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Abstract

We introduce and study a certain class of nonhomogeneous quadratic algebras
together with the special set of mutually commuting elements inside of each, the
so-called Dunkl elements. We describe relations among the Dunkl elements. This
result is a further generalization of similar results obtained in [10],[32] and [21].
As an application we describe explicitly the set of relations among the Gaudin
elements in the group ring of the symmetric group, cf [30].

Yet another objective of our paper is to describe several combinatorial prop-
erties of some special elements, the so-called Cozeter element and the longest
element, in the associative quasi-classical Yang-Baxter algebra. In the case of Coz-
eter element we relate the corresponding reduced polynomials introduced in [40],

with the S-Grothendieck polynomials for some special permutations 7r,(cn). More-
over, we show that the specialization & (1) of the S-Grothendieck polynomial

(n)
Ty
6([5,),) (Xn) counts the number of k-dissections of a convex (n + k + 1)-gon ac-
kis

corlaing to the number of diagonals involved. When the number of diagonals in
a k-dissection is the maximal possible, we recover the well-known fact that the
number of k-triangulations of a convex (n + k + 1)-gon is equal to the value of a
certain Catalan-Hankel determinant, see e.g. [36]. We also show that for a certain
o-parameters family of vexillary permutations, the specialization z; = 1,Vi > 1,
of the corresponding S-Schubert polynomials 61(5 )(1) coincides with some Fuss-
Narayana polynomials and their generalizations. We also point out on a conjectural
connection between the sets of mazimal compatible sequences for the permutation
On2n,2,0 and that o, 2,41,20 from one side, and the set of VSASM (n) and that
of CSTCPP(n) correspondingly, from the other, see Comments 3.6 for details.
Finally, in Section 3 we introduce and study a multiparameter generalization of
reduced polynomials introduced in [40], that of Catalan, Narayana and Schréder
numbers.

In the case of the longest element we relate the corresponding reduced polyno-
mial with the Ehrhart polynomial of the Chan-Robbins polytope.



Introduction

The Dunkl operators have been introduced in the later part of 80’s of the last century
by Charles Dunkl (7], [8] as a powerful mean to study of harmonic and orthogonal
polynomials related with finite Coxeter groups. In the present paper we don’t need the
definition of Dunkl operators for arbitrary (finite) Coxeter groups, see e.g. [7], but only
for the special case of the symmetric group S,.

Definition 0.1 Let P, = C[z1, ..., ,] be the ring of polynomials in variables z1, . .., z,.
The type A,—1 (additive) rational Dunkl operators D, . .., D,, are the differential-difference
operators of the following form

Di=X—+) —2, (0.1)

Here s;5, 1 <1i < j < n, denotes the exchange (or permutation) operator, namely,

Sij(f)(xl,...,.’l,'i,...,l'j,..',.'L'n)=f(l?l,...,LL']',...,SII,,',...,.’IJn);

3% stands for the derivative w.r.t. the variable x;; A € C s a parameter.

The key property of the Dunkl operators is the following result.

Theorem 0.1 ( C.Dunkl [7] ) For any finite Cozeter group (W, S), where S = {s1,...,si}
denotes the set of simple reflections, the Dunkl operators D; := D,, and D; := D,; com-
mute: Dz Dj = D]’ Di, 1 < Z,] < l.

Another fundamental property of the Dunkl operators which finds a wide variety of
applications in the theory of integrable systems, see e.g. [15], is the following statement:
the operator
1
(Dy)?
i=1

“essentially” coincides with the Hamiltonian of the rational Calogero-Moser model re-
lated to the finite Coxeter group (W, S).

Definition 0.2 Truncated (additive) Dunkl operator (or the Dunkl operator at critical
level), denoted by D;, i =1,...,1, is an operator of the form (0.1) with parameter A = 0.

For example, the type A, _; rational truncated Dunkl operator has the following form
1-— s
D; = —_—,
t Z ZT; —Ij
Clearly the truncated Dunkl operators generate a commutative algebra.

The important property of the truncated Dunkl operators is the following result discov-
ered and proved by C.Dunkl [8]; see also [1] for a more recent proof.



Theorem 0.2 (C.Dunkl [8], Y.Bazlov [1]) For any finite Cozeter group (W, S) the al-
gebra over Q generated by the truncated Dunkl operators D, ..., D; is canonically iso-
morphic to the coinvariant algebra of the Cozeter group (W, S).

Example 0.1 In the case when W = S, is the symmetric group, Theorem 0.2 states
that the algebra over Q generated by the truncated Dunkl operators D; = Y i :_“’;’] , 1=
1,....n, is canonically isomorphic to the cohomology ring of the full flag variety FI, of

type An— 1

Q[Dlw--an] %Q[zl,...,xn]/Jn, (02)

where J,, denotes the ideal generated by elementary symmetric polynomials {ex(X,), 1 <
k<n}.

Recall that the symmetric polynomials e;(X,),?=1,...,n, are defined through the
generating function

n

1+ e Xa) ' =[] 1+t ),
i=1 i=1
where we set X, := (71,....2,). It is well-known that in the case W = S,,, the
isomorphism (0.2) can be defined over the ring of integers Z. [ |

Theorem 0.2 by C.Dunkl has raised a number of questions:

(A) What is the algebra generated by the truncated

e trigonometric,

e elliptic,

e super, matrix, ...,

(a) additive Dunkl operators ?

(b) Ruijsenaars—Schneider-Macdonald operators ?

(¢) Gaudin operators ?

(B) Describe commutative subalgebra generated by the Jucys—Murphy elements in

e the group ring of the symmetric group;

o the Hecke algebra ;

e the Brauer algebra, BMV algebra, .. ..

(C) Does there exist an analogue of Theorem 0.2 for

e Classical and quantum equivariant cohomology and equivariant K-theory rings of
the flag varieties ?

e Cohomology and K-theory rings of affine flag varieties ?

e Diagonal coinvariant algebras of finite Coxeter groups ?

e Complex reflection groups ?

The present paper is a short Introduction to a few items from Section 5 of [18].

The main purpose of my paper “On some quadratic algebras, II” is to give some
partial answers on the above questions in the case of the symmetric group S,.

The purpose of the present paper is to draw attention to an interesting class of
nonhomogeneous quadratic algebras closely connected (still mysteriously !} with different
branches of Mathematics such as

Classical and Quantum Schubert and Grothendieck Calculi,

Low dimensional Topology,



Classical, Basic and Elliptic Hypergeometric functions,
Algebraic Combinatorics and Graph Theory,
Integrable Systems,

What we try to explain in [18] is that upon passing to a suitable representation of
the quadratic algebra in question, the subjects mentioned above, are a manifestation of
certain general properties of that quadratic algebra.

From this point of view, we treat the commutative subalgebra generated by the
additive (resp. multiplicative) truncated Dunkl elements in the algebra 37T,(3), see
Definition 2.1, as universal cohomology (resp. universal K -theory) ring of the complete
flag variety Fl,. The classical or quantum cohomology (resp. the classical or quantum
K-theory) rings of the flag variety FI, are certain quotients of the universal ring.

For example, in [20] we have computed relations among the (truncated) Dunkl el-
ements {0;, i = 1,...,n} in the elliptic representation of the algebra 3T,(8 = 0). We
expect that the commutative subalgebra obtained is isomorphic to (yet not defined, but
see [14]) the elliptic cohomology ring of the flag variety Fi,.

Another example from [18]. Consider the algebra 37,(8 = 0).

One can prove [18] the following identities in the algebra 3T,(f8 = 0)

(A) Summation formula

n—1 n—1 j-1 n—1
( H Ub,b+1) Uin (Hub,b+1) = H Uq,a+1-
j=1  b=j+1 b=1 a=1

(B) Duality transformation formula Let m < n, then

n-1 n-1 7-1

m-—1
E ( H Ub,b+l) [H Ug,a+n—1 ua,a+n] Um,m+n—1 (H ub,b+1) =

j=m b=j+1 a=1 b=m
m m—j n—1 !
E [H Ug,a+n ua+1,a+n] (H ub,b+1) [H Ug,a+n—1 ua.a+n] -
j=1 a=1 b=m a=1
m m-1 n—1
E [H Ug,a4+n—1 ua.a+n] Um,n+m—1 (H ub,b+1) U1,n-
j=2 a=j b=m

One can check that upon passing to the elliptic representation of the algebra 37,(8 =
0), see [18], Section 5.1.7, or [20] for the definition of elliptic representation, the above
identities (A) and (B) finally end up correspondingly, to be a Summation formula and a
Duality transformation formula for multiple elliptic hypergeometric series (of type A,_1).
see e.g. [16] for definition of the latter.

After passing to the so-called Fay representation [18], the identities (A) and (B) become
correspondingly to be the Summation formula and Duality transformation formula for
the Riemann theta functions of genus g > 0, [18]. These formulas in the case g > 2
seems to be new.

|



A few words about the content of the present paper.

In the first section I introduce the so-called dynamical classical Yang-Bazter algebra
as “a natural quadratic algebra” in which the Dunkl elements form a pair-wise commuting
family. It is the study of the algebra generated by the (truncated) Dunkl elements that
is the main objective of our investigation in [18] and the present paper.

In Section 2, see Definition 2.1, we introduce the algebra 3HT, (), which seems to be
the most general (noncommutative) deformation of the (even) Orlik-Solomon algebra,
such that it’s still possible to describe relations among the Dunkl elements, see Theo-
rem 2.1. As an application we describe explicitly a set of relations among the (additive)
Gaudin / Dunkl elements, cf [30].

In Section 3 we describe some combinatorial properties of special elements in the
associative quasi-classical Yang—Baxter algebra ! mn The results of Section 3.1,
see Proposition 3.1, items (1)-(5), are more or less known among the specialists in
the subject, while those of the item (6) seem to be new. Namely, we show that the
polynomial  Qn(z;; = t;) from [40], (6.C8),(c), essentially coincides with the.p-
deformation [11] of the Lascoux- Schiitzenberger Grothendieck polynomial [25] for some
particular permutation. The results of Proposition 3.1, (6), point out on a deep
connection between reduced forms of monomials in the algebra AEY\BR and the Schubert
and Grothendieck Calculi. This observation was the starting point for the study of
some combinatorial properties of certain specializations of the Schubert, 5-Grothendieck
(12] and double B-Grothendieck polynomials in Section 3.2 . One of the main results
of Section 3.2 can be stated as follows.

Theorem 0.3
(1) Letw €S, be a permutation, consider the specialization z := g.z; =1, Vi > 2,

of the B-Grothendieck polynomial &P (Xn). Then
Ru(g,B+1) =8P (z, =q,z; =1, Vi > 2) € N[g, 1+ ].

In other words, the polynomial R, (g, 3) has non-negative integer coefficients 2.
For late use we define polynomials

Ru(g, B) == ¢" ™M R,(q, B).

(2) Letw €S, be a permutation, consider the specialization x; ‘= q,y; = t, Vi > 1, of
the double B-Grothendieck polynomial L) (X,,,Y,). Then

fo_l)(xi =gq,y; :=1t,Vi > 1) € N[q, 1, 5].
(3) Let w be a permutation, then
Ru(1, B) = Rixw(0, B).
Note that Ry (1,8) = Ry-1(1,8), but Ry(¢, 8) # Re-1(t, B), in the general case.

! The algebra mn can be treated as “one-half” of the algebra 37, (). It appears, see Lemma 3.1,
that the basic relations among the Dunkl elements, which do not mutually commute anymore, are still
valid.

2For a more general result see Appendix



For the reader convenience we collect some basic definitions and results concerning the
B-Grothendieck polynomials in Appendix.

Let us observe that R,(1,1) = &,(1), where &,,(1) denotes the specialization
z; := 1, Vi > 1, of the Schubert polynomial &,(X,) corresponding to permutation w.
Therefore, R, (1,1) is equal to the number of compatible sequences [4] (or pipe dreams,
see e.g. [36] ) corresponding to permutation w.

Problem 0.1

Let w € S, be a permutation and | := £(w) be its length. Denote by CS(w) =
{a=(a; <a; <...<q) € N} the set of compatible sequences [4] corresponding to
permutation w.

o Define statistics r(a) on the set of all compatible sequences CS,:= [[ CS(w)
wWES

in a such way that

> ¢ B =Ru(q.8).

aeCS(w)
e Find and investigate a geometric interpretation, combinatorial and algebra-geometric

properties of polynomials 6,(,‘,9 )(Xn),
where for a permutation w € S, we denoted by S )(Xn) the B-Schubert polynomial
defined as follows

l:=l(w)
Gsf)(Xn) = Z ﬁr(a) H Zg,-
aeCS(w) =1

We expect that polynomial ¥ )( 1) coincides with the Hilbert polynomial of a certain
graded commutative ring naturally associated to permutation w.

Remark 0.1 It should be mentioned that, in general, the principal specialization
fo_l)(xi =¢" Vi>1)
of the (B — 1)-Grothendieck polynomial may have negative coefficients. |

Our main objective in Section 3.2 is to study the polynomials R, (g, 3) for a special
class of permutations in the symmetric group S,,. Namely, in Section 3.2 we study
some combinatorial properties of polynomials R, (g, B) for the five parameters family
of vezillary permutations {w, 4} which have the shape

Ai=App=(@n—i4+1)+b,i=1,...,n+1) and flag

di=¢p,=(k+r(t—1),i=1,...,n+1).

This class of permutations is notable for many reasons, including that the special-
ized value of the Schubert polynomial &, ,(1) admits a nice product formula, see
Theorem 3.6. Moreover, we describe also some interesting connections of polynomi-
als R, ,(g,B) with the Fuss-Catalan numbers 3 and Fuss-Narayana polynomials, k-

3We define the (generalized) Fuss-Catalan numbers to be FCP) (b) := Tbt-ol-(nb——m ("PF?). Connection
of the Fuss-Catalan numbers with the p-ballot numbers Balp(m,n) := 25225l ("*7+1) and the Rothe

m
numbers Rp(a,b) := 2 (***") can be described as follows

FCP)(b) = Rn(b+ 1,p) = Balp_1(n,(n — 1)p +b).



triangulations and k-dissections of a convex polygon, as well as a connection with two
families of ASM. For example, if A = (b") and ¢ = (k"), then the polynomial
Ry, (g, B) defines a (g, §)-deformation of the number of (descending) plane partitions
sitting in the box bx kxn. It seems an interesting problem to find an algebra-geometric
interpretation of polynomials R, (q, 5) in the general case.

In Section 3.3 we give a partial answer on the question 6.C8(d) by R.Stanley [40].

Almost all results in Section 3 state that some two specific sets have the same number
of elements. Our proofs of these results are pure algebraic. It is an interesting problem
to find bijective proofs of results from Section 3 which generalize and extend the bijective
proofs presented in [44], [36], [41] to the case of -Grothendieck polynomials, the Schréder
numbers and k-dissections of a convex (n + k + 1)-gon. We are planning to treat and
present these bijections in (a) separate publication(s). [

At the end of Introduction I want to add two remarks.

(a) After a suitable modification of the algebra 3HT,,, see [22], and the case 3 # 0 in
[18], one can compute the set of relations among the (additive) Dunkl elements (defined
in Section 1, (1.3)). Inthecase =0 and g; =¢; d;—i1, 1 <i<j<n, where d,;
is the Kronecker delta, the commutative algebra generated by additive Dunkl elements
(1.3) appears to be “almost” isomorphic to the equivariant quantum cohomology ring
of the flag variety Fl,, see [22] for details. Using the multiplicative version of Dunkl
elements (1.3), one can extend the results from [22] to the case of equivariant quantum
K-theory of the flag variety Fl,, see [18].

(b) In fact one can construct an analogue of the algebra 3HT, and a commutative
subalgebra inside it, for any graph I' = (V, E) on n vertices, possibly with loops and

multiple edges, [18]. We denote this algebra by 37,,(T), and denote by 3T ”(T") its nil-
quotient, which may be considered as a “classical limit of the algebra 37T, (T")”.

The case of the complete graph I' = K, reproduces the results of the present paper and
those of [18], i.e. the case of the full flag variety FI,,. The case of the complete multipar-
tite graph I' = K,,, ., reproduces the analogues of results stated in the present paper
for the full flag variety Fl,, in the case of the partial flag variety F,, . n., see [18] for
details.

We expect that in the case of the complete graph with all edges of multiplicity m, I' =
K™ the commutative subalgebra generated by the Dunkl elements in the algebra
370 (T') is related to the algebra of coinvariants of the diagonal action of the symmetric

group S,, on the ring of polynomials Q[Xf(zl) b ,X,(lm)].

Example 0.2 Take T’ = Ky,. The algebra 3T (T") is generated by four elements {a =
13, b = U14, € = Ug3, d = ugy} subject to the following set of (defining) relations
e A’ =0=2=d?’=0, cb=be, ad=da,
e aba+bab=0=aca+cac, bdb+dbd=0=cdc+dcd,
abd—bdc—cab+dca=0=acd-bac—cdb+dba,
e abcat+adbe+badb+becad+cadct+dbed=0.
It 1s not difficult to see that

Hilb(3TV(K,5),t) = [3)? [4]2, Hilb(3TV(K32)®,t) = (1,4,6,3).




Here for any algebra A we denote by A% its abelization.

The commutative subalgebra in 3T7(® (K, ,), which corresponds to the intersection
3TO (Ky3) N Z[#:,02,03,04), is generated by the elements ¢; :=6; + 6, = (a+b+c+
d) and ¢y := 0, 6; = (ac+ ca + bd + db+ ad + bc). The elements ¢; and c; commute and
satisfy the following relations

6:13—26102=0, 03—6%02=0.

The ring of polynomials Z[c;, ¢o] is isomorphic to the cohomology ring H*(Gr(2,4),Z)
of the Grassmannian variety Gr(2, 4).

This example is illustrative of the similar results valid for the graphs K, .., i.e. for
the partial flag varieties [18]. The meaning of the algebra 3T,(,0)(F) and the corresponding
commutative subalgebra inside it for a general graph I, is still unclear. [ ]

Conjecture 1
Let ' = (V, E) be a connected subgraph of the complete graph K, on n vertices. Then
Hilb(3TO(T),¢) = tVI=! T(T;1+¢71,0),

where for any graph I' the symbol T(I';z,y) denotes the Tutte polynomial corre-
sponding to this graph.
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1 Dunkl elements

Let A, be the free associative algebra over Z with the set of generators {u;;, 1 < 14,j < n}.
Weset z; :=u;, i=1,...,n. '

Definition 1.1 Define (additive) Dunkl elements 6;,i = 1,...,n, in the algebra A, to
be
n
9,‘ =.’II,‘+Z Ujj. (13)
=
We are interested in to find “natural relations” among the generators {u;;} such that
the Dunkl elements (1.3) are pair-wise commute. One natural condition which is the

commonly accepted in the theory of integrable systems, is
e (Locality condition)

[Ti, 2] =0, wij wlw = i wy, if {3,5}N{k,1}=0. (1.4)



Lemma 1.1 Assume that elements {u;;} satisfy the locality conditions (1.4). Then

0;,6;] = [Ii + Z Uik, Uij +Uﬁ] + [Uij,i -Tk] + Z Wijk,

k#i,j k=1 k#i,j

where
Wijk = [Uij, Uik + Wjk) + [Wiks Wjk] + (2, wsk] + [wak, T;] + [Tk, us]- (1.5)

Therefore in order to ensure that the Dunkl elements form a pair-wise commuting family,
it’s natural to assume that the following conditions hold
e (Unitarity)

[u,-j + ujz-,ukl] =0= [’Uﬂgj + Uj,;,.’L‘k] f()T' all i,j, k‘, l, (16)

i.e. the elements u;; + u; are central.
e (Crossing relations)

[Z T, uij] =0 for all i,j. (1.7)
k=1

e (Dynamical classical Yang—Baxter relations )
[wijs Wik + wi] + [in, W] + (i, wjn] + [wik, T3] + [Tk, ug] = 0, (1.8)

if ¢, 7, k are pair-wise distinct.

We denote by DCY B,, the quotient of the algebra A, by the two-sided ideal generated
by relations (1.4),(1.6),(1.7) and (1.8). Clearly, the Dunkl elements (1.3) generate a
commutative subalgebra inside the algebra CDY B, and thesum ) ", 6; =) " z;
belongs to the center of the algebra DCY B,.

Example 1.1 (A representation of the algebra DCY B, cf [9]) _

Given a set q1,...,¢gn—1 of mutually commuting parameters, define g;; = Hfz;: Qa, if
i < j and set g;; = gj; in the case i > j. Clearly, that if i < j < k, then ¢;;qx = gix.

Let z1,..., 2, be a set of variables. Denote by P, := Z|[zy, ..., z,] the corresponding
ring of polynomials. We consider the variable z;, 2 = 1,...,n, also as the operator acting
on the ring of polynomials P, by multiplication on z;..

Let s;; € Sy, be a transposition. We consider the transposition s;; also as the operator
which acts on the ring P, by interchanging z; and z;, and fixes all other variables. We
denote by

By = 15y
Z; — Z]'
the divided difference operator corresponding to the transposition s;;. Finally we define
operator (cf [9] )
8(1‘_7’) = 81 cee 8]'_18]-6]-4 o 82', 'lf 1< ]

The operators 9;;),1 < i < j < n satisfy (among others) the following set of relations

(cf [9])
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o [2.0u] =0, if jElk,  [Oup Xami %l =0,

® (B O] = djk 2, Oun] + 8a [Osy. ), i ¢ <y k<L

Therefore, if we set u;; = ¢;; 0ij). f i< j, anduuj) = —ugy, ¢f ¢> J, then for
atriplei < j < k we will have

[, ik + i)+ Wik, i)+ 26, Wj] + [k 23]+ [260 Wik] = €i503k[00i5), Oimy) + ik [Oiky, 23] = 0.

Thus the elements z;,i = 1,...,n and {u;;,1 < i < j < n} define a representation of the
algebra DCY B,,, and therefore the Dunkl elements

0; ==z + Z Uiy = 24 — Z 9;i0i) + th‘ja(ij)

j#i j<i j>i

form a pairwise commuting family of operators acting on the ring of polynomials
Zigr,- -+ qn-1][21+- - -+ 2a)s f [9].

Comments 1.1 ~
(Non-unitary dynamical classical Yang—Baxter algebra) Let .4, be the quotient of
the algebra A, by the two-sided ideal generated by the relations (1.4), (1.7) and (1.8).

Consider elements

9i=$i+z Uig, and 9—j=—$j+zubj- 1<i<j<n
ai bt

Then .
[9,‘, (7]] = [Z Tk ,’Uq;j] + Z Wik -
k=1

k#i,j
Therefore the elements 6; and 0_]' commute in the algebra Zn.

In the case when z; = 0 for all 4 = 1,...,n, the relations w;jx = 0, assuming
that 4,7,k are all distinct, are well-known as the (non-unitary) classical Yang-Baxter
relations. Note that for a given triple (i, j, k) we have in fact 6 relations. These six
relations imply that [#;,6;] = 0. However,

[ei»ej] = [Z Uik » U +Uﬁ] # 0.
ki,

In order to ensure the commutativity relations among the Dunk! elements, i.e. [0;,6;] =
0 for all 4,j, one needs to impose on the elements {u;;,1 < i # j < n} the “twisted”
classical Yang-Baxter relations, namely

[wij + wik, wjk) + [k, uz) =0, if i,j,k are all distinct. (1.9)

Contrary to the case of non-unitary classical Yang-Baxter relations, it is easy to see that
in the case of twisted classical Yang-Baxter relations, for a given triple (i, 7, k) one has
only 3 relations.
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2 Algebra 3HT,

Consider the twisted classical Yang—-Baxter relation
[Uij + Wig, Uja] + [Wia, uji] =0, where i,j,k are distinct.

Having in mind applications of the Dunkl elements, we split the above relation on two
relations
Usj Ujk = Ujk Uk — Uik Uji QNG Ujk Usj = Ui Ujk — Uji Uik,

and impose the unitarity constraints
u; + uy =B,

where [ is a central element. Summarizing, we come to the following definition.
Definition 2.1 Define algebra 3T,(8) to be the quotient of the free associative algebra
ZP) ( wy, 1<i<j<mn ) by the set of relations

o (Locality) wij wr = wi ugj, of {3,571 N {k, 1} =0,

® Ui Ujk = Uik Wij + Ujke Uik — B Uik, Uik Uyj = Ui Uik + Uik Ujk — B uik,

fl<i<j<k<n.
For each pair 7 < j, we define element g;; := uZ, — 8 uy; € 3T,(8).

Lemma 2.1
(1) The elements {gi;, 1 <i<j<n} satisfy the Kohno— Drinfeld relations
( known also as the horizontal four term relations)

Qi Qe = qu %55, of {6, 9} N {k, 1} =0,
(i, @ik + @] =0, [0 + @ik, i) =0, if i<j<k.
(2) For a triple (i < j < k) define uk, := uy; — Uik + ujx. Then
u?jk = B uyr + Qij + Gix + G-

(3) (Deviation from the Yang-Baxter and Cozeter relations)

Uij Wik Ujk — Ujk Usp Uiy = [Uika Qz‘j] = [ij, Uik]a

Uij Uik Uij-— Ujke Uij Uje = Qg5 Uik — Uik k-
Comments 2.1 [t is easy to see that the horizontal 4-term relations listed in Lemma 2.1,

(1), are equivalent to the locality condition among the generators {g;;}, together with
the commutativity conditions among the Jucys—Murphy elements

n
di = E 9ij» i=2,...,n,

j=i+l

namely, [d;,d;] = 0. In [18] we describe some properties of a commutative subalgebra
generated by the Jucys-Murphy elements in the Kohno- Drinfeld algebra. It is well-
known that the Jucys-Murphy elements generate a maximal commutative subalgebra in
the group ring of the symmetric group S,. It is an open problem to describe defining
relations among the Jucys—Murphy elements in the group ring Z[S,]. [ |
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Finally we introduce the “Hecke quotient” of the algebra 3T, (83), denoted by 3HT,.

Definition 2.2 Define algebra 3HT, to be the quotient of the algebra 3T,(83) by the set
of relations
Qij Qkl = Qr Gij.  for all 4,3,k 1.

In other words we assume that the all elements {g;;, 1 < i < j < n} are central in
the algebra 37,,(8). From Lemma 2.1 follows immediately that in the algebra 3HT,, the
elements {u;;} satisfy the multiplicative (or quantum) Yang-Baxter relations

Uij Uik Ujk = Ujk Uik Ugj, Zf 1<y< k. (210)

Therefore one can define multiplicative analogues ©;, 1 < ¢ < n, of the Dunkl
elements 6;. Namely, to start with, we define elements

hij = hij(t) =1+t Uiy, 1 7é ]

We consider h;;(t) as an element of the algebra 3HT, := 3HT, ® Z(|B,q5" t, 2y, .. ],

where we assume that all parameters {3, ¢;;,t,z,y, ...} are central in the algebra 3HT,.

Lemma 2.2

(1a)  hi(z) hij(y) = hij(z +y + B zy) + gi5 2y,

(18)  hii(z) hjs(y) = hij(z —y) +By—gj 2z y, ifi <]

It follows from (1b) that h;;(t) hj(t) =1+ 8t — #2 ¢, if ¢ < j, and therefore the
elements {h;;} are invertible in the algebra 3HT,.

(2)  hij(z) hie(y) = hir(y) Rie(z) + Ri(y) hij(z) — hi(z +y + B zy).

(3) (Multiplicative Yang-Bazter relations)

hij hix hjk = hjk hix hija ’lf 1< g < k.

(4) Define multiplicative Dunkl elements (in the algebra ?TPTT/,, ) as follows

8, 1= 0;(t) =( fl h;;) ( ﬁ hja ) 1<j<n. (2.11)
a=j-1 a=n

Then the multiplicative Dunkl elements pair-wise commute.

Clearly

©;=1, ©;=1+t0;+t*...), and ©; [] (1 +1t8 -+ qy) € 3HT,.

1 igl,jel
i<j

n
7=

Here for a subset I C [1,n] we use notation ©; = [[,.; ©.,
Our main result of this Section is a description of relations among the multiplicative

Dunkl elements.
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Theorem 2.1
In the algebra 3HT, the following relations hold true

S e I <1+tﬁ~t2qﬁ)=[g}l .
+t8

IC[1,n] igl,jeJd
1=k i<j

Here [ZJ denotes the g-Gaussian polynomial.
q
Corollary 2.1

Assume that q;; # 0 for all 1 <i < j < n. Then the all elements {u;;} are invertible
and u{jl = qigl(uij — ) Now define elements ®; € 3HT, as follows

1 it+1
~1 .
@iz{H uai}{“um}, 1=1,...,n.
a=i—1 a=n

Then we have
(1) (Relationship among ©; and ®; )

t" 7 ©;(t7) limo = (~1) @;.

(2) The elements {®;, 1 <1 < n,} generate a commutative subalgebra in the algebra

3HT,.
(3) For each k = 1,...,n, the following relation in the algebra 3HT, among the

elements {®;} holds
Z H (—gqij) &7 = B°CH),

IC[1,n] i@, jeI
|I|=k i<y

where @1 := [[,c; ..

In fact the element ®; admits the following “reduced expression” which is useful for
proofs and applications

oo (THIT )} (T (T o)} e

u

i e

Let us explain notations. For any (totally) ordered set I = (i; < i3 < ... < i) wWe
denote by I, the set I with the opposite order, i.e. I, = (3p > ix_1 > ... > 41); if

I C [1,n], then I° = [1,n] \ I. For any (totally) ordered set I we denote by the
i€l
ordered product according to the order of the set I.
Note that the total number of terms in the RHS of (2.12) is equal to k(n — k) >
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Finally, from the “reduced expression” (2.12) for the element ®; one can see that

11 (—q,-,-)@1={ﬁ{ﬁ) (8- i)} } {ﬁ{ﬁ w} } == @1 € 3HT,.
JEI i€l jerg el

wg1,5€l

1<) 1<) 1<J

Therefore the identity
Z ;5’1 — Bk(n—k)

IC[1,n]
1=k

is true in the algebra 3HT,, for arbitrary set of parameters {g;;}.

Comments 2.2
(I)  In fact from our proof of Theorem 2.1 we can deduce more general statement,
namely, consider integers m and k£ such that 1 < k<m <n. Then

Z O, H (1 +t 8- 2 q'ij) = ':7}?]1‘”5 + Z UA B, (213)

IC[1,m] 1€[1,m)\1,5€J AC[1,n],BC[1,n}
|1t=k 1<j |A|=|B|=r

where , by definition, for two sets A = (¢1,...,4,) and B = (j1,...,Jr) the symbol
u4,p is equal to the (ordered) product []'_; ui, ;.- Moreover, the elements of the sets
A and B have to satisfy the following conditions:
e foreacha=1,...,ronehas1<i, <m<j,<n, and k<r<k(n-k).
Even more, if r = k, then sets A and B have to satisfy the following additional conditions:
e B =(j; <js <...<j) and the elements of the set A are pair-wise distinct.

In the case § = 0 and r = k, i.e. in the case of additive (truncated) Dunkl elements,
the above statement, also known as the quantum Pieri formula, has been stated as
Conjecture in [10], and has been proved later in [32].

Corollary 2.2 ([21])

In the case when 8 =0 and g;; = ¢; 0;j—i.1, the algebra over Zlq, ..., gn-1] generated
by the multiplicative Dunkl elements {©; and ©;', 1 < i < n} is canonically isomorphic
to the quantum K-theory of the complete flag variety Fl, of type A,_1.

It is still an open problem to describe explicitly the set of monomials {us g} which
appear in the RHS of (2.13) when r > k.

(II)  (Truncated Gaudin operators ) Let {p;; 1 < i # j < n} be a set of
mutually commuting parameters. We assume that parameters {p;;} are invertible and
satisfy the Arnold relations

Lo,
Pik  Pij  Djk

For example one can take p;; = (2; — z;)~', where z = (21,.. ., 2,) € (C\O)™
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Definition 2.3 Truncated (rational) Gaudin operator corresponding to the set of param-
eters {pi;}, is defined to be

G, = Zpls,-j, 1<i<n,
J#

where s;; denotes the exchange operator which switches variables x; and z;, and fizes
parameters {p;;}.

We consider the Gaudin operator G; as an element of the group ring Z[{p 111[Sh)
call this element G; € Z[{p};'}][Sx], i = 1....,n. by Gaudin element and denoted it by
o™,

It is easy to see that the elements u;; := pm sij, 1 <1 :,»4 j < n, define a representation
of the algebra 3HT, with parameters 8 =0 and ¢;; = u” = pw

Therefore one can consider the (truncated) Gaudin elements as a special case of
the (truncated) Dunkl elements. Now one can rewrite the relations among the Dunkl
elements, as well as the quantum Pieri formula [10] , [32], in terms of the Gaudin elements.

The key observation which allows to rewrite the quantum Pieri formula as a certain
relation among the Gaudin elements is the following one: parameters {pigl} satisfy the
Plicker relations

1 1 1
= +
DPik Pji Dij Pk Pil Pjk

, if i<i<k<l

To describe relations among the Gaudin elements 0,(”), i=1,...,n, we need a bit of
notation. Let {p;;} be a set of invertible parameters as before.
Define polynomials in the variables h = (hq, ..., hy)

Grpr(h {pi}) = Z Z (:: |IU|J;|!) hy, (2.14)

IC{l,n-1] l—LEI Din JC[1,n)
|1|—T | I|+m=|J|+k

where

iLJ = Z H hj H pia,la7

KCJ, LCJ, jeJ\(KUL ko€K, lgeL
KI=iLl KAz=o JSNEUD eRT e

and summation runs over subsets K = {kj,ky < ...<k.}CJ, and L={l,€J, a=
1,...,7}, such that k, < 5, 1 <a<r and I,...,l, are pairwise distinct.

Theorem 2.2  (Relations among the Gaudin elements, [18], cf [30])
Under the assumption that elements {p;;, 1 < i < j < n} are invertible, mutually
commute and satisfy the Arnold relations, one has

o Gmir(0™, . .,0 {p,;}) =0, if m>Ek, (2.15)

° Go,o,k(ai"), o Apii}) = ew(ds, ..., dy), whereds, ..., d, denote the Jucys—Murphy
elements in the group ring Z[S,] of the symmetric group S,.
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It is well-known that the elementary symmetric polynomials ex(d, . . . ,dy) := Cy, k =
1,...,n, generate the center of the group ring Z[p;'][S,], whereas the Gaudin ele-
ments {05") , ¢ = 1,...,n}, generate a maximal commutative subalgebra B(p;;), the

so-called Bethe subalgebra, in Z[p;;'][S,]. It is well-known, see e.g. [30], that B(p;;) =
D, Br(pi;), where By (p;;) is the A—isotypic component of B(p;;). On each A—isotypic
component the value of the central element Cj is the explicitly known constant ci(A).
It follows from [30] that the relations (2.15) together with relations

Gook(B".....0%, {pis}) = ce(N),

are the defining relations for the algebra By (p;;).

Let us remark that in the definition of the Gaudin elements we can use any set of
mutually commuting, invertible elements {p;;} which satisfies the Arnold conditions. For
example, we can take

_¢*1-9q) .
pij.:m’ 1<i<j<n.
It is not difficult to see that in this case
lim - = —dj = — Sajs
q—)O pl] o

where d; denotes the Jucys—Murphy element in the group ring Z[S,] of the symmetric
group S,. Basically from relations (2.15) one can deduce the relations among the Jucys-
Murphy elements ds, ..., d, after plugging in (2.15) the values p;; := %E—‘Q and
passing to the limit ¢ — 0. However the real computations are rather involved.

Finally we note that the multiplicative Dunkl / Gaudin elements {©;, 1,...,n} also
generate a maximal commutative subalgebra in the group ring Z[p;;'][S,]. Some relations
among the elements {©,} follow from Theorem 2.1, but we don’t know an analogue of
relations (2.13) for the multiplicative Gaudin elements, but see [30].

(III) Shifted Dunkl elements ?; and 29;

As it was stated in Corollary 2.2, the truncated additive and multiplicative Dunkl
elements in the algebra 3HT,(0) generate over the ring of polynomials Zq, ..., qn-1]
correspondingly the quantum cohomology and quantum K — theory rings of the full
flag variety Fl,. In order to describe the corresponding equivariant theories, we will
introduce the shifted additive and multiplicative Dunkl elements. To start with we need
at first to introduce an extension of the algebra 3HT,(5).

Let {z1,...,2,} be a set of mutually commuting elements and {8, h,t,q;; = gji, 1 <
2,7 < n} be a set of parameters.

Definition 2.4 Define algebra 3T H,(B) to be the semi-direct product of the alge-
bra 3T H,(B) and the ring of polynomials Z|h,t][z, ..., z,] with respect to the crossing
relations

(1) Zi Ukl = Ukl 24 Zf ) ¢ {k),l},

(2) 2 Uy = Uy Zj+B z + h, Zj Uij = Uyj z— B zi—h, Zf ].S’L<] <k<n.

Now we set as before h;; := h;j(t) =1+t uy.
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Definition 2.5
o Define shifted additive Dunkl elements to be

Di=zi—-z uij'*'z Uﬁ.

i<j 1<j

o Define shifted multiplicative Dunkl elements to be

o= (] #) =) (IT ha).

Lemma 2.3
[0,0;] =0, [9;,D,]=0 for all i,j.

Now we stated an analogue of Theorem 2.1. for shifted multiplicative Dunk! elements.
As a preliminary, for any subset I C [1,n] let us set D7 = [[,; D,. It is clear that

9 J[ Q+t8-14qy) € 3HTL(B).

i¢l, jel
<j

Theorem 2.3
In the algebra 3HT,,(B3) the following relations hold true

> oo ] (1+t6—t2qij)=[ZL +
+t3

IC[1,n) igl,jed
1=k i<j
: e, (148" * = (1+ Bty
IT [sa(1+ 80"+ 2 ]
Icfl,n]  a=1

-

I={3iy,...,5}

In particular, if 8 = 0, we will have

Corollary 2.3 In the algebra 3HT,(0) the following relations hold

k n

ZCDI H (1-t2qij)=(;:)+ Z H H(za—l-th(n—k—z'a-}-a)).

IC[1,n] 1&1,5€ed IC[1,n} a=1 a=1
Il=k i<y I={iy,....i}

One of the main steps in our proof of Theorem 2.3. is the following explicit formula for
the elements D;.

Lemma 2.4 One has

/ N / Y
D=2 (14 8- q5) =[] (I twa) IT (@ +20) I Pws).

bel ag¢l a€l bgl
a<b a<b
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Note that if a < b, then Ay, = 1 + Bt — uq,. Here we have used the symbol

7N
IT (II #=)
el i

to denote the following product. At first, for a given element b € I let us define the
set I(b) := {a € [1,n]\], a < b} := @< .. < o) for some p (depending on b). If
I=(b <by...<by), then we set

/ A k
H (H hb“) = H(ubj-as Upj,as-1 " 'u”r‘“)'
bel  agl Jj=1

a<b

For example, let us take n =6 and I = (1,3,5). Then

D1 = haghsahsa(1 + 21)high1ahi2(1 + 23)hashas(1 + 25)hse.
| |

3 Combinatorics of associative quasi-classical Yang—
Baxter algebras

Let 3 be a parameter.

Definition 3.1 ([18]) The associative quasi-classical Yang-Baxter algebra of weight 3,
denoted by Amn(ﬂ), is an associative algebra, over the ring of polynomials Z[3],
generated by the set of elements {z;;, 1 <1 < j < n}, subject to the set of relations

(a) zij T =z x5, o {4, 5} 0 {k. 1} =0,

(b) zij Tjk = Tak Tij + Tjk Tk + B Tik, f1 <1 <8< g <n,
Comments 3.1 The algebra 3T,,(3), see Definition 2.1, is the quotient of the algebra
mn(-—ﬂ), by the “dual relations”

TjkTij — Tij Tik — Tik Tig + B Tie =0, 1 <j<k.
The (truncated) Dunkl elements 6; = ) i T 1=1,...m, do not commute in the al-

gebra /E'-Y\Bn( ). However a certain version of noncommutative elementary polynomial
of degree k > 1, still is equal to zero after the substitution of Dunkl elements instead of
variables, [18]. We state here the corresponding result only “in classical case”, i.e. if
B =0and g; =0 for all ¢,j.
Lemma 3.1 (/18]) Define noncommutative elementary polynomial Li(x:,...,T,) as
follows
Li(zy,....z,) = Z Tiy, Tig - Lip-
I1=(31<i2<...<ix)C[1,n]

Then Lk(ol, 02, ey 0,-,,) =0.

Moreover, if 1 < k < m < n, then one cww that the value of the noncommutative
polynomial Li(6y,...,0n) in the algebra ACY B,(p) is given by the Pieri formula, see

[10], [32].



3.1 Combinatorics of Coxeter element

Consider the “Coxeter element” w € mn(ﬂ) which is equal to the ordered product
of “simple generators”: w :=w, = HZ;II Zaa+1- Let us bring the element w to the
reduced form in the algebra, mn(ﬂ) that is, let us consecutively apply the defining
relations (a) and (b) to the element w in any order until unable to do so. Denote the
resulting (noncommutative) polynomial by P(z;;; 8). In principal, the polynomial itself

can depend on the order in which the relations (a) and (b) are applied.

Proposition 3.1 (Cf [40], 8.C5, (c);[28])
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(1) Apart from applying the relation (a) (commutativity), the polynomial P(z.;; ) does

not depend on the order in which relations (a) and (b) have been applied, and can be writ-
ten in a unique way as a linear combination.:

8
n—s—1
-Z'zja E B E H Tig,ja>

{ia} a=1

where the second summation runs over all sequences of integers {i }S_, such that
n—1>42>6%>...24;,=1,andi, <n-a for a=1,...,s— 1, moreover, the
corresponding sequence {j,}7Zi can be defined uniquely by that {i,}"Z}

e It is clear that the polynomial P(z;;; B) also can be written in a unique way as a
linear combination of monomials []’_, zi, ;. such that j; > jo... > js.

(2) Denote by T,(k, 1) the number of degree k monomials in the polynomial P(z;; 8)
which contain exactly r factors of the form x,,. (Notethatl <r <k<n-—1). Then

r (n+k—r—-2\ (n-2
T"(kﬂr):'lé( n—2 >(k—1>'

In particular, T,(k, k) = (Z'f) and To(k,1) = T(n — 2,k — 1), where T(n, k) :=

s (") (7) is equal to the number of Schrider paths (i.e. consisting of steps U = (1,1),
D = (1,-1),H = (2,0) and never going below the x-azis) from (0,0) to (2n,0), having
k U’s, see [37], A088617.

Moreover, Tp(n — 1,7) = Tab(n — 2,7 — 1), where Tab(n, k) = Z+1 (2" k) is equal to

the number of standard Young tableauz of the shape (n,n — k), see [37/ A009766.

(8) After the specialization z;; — 1 the polynomial P(z;;) is transformed to the
polynomial

n—1
Py(B) =) _ N(n,k) (1+8),
k=0
where N(n, k) := 1 (Z) (k ") k=0, — 1, stand for the Narayana numbers. Fur-
thermore, P,(8) =3"1_, sn(d) Be, where sn(d) = nil (2"n d) (" 1) is the number of ways

to draw n—1 —d diagonals in a convez (n+2)-gon, such that no two diagonals intersect
their interior.
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Therefore, the number of (nonzero) terms in the polynomial P(z,j;B) is equal to
the n-th little Schroder number s, := Z;é sn(d), also known as the n-th super-Catalan
number, see e.g. [37], A001003.

(4) After the specialization z; —t,1< j < n, and thatz;; — 1,4f2<i<j<n,
the polynomial P(z;;;8) is transformed to the polynomial

Pa(Bit) =t ) (14p)"7F Y ",
k=1

™

where the second summation runs over the set of Dick paths m of length 2n with ezactly
k picks (UD-steps), and p(m) denotes the number of valleys (DU-steps) that touch upon
the line z = 0.

(5) The polynomial P(z;;B) is invariant under the action of anti-involution ¢or,
see Section 5.1.1 [18] for definitions of ¢ and 7.

(6) Follow [40], 6.C8, (c), consider the specialization
Iij_")tia 1§i<j§n,

and define Py(t1,. .. ,th—1;B) = Pa(zij = ti; B).
One can show, ibid , that

Pu(tr, - tn-i; B) = ) _B"F 1ty (3.16)
where the sum runs over all pairs {(ai, ..., ar), (1,...,1k) € Z>1 X L>1} such that 1 <
g1 <ap<...<a 1< <iz...<4<n and i; <a; for all j.

Now we are ready to state our main result about polynomials P,(t1,...,ts; 5)-
. 1 2 3 R ()
Let m € S,, be the permutation 7r—(1 non-1 2). Then

n—1
Po(t1, ... ta1;8) = (H t;“") P, .. 1),
i=1

where &P (z1,...,%n-1) denotes the B-Grothendieck polynomial corresponding to a per-
mutation w € S, [11].
In particular,

3
|
—

8P (x;=1,...,2p1=1)= N(n.k) (1+ B),
0

o
Il

where N(n, k) denotes the Narayana numbers, see item (3) of Proposition 3.1.
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e Note that if 3 = 0, then one has 61(1,520)(@, ooy Tny) = Gy(zy,. .., Tp-1), that isthe
p-Grothendieck polynomial at 8 = 0, is equal to the Schubert polynomial corresponding

1 2 3 n),then

to the same permutation w. Therefore, if 7=
1 n n-1 ... 2

67r($1 = 1, ot = 1) = Cn—ls (317)

where Cy,, denotes the m—th Catalan number. Using the formula (3.16) it is not difficult
to check the following formula for the principal specialization of the Schubert polynomial
S

(L g..-..q") = ¢("3) Coi(a). (3.18)
where Cy,(q) denotes the Carlitz - Riordan g-analogue of the Catalan numbers, see e.g.
[38]. The formula (3.17) has been proved in [13] using the observation that = is a vezillary
permutation, see [26] for the a definition of the latter. A combinatorial/bijective proof
of the formula (3.18) is is due to A.Woo [44].

Comments 3.2
The Grothendieck polynomials defined by A. Lascoux and M.-P. Schiitzenberger, see
e.g. [25], correspond to the case 8 = —1. In this case P,(—1) = 1, if n > 0, and therefore

the specialization QS,([I)(ml =1,...,2,01=1)=1forall w € S,,.
n

3.1.1 Multiparameter deformation of Catalan, Narayana and
Schroder numbers

Let b= (B1,...,B.-1) be a set of mutually commuting parameters. We define a multi-
parameter analogue of the associative quasi-classical Yang-Baxter algebra M ACY B,,(b)
as follows.

Definition 3.2 The multiparameter associative quasi-classical Yang-Bazter algebra of
weight b, denoted by MmBn(b), is an associative algebra, over the ring of polyno-
mials Z[B1, . .., Bn-1], generated by the set of elements {z;;, 1 <i < j < n}, subject to
the set of relations

(a) Tij Tkl = Thy Tij, of {i»j} N {%, I} = 0,

(0) Tij Tjp = Tix Tij + Tjk T + Bi T, f1<1<i<j<n,

Consider the “Coxeter element” w, € MXC’\YB,L( b) which is equal to the ordered
product of “simple generators”:

n—1
W, = I I Zg,a+1-
a=1

Now we can use the same method as in [40], 8.C5, (c) , see Section 3.1. to define the
reduced form of the Coxeter element w,. Namely, let us bring the element w, to the

reduced form in the algebra MﬁBn( B), that is, let us consecutively apply the defining
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relations (a) and (b) to the element w, in any order until unable to do so. Denote the
resulting (noncommutative) polynomial by P(z;;;b). In principal, the polynomial itself
can depend on the order in which the relations (a) and (b) are applied.

Proposition 3.2 (Cf [40], 8.C5, (c);[28])
Apart from applying the relation (a) (commutativity), the polynomial P(z;;;b) does
not depend on the order in which relations (a) and (b) have been applied.

To state our main result of this Section, let us define polynomials
Q(:Bh v »Bn—l) = P(mu = I,VZ,J 961 - lvﬁZ - 17 e 7ﬂn—1 - 1)

Example 3.1
Q(B1.B2) =142 By + B2 + B2,
Q(B1, B2, B3) = 1+ 2(B1 + B2 + B3) + 367 + B1B2 + B1Bs + B3 + 53,
Q(B1, B2, B3, Bs) = 1+ 71 + Ba + Bz + B1(9B1 + 383 + 584) + Ba(Bs + Ba) + B3+
B2 (4B1 + Ba + B3 + Ba) + Bu(BE + B2) + B3 + B1.

Theorem 3.1
Polynomial Q(B1, . .., Ba—1) has non-negative integer coefficients.

It follows from [40] and Proposition 3.1 that

Q(ﬁl,-"aﬁn—l) =Catn.

B1=1,...Bn-1=1

Polynomials Q(B1, - .., Bn-1) and Q(B1 + 1,...,Ba—1 + 1) can be considered as a multi-
parameter deformation of the Catalan and Schréder numbers correspondingly, and the
homogeneous degree k part of Q(f1, . . ., Bn—1) as a multiparameter analogue of Narayana
numbers. We expect that the polynomial

M7l t, Pz =t7';b)

coincides with a multiparameter deformation QS([’()", (t1,...,tn—1) of the corresponding
Tk

Grothendieck polynomial.

3.2 Grothendieck and g-Schroder polynomials

3.2.1 Schroder paths and polynomials

Definition 3.3 A Schroder path of the length n is an over diagonal path from (0,0) to
(n,n) with steps (1,0), (0,1) and steps D = (1, 1) without steps of type D on the diagonal
T =y.

If p is a Schroder path, we denote by d(p) the number of the diagonal steps resting on
the path p, and by a(p) the number of unit squares located between the path p and
the diagonal z = y. For each (unit) diagonal step D of a path p we denote by i(D) the
z-coordinate of the column which contains the diagonal step D. Finally, define the index
i(p) of a path p as the some of the numbers i(D) for all diagonal steps of the path p.



‘Definition 3.4 Define g-Schroder polynomial S,(q; B) as follows

Sn(q; B) = Z g P)+ile) gd(p), (3.19)
P

where the sum runs over the set of all Schrider paths of length n.

Example 3.2
S1(¢;8) =1, Sa(q; 8) = 1+q+B q, S3(q;8) = 1+2 g+4°+¢°+8 (4+2¢°+2¢°)+5? ¢,
Sa(q;8) =1+ 3q+3¢> + 3¢° + 2¢* + ¢° + ¢® + B(qg + 3¢ + 54> + 6g* + 3¢° + 3¢%) +
B2(q® + 29" + 3¢° + 3¢°) + 3% ¢°.
Comments 3.3
The g-Schréder polynomials defined by the formula (3.19) are dif ferent from the
g-analogue of Schrioder polynomials which has been considered in [5]. It seems that there
are no simple connections between the both. [

Proposition 3.3  (Recurrence relations for ¢g-Schrider polynomials)
The Schroder polynomials satisfy the following relations

k=n-—1

Snr(¢8) = (1+¢"+B8 ¢") Sa(@; B)+ Y (¢"*+B9"7%) Su(g; " * B) Su—k(g; 8), (3.20)

k=1
and the initial condition S(q;8) = 1.

Note that P,(8) = S.(1; 8) and in particular, the polynomials P,(/3) satisfy the following
recurrence relations

n—1
Por1(B) = (2+ B) Pa(B) + (1+8) > Pe(B) Pak(B)- (3.21)
k=1
Theorem 3.2 ( Evaluation of the Schroder - Hankel Determinant )
Consider permutation

2™ 1 2 ... k k+1 k+2 ... n
k7\1 2 ... kK n n-1 ... k+1)"
Let as before
n—1
P.(8)=>_ N(n,j) A+8), n>1, (3.22)
j=0

denotes the Narayana-Schroder polynomials.  Then
k
(1+6)() (’52?1) (z1=1,....,%q = 1) = Det |Pryr-i—j(B) l1<ij<k- (3.23)

Proof is based on an observation that the permutation ﬂ,(c") is a vezillary one and the

recurrence relations (3.21).
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Comments 3.4

(1) In the case 8 = 0, i.e. in the case of Schubert polynomials Theorem 3.1 has
been proved in [13].

(2) Inthecaseswhen8=1 and 0 < n—k <2, the value of the determinant in the
RHS(3.22) is known, see e.g. [5], or M. Ichikawa talk Hankel determinants of Catalan,
Motzkin and Schrider numbers and its g-analogues, http: /denjoy.ms.u-tokyo.ac.jp. One
can check that in the all cases mentioned above, the formula (3.22) gives the same results.

(3) Grothendieck and Narayana polynomials

It follows from the expression (3.22) for the Narayana-Schroder polynomials that

Pa(B — 1) = M.(B), where

n—

£ 1) ()

1
j=0

denotes the n-th Narayana polynomial. Therefore, P,(8 — 1) = M,(B) is a symmet-
ric polynomial in 8 with non-negative integer coeflicients. Moreover. the value of the
polynomial P,(8 — 1) at 8 = 1 is equal to the n-th Catalan number C,, := # (2: .

It is well-known, see e.g. [42], that the Narayana polynomial IM,(8) is equal to the
generating function of the statistics 7(p) = (number of peaks of a Dick path p) — 1

on the set Dick, of Dick paths of the length 2n

N (8) =) B

P

Moreover, using the Lindstrom—Gessel-Viennot lemma see e.g.
http://en.wikipedia.org/wiki/Lindstrom—Gessel-Viennot lemma,
one can see that

k
DET |Mpik-i-i(B)l1<ijek = 8(z) Z Brpr+mpe), (3.24)
(plv--ypk)
where the sum runs over k-tuple of non-crossing Dick paths (p1,...,px) such that the

path p; starts from the point (i — 1,0) and has length 2(n —:+1),i=1,... k.

We denote the sum in the RHS(3.24) by mk)(ﬁ). Note that mff_l([)’) =1 for all
k>2.

Thus, ‘ﬁs,k)([f ) is a symmetric polynomial in 8 with non-negative integer coeflicients,

and ..
H 2k+2+]‘-1

k(g —1)= C® —

1<i<j<n—k+2

As a corollary we obtain the following statement

Proposition 3.4 Let n > k, then
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Summarizing, the specialization & (n) (:cl =1,...,z, = 1) is a symmetric polynomial

in 8 with non-negatlve integer coefﬁments and coincides with the generating function
of the statistics Z —1 m(p;) on the set k-Dick, of k-tuple of non-crossing Dick paths

(P1s-- -\ Pg)- ]

Example 3.3 Taken =5, k = 1.Then 77(5) (15432) and one has

8% (1.4.4%.¢%) = ¢*(1,3,3,3,2,1.1) + ¢° (1,3,5.6,3,3) B +¢7(1,2.3,3)8% + ¢'°8%.
™

1t is easy to compute the Carlitz-Riordan g-analogue of the Catalan number Cs, namely,
Cs(g) = (1,3,3,3,2,1,1).

(4) Grothendieck polynomials 6((n)(11, ..,Zn) and k-dissections

Let k € Nand n > k — 1, be a integer, ‘define a k-dissection of a convex (n + k + 1)-
gon to be a collection £ of diagonals in (n + k + 1)-gon not containing (k + 1)-subset of
pairwise crossing diagonals and such that at least 2(k — 1) diagonals are coming from
each vertex of the (n+k+1)-gon in question. One can show that the number of diagonals
in any k-dissection & of a convex (n + k + 1)-gon contains at least (n + k + 1)(k — 1)
and at most n(2k — 1) — 1 diagonals. We define the indez of a k-dissection & to be
i(€) =n(2k — 1) — 1 — #|€|. Dnote by

TOE) =3 5@

£

the generating function for the number of k-dissections with a fixed index, where the
above sum runs over the set of all k-dissections of a convex (n + k + 1)-gon.

Theorem 3.3
6;?1)(:61 =1,...,2, =1) = TH(B).

A k-dissection of a convex (n + k + 1)-gon with the maximal number of diagonals
(which is equal to n(2k — 1) — 1), is called k-triangulation. It is well-known that
the number of k-triangulations of a convex (n + k + 1)-gon is equal to the Catalan-
Hankel number C,E’“_’l. Explicit bijection between the set of k-triangulations of a convex
(n+ k + 1)-gon and the set of k-tuple of non-crossing Dick paths (71, ..., ) such that
the Dick path v; connects points (i — 1,0) and (2n — i — 1,0), has been constructed in
[36], [41].

(5) Polynomials §,(8), Hu(8), Hu(g.t; ) and Ry(g; B)

Let w € S, be a permutation and & (X,) and &% (Xn,Y,) be the coressponding
B-Grothendieck and double B—Grothendleck polynomials. We denote by (1% )( 1) and by
6(6)(1 1) the specializations X, :== (z; =1,...,2, =1), Yo:=(p1 =1,...,yp = 1) of
the 3-Grothendieck polynomials 1ntroduced above.

Theorem 3.4 Let w € S, be a permutation.  Then
(i) The polynomials F,(8) := &L (1) and Hu(B8) = 6LV (1;1)
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have both non-negative integer coefficients.

(1) One has
Hu(B) = (1+ B) Fu(8?).

(#91) Let w € S, be a permutation, define polynomials
Du(q,t;8) =8P (z1=q22=¢.. .. Ta=qp=t,y2=1t,... Yo =1)

to be the specialization {z; = q,y; =t, Vi}, of the double 3-Grothendieck polynomial
6P (X,,Y,). Then

Huwl(g t;B8)=(g+t+Bgt)™ Fu((1+Bq)(1+81t)).

In particular, $,(1,1;8) = (2 + B)*™ F.((1 + B)?).
() Letw €S, be a permutation, define polynomial

Ruw(g; B) == (’555“1)(331 =q,r2=1,23=1,...)

to be the specialization {z; =q,z; =1, Vi > 2}, of the (8—1)-Grothendieck polynomial
60V (Xn).  Then
Ru(g;8) = ¢°V 7" Ry(g; B),
where R, (q; B) is a polynomial in q and B with non-negative integer coefficients. and
Ru(0;8=0) = 1.
n

Remark 3.1

One can show, cf [26], p. 89, that if w € S,, then R,(1,8) = Ru-1(1,5).
However, the equality R, (g, 8) = Ry-1(¢g,8) can be violated, and it seems that in
general, there are no simple connections between polynomials R,,(g, 3) and R,-1(g, 8),

if so.
From this point we shell use the notation (ag, ay,...,a,)s := Z;=0 a; B, etc.

Example 3.4 Let us take w = [1,3,4,6,7,9,10,2,5,8|. Then R,(q,B) =
(1,6,21,36,51,48,26)5 + g8 (6, 36,126, 216, 306, 288, 156)5+
a3 (20,125,242, 403, 460, 289)5 + ¢38° (6,46, 114,204, 170)5. Moreover,
R, (g, 1) = (189, 1134, 1539, 540),.  On the other hand,
w1=[1,8,23,9,4,5,10,6,7], and R,1(g,B) = (1,6,21,36,51,48, 26)5+
g8 (1,6,31,56, 96,110, 78)s + 28 (1,6,27, 58,92, 122, 120, 78) 5+
B (1,6,24,58,92,126, 132,102, 26)5 + ¢*8 (1,6,22,57,92, 127, 134, 105, 44) s+
B (1,6,21,56,91,126, 133,104, 50)5 + ¢°8 (1,6,21, 56,91, 126, 133, 104, 50)5.
Moreover, R,,-1(g,1) = (189, 378, 504, 567, 588, 588, 588),.
Notice that w = 1 x u, where u = [2,3,5,6,8,9,1,4,7]. One can show that
R.(q,8) = (1,6,11,16,11)5+¢B> (10,20, 35, 34)5+¢28* (5, 14,26)5. On the other hand,
wl=(7,1,2,8,3,4,9,5,6] and R,-1(q, 8) = (1,6,21,36,51,48,26)5 = R,(L, B).
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[ Hereinafter we have used the notation (ag, as,...,a,)s := > =0 a5 B etc]

Problems 3.1

(1) Define a bijection between monomials of the form [[._, i, ;. involved in the
polynomial P(z;; B), and dissections of a convex (n + 2)-gon by s diagonals, such that
no two diagonals intersect their interior.

(2) Describe permutations w € S, such that the Grothendieck polynomial &, (t1, . .., t,)

1s equal to the “reduced polynomial” for a some monomial in the associative qasi-classical
—————

Yang-Baagter algebra ACY B,,(B). ?
(3) Study “reduced polynomial” corresponding to the monomials

UjalUzs - - 'un-l.nﬂz-\z,n—l oo UgaUiz,  (Ugaiag - 'un——l,n)k
in the algebra ACY B, (B)%.
(4) Construct a bijection between the set of k-dissections of a convez (n+k+1)-gon

and “ pipe dreams” corresponding to the Grothendieck polynomial (‘5(/2) (Z1,...,2,). As
®

k
for a definition of “pipe greams” for Grothendieck polynomials, see [23]; see also [11].

3.2.2 Principal specialization of Grothendieck polyno-
mials, and ¢-Schréder polynomials

Let 71',(:) = 1¥ x w"™ € S, be the vexillary permutation as before, see Theorem 3.1.
Recall that

CON 1 2 ... k k+1 k+2 ... )

7\l 2 ... k n n—1 ... k+1)/°

(A) Principal specialization of the Schubert polynomial G"l(cn)

Note that 7r,(c") is a vexillary permutation of the staircase shape A = (n—k—1,...,2,1)
and has the staircase flag ¢ = (k+1,k+2,...,n—1). It is known, see e.g. [43], [26], that
for a vexillary permutation w € S, of the shape X and flag ¢ = (¢1,...,%,), 1 = £(}\),
the corresponding Schubert polynomial &,,(X,) is equal to the multi-Schur polynomial
sx(Xy), where X, denotes the flagged set of variables , namely, X4 = (Xg,,...,Xs,)
and X,, = (z1,...,Zm). Therefore we can write the folloing determinantal formula for
the principal sPecialization of the Schubert polynomial corresponding to the vexillary
permutation ﬂk")

2 n—i+j—1
67r§c“)(1wq7vq ). ) - DET(I: k+'l— 1 :lq)lsi,an—k"

where [Z} denotes the g-binomial coefficient.

q
Let us observe that the Carlitz-Riordan g-analogue C,(q) of the Catalan number C,

is equal to the value of the g-Schrider polynomial at 8 = 0, namely, C,(q) = S.(g,0).

Lemma 3.2 Let k,n be integers and n > k, then

n-—z'-i-j—l _ ("—’c) (k)
(1) DET({ btio1 L)lgm_k—q 3 Cp(a),



28

(2)  DET(Cpiri-j(q) = gk(k=1En=2%-5)/6 Ok (g).
]

1<i,j<k

(B) Principal specialization of the Grothendieck polynomial &®) e

Theorem 3.5

n—k+1 n—k )
g("s") =6 D("2) DET|Snih-ios(; ¢ B) ik =
k-1
g k=D (ak+1)/6 H(1+qa_l’8) 6 _m(lq.q. )
k

a=1

Corollary 3.1 (1) Ifk=n—1, then
n—2
DET|Son-1-i—j(¢;4" ' B)l1<ijcn—1 = g7 DD n=3/6 H(l +¢*71p)n e,

a=1

(2) Ifk=n—2, then
q""? DET|Sp-2-1-5(4:4" ' B)hi<sjen—2 =

n-3
o) _ a o 1+ n~1 __ 1
q(n 2)(n-3)(4n-7)/6 H(l +qa IB)n a-2 {( ﬂ)ﬂ }

a=1
e Generalization
Let n = (ny,....n,) € N? be a composition of n so that n = n; +--- +n,. We set
nD=ny+---+n;, j=1,...,p,n® =0.
Now cons1der the permutatlon w® =™ x W x ... x wi ) e S,,
where wo ™) ¢ S,, denotes the longest permutation in the symmetric group S,,. In
other words,

w(n)_ 1 2 R (5] Tl(z) n1+l ’I’l(p_l) n
“\ng m—-1 ... 1 m+1 ... a@& . n .o nP D41

(n1)

For the permutation w™ defined above, one has the following factorization formula for
the Grothendieck polynomial corresponding to w(®™, [26],
(B) _ &(B) (8) (8) (8)
(o] (5] x & x & (ng) XX B

wn) — ("‘1) 1n1 Xw‘()"Z) 1n1+n2x,w0 1"+ np— 1x,w(7lp)'

In particular, if

(nz)

(n) — ('nl) X wO

-xwi™ €S, (3.25)

then the principal specialization QB(B(,,) of the Grothendieck polynomial corresponding to
the permutation w, is the product of g-Schréder-Hankel polynomials. Finally, we observe
that from discussions in Section 3.4, Grothendieck and Narayana polynomials, one
can deduce that

p—1
1 ()
8% Nz =1,...,z.=1) = [[ %% (B).
=1
In particular, the polynomial - () (xl, ...,Ip) is a symmetric polynomial in 8 with

non-negative integer coefficients.
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(1) Let us take (non vexillary) permutation w = 2143 = s; s3. One can check that
60 (1.1,1,1) =3+3 8+ 82 =1+ (8+1) + (8+1) and N(B) = (1,6,6,1), Ms(8) =
(1,3,1), M(B) =(1,1). It is easy to see that

(ﬂ)(l 1,1,1) = DET g::gg; 3}2%23 I On the other hand,

DET( g;gg; izggg l = (3,6,4,1) = (3+ 38+ 5?) (1 + B). It is more involved to
check that

S4(q;8)  Ss(g;8)
S3(q;98) S2(a;98)

(2) Let us illustrate Theorem 3.3 by a few examples. For the sake of simplicity, we
consider the case 8 = 0, i.e. the case of Schubert polynomials. In this case P,(gq;8 =
0) = C,(q) is equal to the Carlitz-Riordan g-analogue of Catalan numbers. We are
reminded that the ¢-Catalan— Hankel polynomials are defined as follows

(1 + B) (’51("?)(1,(1, ¢*,¢®) = DET )

Ck)(g) = gh-RIak-1)/6 DET|Cpik—i-i(q)|1<ij<n-

In the case § = 0 the Theorem 3.3 states that if n = (ny,...,n,) € NP and the permu-
tation w(n) € S, is defined by the use of (3.25), then

Sy (L,a.0% ) = a=(3) ChY,(g) x O, (a) x C ) (g).
Now let us consider a few examples for n = 6.
e n=(15), = S, m(l.q...)=7¢"°CP ) = Csq).
C C
e n=(24), = Gym(lq..)=¢"CP)=D ET‘ 6(‘13 5(4) ’

Cs(q
Note that Gw(z,:l)(l, q,.. ) = Gw(1,1,4)(1 q,.. )
e n=(222) = G,m(lLq...)=C2q) ).

e n=(L14) = G,m(lg...) —q4 i (g) CP(g) = ¢* CP(g),
the last equality follows from that C’k (g)=1forall k> 1.
e n=(1,23) = S,m(l,q,...)= 31)(q) 063)(q). On the other hand,

e n=(321) =>ew<n><1,q,...>=qc§3><q) cP(q) = q ¥ (q) = ¢(1,1,1,1).

Note that C’,g’i)Q(q) = [k—l*_ 1
q
Exercise.
Let 1 <k <m < n beintegers, n > 2k + 1. Consider permutation
1 2 . k k+1 ... n
w_—(m m—-1 ... m—k+1 n 1>€Sn'
Show that

Gu(l,g,...) = P ™ (g),

29
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where for any permutation w, n(D(w)) = ¥ (%)) and d;(w) denotes the number of
boxes in the i-th column of the (Rothe ) diagram D(w) of the permutation w, see [26].

p.8.
[ ]

(C) A determinantal formula for the Grothendieck polynomials &8 e

Define polynomials
n

(I’szm)(Xn) = Z ea(Xn) g,

a=m

1 9 i1 L (nt1-i . o
Ai’j(X""'k'l) = 3 (__ ) (I)§c+_'1-11 i )(Xk+n——i)s Zf 1<:< J <n,

and
i—j—1

i—7—1 ) ..
Ai,j(Xk+n——l) = Z en—i—a(Xn+k—'£) ( fl ), Zf 1 < ]<1 <n.

a=0

Theorem 3.6
DET|Ajhsijcn = 8% (Xksn1)-

k+n

Comments 3.5 One can compute the Grothendieck polynomials for yet another inter-
esting family of permutations. namely, permutations 0,(6") =

o™ — 1 2 ... k-1 k E+1 k+2 n+k\
k™ \1 2 ... k-1 n+k k k+1... n+k-1 -
SkSk+1- - - Sntk—1 € Sptk-
Then

ka1
n+] -1
QSS;i)(n)(-'El,...,:En+k Z ( ) e""‘i(zl""’zn""‘) (1+BY.
]:

In particular,

k .
n+j3—1
8,1 = 1,.. xn+k=1)=§j( J )B’.

j=0 J

Problems 3.2

(1) Give a bijective prove of Theorem 3.8, i.e. construct a bijection between

e the set of k-tuple of mutually non-crossing Schroder paths (p1,...,px) of lengths
(n,m—1,...,n—k+1) correspondingly, _and

o the set of pairs (m,T), where T is a k-dissection of a convex (n+ k + 1)-gon, and
m is a upper triangle (0, 1)-matriz of size (k — 1) x (k — 1),

which is compatible with natural statistics on both sets.
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(2) Letw €S, be a permutation, and CS(w) be the set of compatible sequences
corresponding to w. see e.g. [4].
Define statistics c(e) on the set CS(w) such that

6,(5_1)(1'1 = 1,.’152 = ].,. . ) = Z ,Bc(a).
aeCS(w)

3.2.3 Specialization of Schubert polynomials

Let n, k, r be positive integers and p, b be non-negative integers such that r <
p+ 1. It is well-known [26] that in this case there exists a unique vexillary permutation

W = W) € Se Which has the shape A = (\,..., Apy1) and the flag ¢ = (o1, - - dnt1)s

where
MN=(n—i+1)p+b d=k+1l+r(i-1), 1<i<n+1

According to a theorem by M.Wachs [43], the Schubert polynomial &, (X) admits the
following determinantal representation

©o(X) = DET I.-iss(Xs)

1<i,j<n+1

Therefore we have &,(1) :=64(zy=1,2,=1,...) =

DET(((n—z+1)p+b—.2+]+k+(3—1)7”>> )
k+(@G—1)r 1<i,j<n+1

We denote the above determinant by D(n, k,r,b,p).

Theorem 3.7 D(n,k,r,b,p) =

i+b+jp k—i+1D)p+1)+@GE+j5—1)r+r(b+np)
I — 11 k—i+1+(i+j—1)r

’

1
(isj)eAn,k:‘r (iaj)eBn,k,r

where
Anir ={(67) €22 | G<n, j<i<h+(-Dm-5}

Byir = {(z',j) €Z% | i+j<n+1, itk+1+7s, sEZZO}.
It is convenient to re-wright the above formula for D(n, k,r,b,p) in the following form
D(n,k,r,b,p) =
(=i +Dp+b+k+G =1 - 1) (n—j+1)!
(k+ G =)t (=5 + 1) +1) +b)!

H ((k—i+1)(P+1)+jr+(np+b)r).

1<i<j<n

X

n+1
=1
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(=) The case r=1

We consider below some special cases of Theorem 3.5 in the case r = 1. To simplify
notation, we set D(n,k,b,p) := D(n,k,7 = 1,b,p). Then we can rewrite the above
formula for D(n, k,r,b,p) as follows  D(n,k,b,p) =

nt1 ((n+k—j+1)(P+1)+b)! ((n—j+1)p+b+k)! (j — 1)!
S (=g D)@+ 1) +0) ((+n—g+1p+b+k)! (k+j— 1)

Corollary 3.2
(1) Ifk<n+1, then D(n,kbp)=

i m+k+1-35)p+1)+b (k—jp+bd+k\ jl(k—3)! (n—75+1)!
H ( n—j+1 )( J ) (m+k—-j5+1)

=1

In particular,

o Ifk=1, then
1+5b P+ D(n+1)+0b (p+1)
D(n,1,b,p) = = F277(b),
where F2(b) := tition (+?) denotes the generalized Fuss-Catalan number.
o ifk=2, then
D(n,2,b,p) = Gl 2 FE30() FE )

(1+b)2+b+(n+1)p)(2+b+ (n+2)p) ™
(2) (R.A. Proctor [35]) Consider the Young diagram
Ai=dpp={(6,J)€Z51%XZs | 1<i<n+1,1<j<(n+1-1¢)p+b}

For each bozx (i,j) € A define the numbers c(i,j) :=n+1—1i+ j, and

L (k) = Jg(cf;i]’ if J<(n+1-3)(p—-1)+b,
(i.4) prlkteliy) if (n+1-d)(p—1)<j—b<(n+1—1)p.

c(i.4) ’
Then
D(n.k,b.p) = [ lup(®). (3.26)
(i,3)ex

Therefore, D(n, k,b,p) is a polynomial in k with rational coefficients.
(3) Ifp=0, then

o b
D(n, k,b,0) = dim yolerk) _ H J+ )mm(]n%ﬂ_”

(n+1)k T

where for any partition p, £(p) <m, V2™ denotes the irreducible gl(m)-module with
the highest weight p. In particular,
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e D(n,2,b,0) = = (""2**) ("}2?) is equal to the Narayana number N (n+b+2, b);

(b+k)! (b+k+1)!
° D(1,k,b,0) = ROk T DI r 1) Nb+k+1.k),
and therefore the number D(1,k,b,0) counts the number of pairs of non-crossing lattice
paths inside a rectangular of size (b+1) x (k+1), which go from the point (1, 0) (resp. from
that (0, 1)) to the point (b+ 1, k) (resp. to that (b, k + 1)), consisting of steps U = (1.0)
and R = (0,1), see [37], A001263, for some list of combinatorial interpretations of the
Narayana numbers.
(4) Ifp=0b=1, then

H 2k+z’+j—1.

D(n,k,1,1) = i1

1<i<j<n+2

(5) ( R.A. Proctor [33],/34] ) Ifp=1and b isodd integer, then D(n,k, b 1)
is equal to the dimension of the irreducible representation of the symplectic Lie algebra
Sp(b+ 2n + 1) with the highest wright kw1

(6) ( Cf[18] ) Let wy be a unique dominant permutation of shape A := Anpp and
€:="tnpp = 3(n+1)(np + 2b) be its length. Then

¢
Z H(;L +a;) =4 B(n,z,p,b).

acR(w,) =1

Here for any permutation w of length I, we denote by R(w) the set {a = (ay,....a;)} of
all reduced decompositions of w.

Remark 3.2

It is well-known, see e.g. [35], that the number D(n, k,b,p) is equal to the total
number pp*»#s(k) of reverse (weak) plane partitions ¢ bounded by & and contained in
the shape A,;,. Finally we recall that the generalized Fuss-Catalan number F,(f:l) (b)
counts the number of lattice paths from (0,0) to (b + np,n) that do not go above the

line z = py, see e.g. [24].
|

Theorem 3.8  Let w,x, be a unique vezillary permutation of the shape A, := (n,n—
1L,...,2,1)p and flag ¢pnp :=(k+ 1,k +2,....k+n—1,k+n). Then

n+1
- 1 n+1 n+1p\ _._
c o eko-3an () (5I) o

Jj=1

o Ifk>2 then Gnrp(B) := 6%5;,3);,(1) s a polynomial of degree nk in B, and
CO€ff[5nk](Gn,k,p(B)) = D(n, k, 1,p - 1, 0)
4 Let A be a partition. A reverse plane partition bounded by d and shape ) is a filling of the shape

A by the numbers from the set {0,1,..., d} in such a way that the numbers along columns and rows are
weakly increasing.
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The polynomial )7, & (’;) (/7)) ¥~ := §Ma(t) is known as the Fuss-Narayana poly-
nomial and can be considered as a t-deformation of the Fuss-Catalan number FC?(0).

Recall that the number } (7) () counts paths from (0,0) to (np,0) in the first
quadrant, consisting of steps U = (1,1) and D = (1, —p) and have j peaks (i.e. UD’s),
cf. [37], A108767.

For example, take n =3,k =2,p=3,r=1,6=0. Then

w323 = [1, 2, 12, 9, 6, 3, 4, 5, 7, 8, 10, 11] € 812, and G3‘2‘3(ﬂ) =

(1,18,171, 747, 1767, 1995, 1001). Therefore, G323(1) = 5700 = D(3,2,3,0) and

Coef figs)(Gs23(8)) = 1001 = D(3,2,2,0).

Comments 3.6
It follows from Theorem 3.5 that in the case r = 0 and k£ > n, one has

n+1 ((n——j+l)p+b+k—j+1)

T gl( k+1) ntl k—j+1
D(n, k,0,p,b) = dim V2* = (14 p)(") ] Gl
1=1 n—j+1
Now consider the conjugate v := v, 55 = ((n + 1)%,nP, (n — 1)P, ..., 1P) of the partition

Anpb, and a rectangular shape partition ¥ = (k,..., k). If K > np + b, then there exists
N’

np+b
a unique grassmannian permutation ¢ := g,k ps Of the shape v and the flag v, [26]. It
is easy to see from the above formula for D(n, k,0,p,b), “that

. k—
G,,n‘k‘p_b(l) = dim Vu‘ﬁ‘(p'b D=

1+p)@ (FFo-1 ﬁ P+ —j+1) ﬁ (o2 0p+0)
P b m—j+1(p+1)+b ((n—J+1)(p+1)+b 1)

j=1
After the substitution k := np + b+ 1 in the above formula we will have

n np+b+] 1)
(n—J+1)p '
Pl (J(p+1) 1)

S 1) 1+p

On,np+b+1,p,b (

In the case b = 0 some simplifications are happened, namely

n k+] 2 )
(n—J+1)p
Gan,k,pO( (]' + H (n J+1)p+n—])
Finally we observe that if £ = np + 1, then
+j5-1 n +5-1 -1 ) i
ﬁ (:I:]i-l)p) _ H ((prfl)zj—l)) . f:l H?:o (p+1)j+1) — AP
( —j+1)p+ - i(p+1)-1\ n(p—1)—1 . e
j=l " ]n)? ") j=2 (¢ i ) | (n+j)

where the numbers AP are integers that generalize the numbers of alternating sign
matrices (ASM) of size n x n, recovered in the case p = 2, see [31], [6] for details.
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Examples 3.1
(1) Let us consider polynomials &,(3) := ffi;}t)‘m(l).
o Ifn= 2, then 02420 = 235614 € Ss, and 62([3) = (1,2, 3) =14+ 2ﬁ + 3ﬁ2
Moreover, 9qaz,a,z,o(q; B) = (17 2)13 +3 qu-
o Ifn =3, then 03620 = 235689147 € Sy, and  B3(8) = (1,6,21, 36, 51,48, 26).
Moreover, R, ¢ ,,(q; ) = (1,6,11,16,11)5 +q 5%(10,20,35,34)s +¢°3*(5, 14, 26)4;
mds,a,z.o (g;1) = (45,99, 45)!1‘
o Ifn= 4. then 04820 = [2, 3, 5, 6, 8, 9, 11, 12, 1, 4, 7, 10] S 812, and 64(,8) =
(1,12, 78,308,903, 2016, 3528, 4944, 5886, 5696, 4320, 2280, 646).
Moreover, R, 4,,(q; 8) = (1,12,57, 182,392, 602, 763, 730, 493,170)5 +
aB?(21, 126,476, 1190, 1925, 2626, 2713, 2026, 804) 5 +
q*84(35, 224, 833, 1534, 2446, 2974, 2607, 1254)5 +¢38%(7, 54, 234, 526, 909, 1026, 646) 5;
Rees20(a; 1) = (3402, 11907, 11907, 3402), = 1701 (2,7,7,2),
[It will be recalled that here we have used the notation (ag, a1, . .. ,a,)s := E;:O a; B, etc.]
One can show that degis®,(8) = n(n — 1), and looking on the numbers 3, 26, 646 we
made

Conjecture 2  Let a(n) := Coef f[f™" V] (@n(ﬁ))- Then

n—1 .
(35 + 2)(67 + 3)! (25 + 1)!
a(n) = VSAM(n) = OSASM(n H J 4J+; (4)]ig)! ),

Jj=1

where

VSASM(n) is the number of alternating sign 2n + 1 x 2n + 1 matrices symmetric
about the vertical axis;

OSASM(n) is the number of 2n x 2n off-diagonal symmetric alternating sign

matrices.
See [37], A005156, [31] and references therein, for details.

(2) Let us consider polynomials §,(8) := 6%, azo(1):
o Ifn= 1, then 01320 = 1342 € S4, and 32( ) ( ) =1+ 2ﬂ
o Ifn =2 then oasao = 1346725 € Sy, and §+(8) = (1,6,11,16,11).
Moreover, Ro, 5 ,0(¢; 8) = (1.2,3)5 + ¢8(4,8,12)5 + ¢*83(4,11)4.
o Ifn= 3, then 03720 = [1, 3, 4,6, 7, 9, 10, 2, 5, 8] € Sm, and 3'4(6) =
(1,12,57,182, 392, 602, 763, 730, 493, 170).
Moreover, Ry, , ,,(q; 8) = (1,6, 21,36, 51,48, 26) 5+ g 3 (6,36, 126, 216, 306, 288, 156) 5
+ q283(20, 125, 242, 403, 460, 289) 5 + ¢>5°(6, 46, 114, 204, 170);
Rosr20(g; 1) = (189, 1134, 1539, 540), = 27 (7,42, 57, 20),.
o Ifn =4, then 04920 =[1,3,4,6,7,9,10,12,13,2,5,8,11] € Si3, and 5(8) =
(1,20, 174,988, 4025, 12516, 31402, 64760, 111510, 162170, 202957, 220200, 202493,
153106, 89355, 35972, 7429).
Moreover,
Roaono(a; B) = (1,12, 78,308,903, 2016, 3528, 4944, 5886, 5696, 4320, 2280, 646) 5-+
aB (8,96, 624, 2464, 7224, 16128, 28224, 39552, 47088, 45568, 34560, 18240, 5168)5+
q*83(56, 658, 3220, 11018, 27848, 53135, 78902, 100109, 103436, 84201, 47830, 14467) 5+
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q3B5(56, 728, 3736, 12820, 29788, 50236, 72652, 85444, 78868, 50876, 17204)5+

q*B7(8.117,696,2724, 7272, 13962, 21240, 24012, 18768, 7429)4;

Ros000(q; 1) = (30618, 244944, 524880, 402408, 96228), = 4374 (7, 56. 120, 92, 22),.

One can show that §,(B) is a polynomial in 3 of degree n?, and looking on the
numbers 2,11, 170, 7429 we made

Conjecture 3 Let b(n) := Coef f[3"~1] (3n(g)). Then

b(n) = CSTCPP(n). In other words, b(n) is equal to the number of cyclically
symmetric transpose complement plane partitions in an  2n x 2n x 2n box. This
number is known to be

n—1 . . .
(37 + 1)(65)! (25)!
H (45 + 1)! (45)!

see [37], A051255, [2], p.199.
Proposition 3.5 One has
m0‘4‘2n+1‘2_0 (0; 6) = 6'n(ﬂ) = 63&;}32'0 (1)1 mo‘n|2n.2,0 (0‘ ﬁ) = 311 (B) = et(?i;:l.l,z,g (]‘)

Remarks 1 One can compute the principal specialization of the Schubert polynomial
corresponding to the transposition t, := (k,n — k) € S,, that interchanges k and n — k,
and fixes all other elements of [1, 7).

Proposition 3.6

k .
(n—1)(k-1) -1 -2 -3 — Z -t Q) [l n—2+j
q Gtk‘n—k(l»q vq 4 ~) ( 1) q\? |:k—-j \ n—k-—1 q.

j=1
[ |
Exercises.
(1) Let » > 1 be a positive integer, consider “zig-zag” permutation
w = 2 4 ... 2k 2k+2 ... 2n cs
“\1 3 ... 2k—1 2+1 ... ... 2n—1 2
Show that

n-—1 1 _ B2k
Ru(e.8) =[] ( - +q62’“)-
k=0

(2) Let 0Oknm be grassmannian permutation with shape A = (n™) and flag ¢ =
(k+1)™, ie.

o (1 2 .. k k+1 k+n k+n+1 ... k+n+m
kmm=—\1 2 ... k k+m+1 ... k+m+n k+1 ... k+m )

Clearly 0x+1.nm = 1 X Oknm. Show that the coefficient
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Coef fgm (D%Gk,mm(l, B)) is equal to the Narayana number N(k +n + m, k).
(3) Show that

Z [CHS— 1L [a+z— IL [bZCL =1 (q;lq)3 (Z(_nk(’;)q(’é)),

(a,b,c)€Z3 k>2
a>0

3.2.4 Specialization of Grothendieck polynomials

Let p,b,n and 4, 2i < n be positive integers. Denote by 7;(2)71 the trapezoid, i.e. a
convex quadrangle having vertices at the points

(ip,i), (ip,n—1i), (b+ip,i) and (b+ (n—i)p,n—i).

Definition 3.5 Denote by F Cg’;n the set of lattice path from the point (ip,i) to that
(b+ (n —14)p,n — i) with east steps E = (0,1) and north steps N = (1,0), which are
located inside of the trapezoid 7;2)71

Ifpe F Cc® isa path, we denote by p(p) the number of peaks, i.e.

b,p,n
p(p) = NE(p) + Ein(p) + Nena(p),

where NE(p) is equal to the number of steps NE resting on path p; Ei,(p) is equal to
1, if the path p starts with step E and 0 otherwise; Nenq(p) is equal to 1, if the path
p ends by the step N and 0 otherwise.

Note that the equality Ne,q(p) = 1 may happened only in the case b = 0.

Definition 3.6 Denote by F C,E’I;),n the set of k-tuples P = (p1,...,px) of non-crossing
lattice paths, where for eachi=1,...,k, p; € FCé’;n

Let \
FC.(8):= Y. g™

k
PeFCy

denotes the generating function of the statistics p(\B) := Zle p(p) — k.

Theorem 3.9 The following equality holds

68 (m=lay=1,..)=FC® . (B+1).

On,k,p,b

3.3 The “longest element” and Chan—Robbins poly-
tope

Assume additionally, cf [40], 6.C8, (d), that the condition (a) in Definition 3.1 is
replaced by that
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(@) : z;; and T commaute for all 7,7,k and [.

Consider the element wq := []; <i<j<n Tij- Let us bring the element wq to the reduced
form, that is, let us consecutively apply the defining relations (a') and () to the element
wp in any order until unable to do so. Denote the resulting polynomial by Q,(z:;; 8).
Note that the polynomial itself depends on the order in which the relations (a’) and (b)
are applied.

We denote by Q,(8) the specialization z;; = 1 for all ¢ and j, of the polynomial
Qn(zi;; B); y Qn(B,t) the specialization z;; = 1, if (,7) # (1,n), and z,, = ¢, and by
Qn(z1, ..., 2i-1) the specialization z;; = 2;.

Example 3.6

Qs(B)=(2,1) =1+ (B+1), Qu(B)=(10,13,4) =1+5(8+1)+4(8+ 1)
Qu(Bt) =t +t (1 +2t24+283) (B+1)+(t+12)% (B+1)2%
Qa(21,22,23) = 2] 2325 B0 5 027t 25 275 20,
Qs(58) = (140, 336,280,92,9) = 1 + 16(8 + 1) + 58(8 + 1)2 + 56(8 + 1)* + 9(8 + 1)*,
Qe(B) = 14+42(8+1)+448(8+1)%+1674(8+1)3+2364(8+1)*+1182(3+1)°+169(8+1)°.

What one can say about the polynomial Qn(8) := Qn(Zij; B)lz,;=1vi; 7
It is known, [40], 6.C8, (d), that the constant term of the polynomial Q,(5) is equal
to the product of Catalan numbers H;:ll C;. It is not difficult to see that if n > 3, then

degs(Qn(B)) = 2(n — 3) and Coef fig11)(@n(B)) = 2" — 1 = ("}7).
Theorem 3.10 One has
Qu(8 = 1) = (3 UCRusr,m) ™) (1= B)E),

m>0
where CR,, denotes the Chan-Robbins polytope (3], i.e. the convex polytope given by

the following conditions :
CRy = {(aij) € Matmxm(Z3)} such that

(1) Z,— Qi = 1, Zj a;; = 1,

(2) a;; =0, if j>2+1

Here for any integral convex polytope P C Z¢, (P, n) denotes the number of integer
points in the set nP N Z¢.

Conjecture 4 (A) Letn > 4 and write

2n—6

Q.(B,t) := Z(l + Bk Ckn(t), then cka(t) € Zxolt].

k=0
(B) All roots of the polynomial Qn(B) belong to the set Reo.

Comments 3.7
(1) We expect that for each integer n > 2 the set

Uiy = {w € Spn1 | Su(1) = [[ Cat;}

Jj=1
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contains either one or two elements, whereas the set {w € Sg,,_2 | G, (1) =
empty. For example. ¥, ={[1,5,3,4,2] }, ¥5={[1,5,7,3,2,6,4], [1,5,
={w:==[1,3,2,8,6,9,4,57], w}, ¥, = {777}
Question Does there exist a vexillary (grassmannian ?) permutation w € Sy, such
that &,(1) = [[;_, Cat; ?
For example, w = [1,4,5,6,8,3,5,7] € Sg is a grassmannian permutation such that
6,(1) = 140, and R, (1,8) = (1,9,27,43, 38,18, 4).

[[;-, Cat;} is
472&3}

Remark 3.3 We expect that for n > 5 there are no permutations w € Sy, such that
Qn(B) = & (1).

(2) The numbers €, := [I;_; Cat; appear also as the values of the Kostant partition
function of the type A,_, on some special vectors. Namely,

€ = Koam(m), where 7 =(1,2,3,....n~1,~ <Z>)
see e.g. [40], 6.C10, and [17], 173-178. More generally [17], (7,18), (7.25),0ne has

n+d—2
1 n+d+y
Ka(ny(na) = pp’n(d) €ooq = H 2]+1( 2j )’

j=d

where v,g = (d+1,d+2,...,d +n — 1,—n(2d + n — 1)/2), and pp°*(d) denotes
the set of reverse (weak) plane partitions bounded by d and contained in the shape

0n :=(n—1,n—2,...,1). Clearly, pp’~(1) = [] :—};f—i = C,, where C,, is the n-th
1<i<j<n

Catalan number °.

Conjecture 5
For any permutation w € S,, there exists a graph I, = (V, E), possibly with multiple

edges, such that the reduced volume 70l (Fr,) of the flow polytope Fr,, see e.g. [39] for

a definition of the former, is equal to &,,(1). |
For a family of vexillary permutations w,, of the shape A = pd,,; and flag ¢ =
(1,2,..., n—1,n) the corresponding graphs I',, , have been constructed in [29], Section 6.
In this case the reduced volume of the flow polytope Fr, , is equal to the Fuss-Catalan
number e (™ DEHDy = @, (1), cf Corollary 3.2

Problems 3.3
(1) Assume additionally to the conditions (a’) and (b) above that

xfj=ﬁxij+1, if 1<i<j<n.

What one can say about a reduced form of the element wg in this case ?

5 For example, if n = 3, there exist 5 reverse (weak) plane partitions of shape d3 = (2,1) bounded

" 00 01 01 01 11
by 1, namely reverse plane partitions {(0 ), (0 ), (0 ), (1 ), (1 )}
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(2) According to a result by S. Matsumoto and J. Novak [27], if m € Sy, is a per-
mutation of the cyclic type A\ n, then the total number of primitive factorizations (see
definition in [27]) of T into product of n—£(\) transpositions, denoted by Prima_gx)(}),
is equal to the product of Catalan numbers:

LX)
Prz'mn_g(,\)()\) = H C’at,\,_l.
1=1

Recall that the Catalan number Cat, = C, = 1(**). Now take A = (2,3....,n+1).
Then

Qn(l) = fI Cata = Przm(;)(/\)
a=1

Does there exist “a natural” bijection between the primitive factorizations and monomials
which appear in the polynomial Qn(x:ij;8) ?

Appendix Grothendieck polynomials

Definition A1l Let 3 be a parameter. The Id-Coxeter algebra IdC,(f) is an asso-
ciative algebra over the ring of polynomials Z[3] generated by elements <e1, v En_1
subject to the set of relations

o ee; =eje;, if |z' - j‘ > 2,

® eeje; = ejee;, if ‘z - j‘ =1,

o e2=f¢, 1<i<n-1

It is well-known that the elements {e,, w € S,} form a Z[f]-linear basis of the
algebra IdC,(8). Here for a permutation w € S, we denoted by e, the product

€i,€ip -+ + €, € IdCy(B), where (41,13, . .. ,1¢) is any reduced word for a permutation w, i.e.
w = 8;,8;, -+~ 8i, and £ = £(w) is the length of w.
Let 1,Z2, ..., Zn-1,Zn = Y Tns1 = 2,... be a set of mutually commuting variables.

We assume that z; and e; commute for all values of ¢ and j. Let us define

hi(z) =1+ze;, and Ai(z) = H ho(z), i=1,...,n— 1
1

a=n—

Lemma Al One has
(1) (Addition formula)

hi(z) hi(y) = hi(z @ ),

where we set (z @ y) =z + y + Bzy;
(2) (Yang—Baxter relation)

hi(z)hir1(z ® Y)Ri(y) = hiy1(Y)hi(z © Y)hiva ().

Corollary A1l
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(1) [hir1(2)hi(z), hiva(y)hi(y)] = 0.

(2) [Az(l'),Az(y)] =O, 1= 1,2,...,71—1.

The second equality follows from the first one by induction using the Addition for-
mula, whereas the fist equality follows directly from the Yang—Baxter relation.

Definition A2 (Grothendieck expression)

an(.’lﬁl, . ,$n_1) = Al(l‘l)Ag(.’IJg) s An_l(.’En_l).
Theorem A ([11]) The following identity

QSn(-’rl,- --sxn—l) = Z 61(,';3)(Xn—1) Cw

wESn

holds in the algebra IdC, ® Z[z1, ..., Zn-1]-

Definition A3 We will call polynomial e )(Xn_l) as the 8-Grothendieck polyno-
mial corresponding to a permutation w.

Corollary A2

(1) If 8 = -1, the polynomials (’51(1,_1)(Xn_1) coincide with the Grothendieck poly-
nomials introduced by Lascoux and M.-P. Schiitzenberger [25].

(2) The B-Grothendieck polynomial & (X,_;) is divisible by z*®".

(3) For any integer k € [1,n — 1] the polynomial L Vg, =qz.=1Va#k)isa
polynomial in the variables q and 3 with non-negative integer coefficients.

Proof (Sketch) It is enough to show that the specialized Grothendieck expression
S.(zr = ¢z, = 1,Va # k) can be written in the algebra IdC,(8 — 1) ® Z[g, 8] as
a linear combination of elements {ey }yes, With coefficients which are polynomials in
the variables ¢ and B with non-negative coefficients. Observe that one can rewrite the
relation e = (8 — 1)e; in the following form ex(ex + 1) = B ex. Now, all possible
negative contributions to the expression &,(zx = ¢,z, = 1,Va # k) can appear only
from products of a form c,(g) := (1 + gex)(1 + ex)®. But using the Addition formula one
can see that (1 + gex)(1 +ex) = 1+ (1 + gB)es. It follows by induction on a that c,(q)
is a polynomial in the variables ¢ and 8 with non-negative coefficients.

n
Definition A4
e The double 5-Grothendieck expression &,(X,,Y;) is defined as follows

Bn(Xn, Yn) = 6,(X,) 6,(-Y,)"! € 1dC,(B) ® Z[ Xy, Ya).

e The double S-Grothendieck polynomials {&,(X,,Ys)}uwes, are defined from the
decomposition
an(Xn» Yn) = Z 6w(Xn7Yn) Cw

wES,
of the double 5-Grothendieck expression in the algebra IdC,(f).
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