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Weyl modules and principal series modules
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1 Introduction

Let G be a connected, simply connected and semisimple algebraic group
over an algebraically closed field k of characteristic p > 0, which is defined
and split over F,, and set ¢ = p". We fix a maximal split torus 7" and a Borel
subgroup B. We shall use the following standard notation:

X = X(T) : character group of T
® = ®(G,T) : root system relative to the pair (G,T);
a" : coroot corresponding to a € ®;
W = N¢g(T)/T : Weyl group;
(-,+) : W-invariant inner product on E = X @ R;
wp : the longest element of W,
B* : Borel subgroup opposite to B;
®* : set of positive roots corresponding to B™;
- A : set of simple roots;
h : Coxeter number;
p= (Zae<1>+ Ot)/2;
Xt ={de X|{(A\,aY) >0, Va € A} : set of dominant weights;
Xn={A € X*|(\,aY) < q, Va € A} : set of g-restricted weights;
wq @ fundamental weight for a € A;
F : G — G : Frobenius map relative to F,.

The simple (rational) G-modules are parametrized by the elements of
X™*, and they are denoted by L()) for A € X*. For A € X, let k) be
the one-dimensional T-(B- or B*-)module with weight A and we set V' (\) =
(Indgk_wo A)* and call it the Weyl module with highest weight A. The Weyl
module V()) is generated by an element of weight A, which is unique up to
scalar multiple and called the highest weight vector.
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Let G(n) = GF" be the finite Chevalley group corresponding to G, and
set B¥(n) = B*F". For A € X, the simple G-module is also simple as a
kG (n)-module and any simple kG(n)-module can be obtained in this way.
For A € X,,, we set M,(\) = Indg&n)n ky and call it a principal series module.

Pillen has given a kind of relatlon between Weyl modules and principal

series modules:

Theorem 1.1 ([3, Theorem 1.2]) Suppose that ¢ > 2h — 1. Let A € X,
and let v be the highest weight vector of V(A + (¢ — 1)p). Then the kG(n)-
submodule generated by v is isomorphic to M,()) if and only if (A\,a¥) >0
for any a € A.

In this article, we report that this theorem can be extended to the case
(A, aV) = 0 for some a € A.

2 Main result

Without loss of generality, we assume that G is simple for the rest of this
article.

We shall introduce some further notation to describe the main result. For
a subset 1 C A, let I be the complement of I in A and set p; = Y, Wa-
For A € X,,, set

I(A) = {a € A[{A,a") = 0}
and
I,_i(A) = {a € Al(A,a") =q—1}.
It is known that M,()) can be decomposed as
M.\ 2 P P v ~ )ps — (g —Dps),
JCIo(A)  J'ClI,_1(N)

where each Y (1) has a simple G(n)-head which is isomorphic to L(u) (see
[2, 4.6 (1)] and [4, §3)).

Now we can state the main result:
Theorem 2.1 ([5, Theorem 2.1]) Suppose that ¢ > h+ 1. Let A € X,
and let v be the highest weight vector of V(A + (¢ — 1)p). Then the kG(n)-
submodule generated by v is isomorphic to

P YO+ (g-Dorn — (@—Dpy)-

JCIp—1(N)
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Remarks (1) Actually Pillen’s original proof in [3] contains an error and the
assumption ¢ > 2h — 1 is not appropriate. However, after modifying it, this
generalized theorem holds under the weaker assumption ¢ > h + 1.

(2) If Io(\) is empty, then the resulting direct sum is isomorphic to M, ()\)
and so this theorem is certainly a generalization of Theorem 1.1.

Example Consider the case G = SLs(k) and ¢ = 7. Set A = {a1, s, a3, a4}
where ¢; are in the standard numbering of type A, as in [1, 11.4]. Let w; be
the fundamental weight corresponding to o;. Then any dominant weight is of
the form Zf=1 ciw; with ¢; € Zs, which is usually abbreviated (c;, cg, 3, c4).
Now we take A = (0,0,2,6). Then Ih(A\) = {a1,a2} and I,_;()) = {a4}.
The principal series module M, (0,0, 2,6) is decomposed as

Y(0,0,2,0) & Y(0,0,2,6) ® Y(0,6,2,0) ® Y(0,6,2,6)

@Y (6,0,2,0) ®Y(6,0,2,6) & Y(6,6,2,0) ® Y(6,6,2,6)

(the entries of A whose values are 0 or ¢ — 1 ’split’ into 0 and g — 1), and the
highest weight vector v of the Weyl module V(A + (¢ — 1)p) = V (6,6, 8, 12)
generates a kG(n)-submodule which is isomorphic to

Y (0,0,2,6) & Y(0,6,2,6) ® Y(6,0,2,6) ® Y(6,6,2,6)

(the entries of A whose values are 0 ’split’ into 0 and ¢ — 1).

3 Strategy of the proof

The method of proof of the main theorem is essentially similar to Pillen’s
original proof. But we need to use the following two generalized lemmas
instead of Lemmas 1.5 and 1.6 in [3]:

Lemma 3.1 [5, Lemma 2.4] Let I C A. Suppose that ¢ > {p;, o)) +2 and
that u € X, satisfies p > (gq—1)p+wopr. Then the multiplicity of L(u) in the
composition factors of the kG(n)-module M,(p;) is one if p = (g— 1) p+wop;
and zero otherwise.

Lemma 3.2 [5, Lemma 2.5] Let I C A, and suppose that q > {pr, o ) +2.
Then the kG(n)-submodule generated by the highest weight vector of V (p; +
(g — 1)p) is isomorphic to Y (pr + (g — 1)pre).
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Lemma 3.1 is used to prove Lemma 3.2. Now we outline the proof of Theorem
1.1.

Let mo and m; be the generators of the kG(n)-modules M,(A) and
M, (p1y(»)e) Tespectively, and let v; and v, be the highest weight vectors of the
Weyl modules V((g — 1)p + pron)e) and V(A — pyyayc) respectively. To begin
with, consider the composite map of two kG(n)-module homomorphisms:

F®id: Mu(pr,00)e) @ V(A — prnye) = V(@ = D)o+ pronye) ® V(A = proae),

@ Mn(’\) - Mn(plo(/\)c) ® V()‘ - pIo(A)C)v

where f®id is defined by m; ® v, — v; ®v; and ¢ is defined by mg — m; v,
(and is injective). It is enough to show that the image of the composite map
(f ®1id) o p is isomorphic to the desired kG(n)-module since v, ® v; generates
V(A + (¢ — 1)p) as a G-module.

For a subset I C A, let G; be the Levi subgroup relative to I and let
G(n) be the corresponding finite group. An analogous notation will be used
for G;, for example, L;(\), Vi()A), My, 1(A) and Y;(p). Now consider the
kG1y(»)(n)-module embedding

P10 Ma1o0)(A) = M 1500 (P10(0)¢) ® Vi) (A = pro(n)e)

which is analogous to . Since the Vi) (A — prpr)e) is one-dimensional
(= kf\-mo(x)c)’ @1o(n 18 bijective and maps the summand Yz, (A + (g —1)p,)
onto Yz, (Prenye + (g — 1)ps) ® Vigny (A — pronye) for any J © A. We shall
denote this restriction map by ¢p,(r),s. Taking Harish-Chandra induction

G(n)
HCIndGIO(A) (n) W€ have

¢ = HCInd(p,) = HCInd( @ Plo(x),J)

JCIo(X)

= @ HCInd(prm).0)-

JCIo(N)

Moreover, one can prove that

HCIHdgE:()A)(n)SGO(,\)(/\ +(g—1)ps) = @ Y(A+(g—1)ps— (g—1)py),
J'Clq-1(A)

and

HCIndgE:(),\)(n)}/IO(/\) (Pro= + (2 — Dps) =Y (pren + (g — 1)pJ)



by using Frobenius reciprocity. These three formulas imply that ¢ maps the
right-hand side of the second formula to Y (pzy(x)c +(q—1)ps) @ V(A — pry(2)<)
injectively. Moreover, Lemma 3.2 implies that the restriction of f ® id on
the tensor product is injective for J = Iy(\), and zero otherwise. Therefore,
the theorem follows.

References

[1] J. E. Humphreys, Introduction to Lie Algebras and Representation The-
ory, GTM 9, Springer, 1972.

[2] J. C. Jantzen, Filtrierungen der Darstellungen in der Hauptserie
endlicher Chevalley-Gruppen, Proc. London Math. Soc. (3) 49 (1984)
445-482.

[3] C. Pillen, Loewy series for principal series representations of finite
Chevalley groups, J. Algebra 189 (1997) 101-124.

[4] H. Sawada, A characterization of the modular representations of finite
groups with split (B,N)-pairs, Math. Z. 155 (1977) 29-41.

[5] Y. Yoshii, A generalization of Pillen’s theorem for principal series mod-
ules, to appear.

87



