by My, A to the analytic subgroups
of G corresponding to m, a, respectively. Then, the connected Lie group
M, A (which is the analytic subgroup of G corresponding to m & a) acts on
a. Furthermore, the following proposition holds:

Proposition 4.2. If dimg gy > 2, then g, \ {0} is a single Mo A-orbit.

Combining Proposition 3.4, Proposition 4.1 with Proposition 4.2, we ob-

tain Theorem 1.2.
We will use the next lemma to prove Proposition 4.2.



Lemma 4.3. Suppose that g has real rank one (i.e. dimga = 1) and
dimg gy > 2. Then, g \ {0} is a single MyA-orbit.

Proof of Lemma 4.3. Let Ayv be the element of a corresponding to the coroot
AV of the highest root A in X" (g, a) (see §3). Since g has real rank one, we
have a = RA,v, and g can be written by '

9=9—,\€Bg_%$m®a@g%®m

(gi% can be zero). Let us denote by gc, mc, ac, (8+r)c, (gi%)c the com-
plexification of g, m, a, g+, 9. 3 respectively. We set

(gc)i={X €gc|[Av,X]=iX} (fori€Z).

Then,
(8c)o = m¢ ® ac, (8c)+1 = (Qig)c, (8c)+2 = (8+a)c-

By Fact 3.1, for any non-zero highest root vector X, in g, there exists
Y, € g_, such that (Ayv, X, Y)) is an sly-triple in gc. By the theory of
representations of sl(2, C), we obtain that [(gc)o, Xa] = (gc)2- In particular,
we have

[m @ a, X)\] = Ox-

Therefore, for the MyA-orbit OMe4(X)) in g, through X, we obtain that
dimg OM4(X,) = dimg gy.

This means that the MyA-orbit OMo4(X,) is open in g, for any non-zero
root vector X in g,. Recall that we are assuming that dimg g) > 2. Hence,
gx \ {0} is connected. Therefore, g, \ {0} is a single MyA-orbit. O

We are ready to prove Proposition 4.2.

Sketch of a proof of Proposition 4.2. Let b’ = [gx,8-2] C m & a. Then
g = g_» ®H & g\ becomes a subalgebra of g (since £2X) is not a root).
Furthremore, one can prove that g’ is a real rank one simeple Lie algebra
with a maximally split abelian subspace a’ := RA,v, where A,v is the ele-
ment of a corresponding to the coroot AV of the highest root A in ¥ (g, a)
(see §3). We put m’ @ o := Zy(a') and denote by MyA’ the analytic sub-
group of G corresponding to m’ @ a’. Then, by Lemma 4.3, we obtain that
g \ {0} is a single M A’-orbit. Since M}A’ is a subgroup of My A, the proof
is completed. O
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Gc

5 Determination of O,

S,fn,g by describing the weighted Dynkin dia-

gram of O . Recall that Proposition 4.1 claims that ©%¢ = ©%¢ if and

min,g* min min,g
only if dimg gy = 1. Thus, our concern is in the cases where dimg gy > 2

(i.e. g is isomorphic to su*(2k), so(n — 1, 1), sp(p, q), eg(—26) OF fa—20))-

In this section, we determine O

5.1 Satake diagrams and weighted Dynkin diagrams

In order to determine the weighted Dynkin diagram of our ngn,g, we describe
some lemmas of relationship between weighted Dynkin diagrams of g¢ and
Satake diagrams of g in this subsection.

Let gc be a semisimple Lie algebra and g a real form of it through this
subsection. First, we recall briefly the definition of Satake diagram of a real
form g of a complex semisimple Lie algebra g¢ (see also [1] for more details).
Fix a Cartan decomposition g = €@ p of g. We take a maximal abelian
subspace a in p, and extend it to a maximal abelian subspace h = /=1tD a
in /—1¢ ® p. Then, the complexification, denoted by h¢, of b is a Cartan
subalgebra of gc, and h coincide with the real form

{X €bc|a(X) € R ("o € Agc, be))}
of hc, where A(gc, hc) is the root system of (gc, hc). Let us denote by

%(g,a) ;= {als | @ € Age, bc)} \ {0} C o

the restricted root system of (g,a). We will denote by W(g, a), W(gc, bc)
the Weyl group of X(g,a). A(gc, bc), respectively. Fix an ordering on a
and extend it to an ordering on . We write X*(g,a), A*(gc, bc) for the
positive system of ¥(g,a), A(gc, hc) corresponding to the ordering on a, b,
respectively. Then, ¥+ (g, a) can be written by

%¥(g,0) = {als | @ € A¥(gc, be)} \ {0}
We denote by II the fundamental system of A*(gc, hc). Then,
M:={al.|ael}\{0}

is the simple system of X *(g,a). Let Il be the set of all simple roots in II
whose restriction to a is zero. The Satake diagram S, of g consists of the
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following data: The Dynkin diagram of gc with nodes II; black nodes Il in
Sg; and arrows joining a € IT\ Il and 8 € IT\ Il in S; whose restrictions to
a are the same.

Second, we define that a weighted Dynkin diagram ¥y € Map(II,R)
“matches” the Satake diagram S; of g as follows:

Definition 5.1. Let Uy € Map(II,R) be a weighted Dynkin diagram (see
§2) and Sy the Satake diagram of g with nodes II. We say that ¥y matches
Sy if all the weights on black nodes are zero and any pair of nodes joined by
an arrow has the same weights.

Remark 5.2. The concept of “match” defined above is same as “weighted
Satake diagrams” in Djocovic [5] and the condition described in Sekiguchi
(11, Proposition 1.16].

Recall that W is a linear isomorphism from § to Map(II, R) (see §2). Then,
the next two lemmas hold (we omit proofs of the two lemmas in this paper):

Lemma 5.3. ¥ : h —» Map(II,R) induces a linear isomorphism below:
a — { Uy € Map(II,R) | ¥y matches S, }.

Lemma 5.4. For each simple root « of 11, we denote by H,v the element in
b corresponding to the coroot oV of the simple root o.. Then, the set

{Huv | a is black in Sq }U{ Hov—Hpgv | @ and 8 are joined by an arrow in Sy}

1s a basis of /—1t.

Lemma 5.3 and Lemma 5.4 will be used to compute the weighted Dynkin

diagrams of ngn,g for the cases where ngn’g is not the complex minimal

nilpotent orbit OS¢ ,
Recall that our concern in this paper is in real simple Lie algebras su*(2k),
so(n — 1,1), sp(p,q), ee(—26) and f4_20). For the convenience of the reader,

we give a list of Satake diagrams of such simple Lie algebras.

g Satake diagrams of g

su* (2k ) e—o0—6 0o —  —0—8—0—@®
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so(n—1,1) o o ¢ e— —e—e—>e (nisodd, n>5)

__._.< ¢ (n is even, n > 6)

sp(p, q) —0—0—0  —0—0—0—0— - —0<=0 (pP=>qg=>1)
Q2q pt+q

€6(—26) o ® I ° 0

f4(—20) ® o——>0——O0

Table 3: List of Satake diagrams of su*(2k), so(n —1,1),
sp(p, q), ee(—26) and fa(—20).

5.2 Computation of weighted Dynkin diagrams of ngn,g

We consider the same setting on §5.1 and suppose that g¢ is simple and g is
non-compact. Let us denote by

a.:={A€alf(A)>0 ("¢ eL(g,a)}
Then a, is a fundamental domain of a under the action of W (g, a). Since

X%(g,a) ={ala | @ € Agc, be) }\ {0},

the domain a+ coincide with b, Na. Recall that ) is dominant (by Lemma
3.2) and OS¢  contains gy \ {0} (by the proof of Theorem 1.1). Thus, Ayv
is the hyperbolic element in a, corresponding to Omm o (see §2) since we can
find X, € gy, Y) € g_, such that the triple (Axv, X\, Y)) is an slp-triple in g¢
by Lemma 3.1 (then, Xy, Yy € OS¢ o). Therefore, to determine the weighted
Dynkin diagram of Omm g We shall compute the weighted Dynkin diagram
corresponding to A,v.

Let ¢ be the hlghest root of A*(gc,bhc)- Recall that the complex min-
imal nilpotent orbit (’)mm contains the root space (gc), without zero, and
the weighted Dynkin diagram of (’)mm is the weighted Dynkin diagram cor-
responding to Hyv (see §2). The next lemma gives a formula for Ayv by Hyv
(we omit a proof of the lemma):



Lemma 5.5. We denote by 7 the anti C-linear involution corresponding to
gc = 9P v—1g (i.e. 7 is the complex conjugation of gc with respect to the
real form g). Then, Hyv is in a if and only if dimg g5 > 2 and

Av = H¢v (’LfdlmR gr = 1),
A H¢v + TH¢V (z'fdimR gr = 2)

In particular, we have another characterizations of g for which 0% _is

min,g
not O%¢

min from Proposition 4.1.

Proposition 5.6. The following conditions on g are equivalent:

[

Gc Gc
: Omin,g 7& Omin'

. 0% Nng=0.

2

3. dlmR gx 2 2.

4. The highest oot ¢ in A*(gc, hc) is not a real root.
5

. The weighted Dynkin diagram of OS¢

min

matches the Satake diagram S,
of g (see Definition §5.1).

6. g is isomorphic to su*(2k), so(n—1,1), sp(p, q), ee(—26) OT fa(—20), where
k>2,n>5andp>q>1.

We now determine the weighted Dynkin diagram of (’)gfm for the cases
where g is isomorphic to su*(2k), so(n — 1,1), sp(p,q), es(—26) OF fa(—20)-
By Lemma 5.5, our purpose is to compute the weighted Dynkin diagram
corresponding to Ayv = Hyv + 7Hyv. We only give the computation for the
case g = eg(—26) below. For the other g with dimg gy > 2, we can compute

the weighted Dynkin diagram corresponding to Ayv by the same way.

Example 5.7. Let (gc,8) = (es,c, es(—26)). We denote the Satake diagram of
e6(—26) Y

Q1 Qg Q3 04 Q5
0—o—e—e—0

Qe
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By Table 2, the weighted Dynkin diagram corresponding to Hyv is

000 00O
I1

We now compute the weighted Dynkin diagram corresponding to Ayv = Hyv+
THyv. By Lemma 5.3, the weighted Dynkin diagram corresponding to Ajv
matches the Satake diagram of eg(—26). Thus, we can put the weighted Dynkin
diagram corresponding to Av as

a 0 0 0 b

o——o—I—o—c (a,b € R).
0

To determine a,b € R, we also put

H% = Hy — THyv € V-1t

m

Since Ayv + ;’3} = 2H,v, the weighted Dynkin diagram corresponding to (;;v
can be written by
-a0 0 0 —b

A

Namely, we have

al(Hg\?) = —a,
ag(H;’@') = a;;(Hj,m) = 014(H$m) =0,
a5(H"\7) = —b,

By Lemma 5.4, the set { Hoy, Hoy, Hay, Hay } is a basis of v/—1t. Thus,
% € V/—1t can be written by

;,7\7} = CgHag + CgHa:\;/ + C4Ha‘\1/ + CGHO%/ (Cg, C3,C4,Cq € R)
By the Dynkin diagram of egc, we can compute

) v ___2(0‘i7aj>
o) = Ty
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for each i,j. Thus, we also have

01( )_ —Ca,

ag(HIY) = 2¢y —

a3(Hy )=‘C2+203—C4—66,
as(HY) = —c3 + 2¢4,
as(Hg) = -

ag(Hy ") = —c3 + 2cg.

Then, we obtatin that a = b = 1. Therefore, the weighted Dynkin diagram of
o o Jor 8 = ee(_26) is
1 0001

Sanat

The result of our computation for all g with dimg g, > 2 is Table 1 in §1.
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