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Introduction to Analogue of Wiener Measure Space
and Its Applications

By

Kun Sik RYU; Man Kyu IM** and Ki Seong CHOI***

Abstract

This talk is the improvement of our survey paper [42]. The contents of this talk consist of the following:

(1) The definitions, notations and some well-known facts which are needed to understand this talk.

(2) Complex-valued, measure-valued and operator-valued analogue of Wiener measure and their exam-
ples.

(3) The translation theorem of analogue of Wiener measure and its applications.

(4) The integration formula of exp{c||x||co }-

(5) The integration formula of exp{A fé x(s)ds}.
(6) The measure of the set of all analogue of Wiener paths staying below a continuous differentiable

function.

(7) Relationship among the Bartle integral and the conditional expectations.

(8) The simple formula for conditional expectation.

(9) The measure-valued Feynman-Kac formula.
(10) Volterra integral equation for the measure-valued Feynman-Kac formula.
(11) Dobrakov’s integral with respect to the operator-valued analogue of Wiener measure.
(12) The operational calculus of analogue of Wiener functional.
(13) The theories of Fourier-Feynman transform.

§1. Preliminaries

In this section, we present some notation, definitions and well-known facts which are needed

to understand the subsequent sections.
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(A) Let R be the real number field and C the complex number field. For a natural number n,

let R” be the n-times product space of R. Let B(R) be the set of all Borel measurable subsets
of R and m; the Lebesgue measure on the measurable space (R, B(R)). Lete;, =1, @, = —1,
az;=iand @y = —i.

(B) For a positive real number a,b, let Cla,b] be the space of all real-valued continuous
functions on a closed bounded interval [a,b] with the supremum norm || - || . By the Stone-

Weierstrass theorem,
(1.1) (Cla,b), || ||oo) is a real separable Banach space.

Let M(R) be the space of all finite complex-valued countably additive measure on (R, B(R)).
For p € R, let 6, be the Dirac measure concentrated at p with total mass one. For y € M(R)
and for E € B(R), the total variation |u|(E) on E is defined by

(1.2) |l(E) = sup ) _ |u(Ey),
i=1

where the supremum is taken over all finite sequences (E;) of disjoint sets in B(R). Then |u|
is in M(R) and, by the Jordan decomposition theorem [16, p. 307, (19.13) Theorem], there are
unique non-negative measures u ;€ M) (j = 1,2,3,4) such that

4
0 =S
j=1

By [10, Theorem 4.1.7), (M(R), | - |(R)) is a complex Banach space.

Let RM(R) be the space of all finite complex-valued measures g on (R, B(R)) which are
dly|

absolutely continuous with respect to my, that is, the Radon-Nikodim derivative dmy exists.

(C) Let(X,B,u)be a measure space. For a positive real number p, let £P(X, 1) be the space of
complex-valued y-measurable functions f on X such that | f|? is |u|-integrable. Let L>°(X, u) be
the space of complex-valued u-measurable functions f on X which are |u|-essentially bounded.
The elements of LP(X,u) and L>°(X, ) are equivalence classes of functions in £P(X,u) and
L>(X , ), respectively, with the equivalence relation being defined by |u|-a.e. Since RM(R) is
isomorphic to LY (R, m;), RM(R) is a Banach space and the dual space RM(R)* of RM(R)
is isomorphic to L*(R,m). For x* € RM(R)*, there is a function 6 in L>°(R,m.) such that

x*(u) = / 0(s) du(s) for y € RM(R).
R
Let B be a complex Banach space and B* the dual space of B. For a B-valued countably
additive measure v on (X, B) and for E € B, the semivariation ||v||(E) of v on E is given by

(1.4 IVI(E) = sup{|x*V|(E) | x* € B* and ||x* ||« < 1}

where |x*Vv|(E) is the total variation on E of the complex-valued measure x*v.
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(D) Let B be a complex Banach space and (X, B, ) a complex measure space. A function
f+ X — Bis said to be y-measurable if there exists a sequence (f,) of B-valued simple functions
with
(15) Tim [1f, ~ fllg =0 lul-ae.

A function f is said to be u-weakly measurable if x* f is y-measurable for each x* € B*. By the
Pettis’ measurability theorem [11],

(1.6) fis y-measurable if and only if f is |u|-essentially separably valued and f is u-weakly

measurable.

We say that f is u-Bochner integrable if there exists a sequence (f,) of B-valued simple func-
tions such that (f,) converges to f in the norm sense in B for |u|-a.e. and

tim [ 170~ 0lldlule) =0
In this case, (Bo) — / f(#)du(t) is defined by
X

(L.7) (Bo) - / f@®)du@) = lim / Ja(®)du(t),
b n—oo Jx
where the limit means the limit in the norm sense. By [11], [4, p. 45, Theorem 2],
(1.8) f is y-Bochner integrable if and only if / | £ )| |l (2) is finite.
X

By [52, Corollary 2],

(1.9) if U is a bounded linear operator on B into a Banach B, and f is a B-valued u-Bochner

integrable function, then U f is a B;-valued u-Bochner integrable function, and

(Bo) - /X U @)dpu@) = U((Bo) - /X f@)du(@)).

Theorem 1.1. Let (X,B,u) be a complex measure space and f: X — M(R) a u-Bochner
integrable function. Then for E € B(R), [f(1)I(E) is a complex-valued u-integrable function of
t and

(1.10) [(Bo) - / J@du®)E) = / LF®NE)du().
o Jx b

Remark. Consider a function H on [0,1] x [0,1] defined by H(x,y) = X10x(y). Then H
is my, X my-integrable on [0,1] x [0,1], so by the Fubini theorem, H(x,y) is an m-integrable
function of x for all y and H(x,-) is in L*°([0,1],my) for all x € [0,1]. But H(x,-) has no
essentially separable range, so H(x, -) is not m;-Bochner integrable. Hence, in generally, the
equality (1.10) is not true in the theory of Bochner integral.
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(E) Let B be a complex Banach space and (Y,C,v) a B-valued measure space. Let g be a
complex-valued ||v||-measurable function on Y, that is, there exists a sequence (g,) of complex-
valued simple functions with lim lgn — gl =0 ||v||-a.e. We say that g is v-Bartle integrable if
there exists a sequence (g,) o'fl sior;ple functions such that (g,) converges to g ||v||-a.e. and the

sequence ( / gn(s)dv(s)) is Cauchy in the norm sense. In this case, (Ba) — [ g(s)dv(s) is defined
Y Y

by
(1.1 (Ba) —/ g(s)dv(s) = lim /g,,(s)dv(s),
Y n—oo Jy
where the limit means the limit in the norm sense. By [13, Theorem 8],
(1.12) if f is a v-measurable function which is ||v||-essentially bounded, then f is v-Bartle
integrable and
IBa) - f6)ns)ls < (vl ess supl FDIICD)
Y
By [27, Theorem 2.4],

(1.13) g is v-Bartle integrable if and only if for each x* € B*, g is x*v-integrable, and for

each E € C, there is an element (Ba) — / g(s)dv(s) in B such that
E

x*[(Ba) - / g(s)dv(s)] = / g(s)dx*v(s) for x* € B*.
E E
By [13, Theorem 8],

(1.14)  if U is a bounded linear operator from B into a Banach space B; and g is v-Bartle

integrable, then g is Uv-Bartle integrable. In this case
Ul(Ba) - / g(s)dv(s)] = (Ba) - / g()dUv(s).
Y Y

By [13, Theorem 10],

(1.15)  if (f,) is a sequence of v-Bartle integrable functions which converges ||v||-a.e. to f
and if g is a v-Bartle integrable function such that | f,(s)| < g(s) ||v||-a.e. s for all
natural numbers n then f is v-Bartle integrable and for E € C

(Ba) - / f(s)dv(s) = lim (Ba) - / fn(8)dv(s).
E n—oo E
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(F) Let B be a complex Banach space. Let (X, B) and (Y,C) be two measurable spaces and let
B®C the o-algebra of sets in the space X x Y generated by the family of rectangles E x F for
all Ein B and F inC. Let i be a complex-valued measure on (X, B) and v a B-valued measure

on (¥,C). For Gin B, let

(1.16) (X ¥)(G) = (Ba) - /Y [ /X Xo(,0)du()|dvio)

By n [20, Proposition 2], using the dominated convergence theorem in [21], Kluvanek proved
that u X v is a B-valued measure on B®C and for G € BRC,

1.17) (4 x ¥)(G) = (Ba) - / [ / Xg(u,v)d/.t(u)]dv(v)
Y+ -JX
= (Bo) - / |B2) - / Xo(u,0)dv() | dutu)
X Y
holds. Moreover, in [20, Proposition 3], he showed that
(1.18) x*(uxv)=pux(x*v)

for all x* € B*.

When both measures y and v are complex-valued, a sufficient condition for validity of the
Fubini theorem is the integrability of the function with respect to u x v. But, if v is a vector
measure then the integrability of the function with respect to  x v is no longer a sufficient
condition for the validity of the Fubini theorem. Indeed, we can find a counter example for this

fact in [20].

Theorem 1.2. Let B be a separable complex Banach space, (X,B,u) a complex-valued
measure space and (Y,C,v) a B-valued measure space. Let f: X xY — C be B® C-measurable

and pu X v-Bartle integrable. Then

(1.19) for ||v|-a.e. v, f(u,v) is a p-integrable function of u
(1.20) / f(u,v)du(u) is v-Bartle integrable and
X
(121) Ba)~[  f(u,v)dp x v(u,v) = (Ba) - / [ / F@t,0)dpu0)| dv(o)
XxY Y ~JX

Moreover, if for |u|-a.e. u, f(u,v) is a v-Bartle integrable function of v and (Ba) — / flu,v)dv(v)
Y

is pu-Bochner integrable then
(122) ®Ba)-[  flu,0)du x vu,) = (Ba) - / [Ba) - /Y flu,0)d0)| dut)
X

XxY
— (Ba)- / [ / fl,0)dpw) vt
Y X
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(G) Let X and Y be (real or complex) Banach spaces and denote by L(X,Y) the Banach
space of all bounded linear operator from X to Y. Let T be a non-empty set and B a o-algebra
of subsets of T. We say that a set function m: B — L(X,Y) is an operator-valued countably
additive in the strong operator topology if for every x in X the set function B> E — m(E)x € X
is a countable additive vector measure. We define a non negative set function /7, which is called

the semivariation of the measure m by equality

n
A(E) = sup{||>_m(ENE)x;| |E; € B, x; € X with |x;| < 1fori=1,2,..,n
=1 and E;NE; =0 fori# j}.

We say that E is an integrable subset in B if the semivariation m(E) of E is finite. Let K be the
set of all integrable subsets of 7. From [12], we have following theorem.

Theorem 1.3 (*-Theorem). Let Y contains no subspace isomorphic to the space co (for
example let Y be a weakly complete Banach space). Then the semivariation i is continuous on
K, that is, if (Ey) is a sequence of decreasing subsets in K with lim E, =0 then lim m(E,)=0.

n—oo

n-—o00

A K-simple function on T with values in X is called the simple integrable function. For any
n

n
simple integrable function ¥ = > Xxxg,, let / ydm =Y m(E; NE)xy.
k=1 E k=1
A function f: T — X is called measurable if there is a sequence (f,) of simple integrable

functions such that lim f,(¢) = f(¢) foreacht € T.
n—oo
A measurable function f: T — X is said to be Dobrakov integrable if there is a sequence

(f) of simple integrable functions converging almost everywhere m to f. In this case, the
integral of the function f on a set E in K is defined by the equality

(D) —/fdm= lim /f,,dm.
E n—oo JE

Here this limit is uniform with respect to E € K.

(H) Let (,B, ) be a measure space. Let X: Q — R"*! be a measurable function and F a

C-valued integrable function on (Q, B, u). Let Px(A) = u(X ~1(A)) for A € B(R*t"). Then Py is
a measure on B(R"*!). By the Radon-Nikodym theorem, there is a function E#(F|X), unique

up to u-null sets such that

/ Fdu = / EM(F|X)dPx
X-1(A) A

for A € B(R™"*!). This function E#(F|X) is called the conditional expectation of F given X.
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() Let ¢ be in M(R) and 7 be a complex-valued Borel measure on [a,b]. A complex-valued
Borel measurable function 6 on [a,b] x R is said to belong to Ly, 1,5 (Or L;;oo,];,’) if

(1.23) 160l o1y = /[ 1865 e dlns)
a,

is finite, where

600, )|g;00 = inf{A > 0| |p|({£ € R | |6(0,&)] > A}) = 0},
1665, oo = inf{2> 0| m({£ € R| |65, > AN =0} (O <s<1).

If 6 is bounded Borel measurable then 6 is in Ly, 1;-
(J) For 6 € L*(R,my), we consider an operator My from RM(R) into itself by
du
(1.24) [Mg((E) = T 8)0E)dmy (&)
E @mp

for E € B(R) and u € RM(R). Then

dMy(u)

_
amy O = G €0,

(1.25)
so My is well-defined. Since

d
M| ®) < [ | 2@ 1000 dmu@) < 0l i),
R'amg

My is a bounded linear operator.
For s > 0, let

1 u?
(1.26) P(E) = /E =P~ -} dmu(w)

for E € B(R). For s > 0, we consider an operator S; from RM(R) into itself defined by

1 2
(1.27) 1S.01(E) = (u+ PE) = —— /R [ /E exp{~ 2 Yamy @) du).

Then
dSs(p) (£ —v)?

1
= —— [ exp{—
am, 9= e A pi==-
so S; is well-defined. It is not hard to show that S; is a bounded linear operator and the operator

norm ||S;|| of S; is less than or equals one.
Let 51 and s be two positive real numbers. Then by the Chapman-Kolmogorov equation in

[19] and the classical Fubini theorem, we have

}du(),

(1.28) S5, 0S5, = S5, s,



58

For s > 0, ¢ € M(R), a Borel measurable |¢|-essentially bounded function 6 on (R, B(R)) and
E € B(R), let

1 (u—0v)?
(129) (TG, 0)E) = —— /R [ /E O exp{ — =} dmy(u)] dg(o).
Then T'(s,¢,0) € RM(R) and
dT (s, ¢, 0) / (u—v)?

1. - .
(1.30) dmy \/_ A(v) exp{ }do(@)

(K) Letgpisameasure on (R, B(R)) and F: C[a,b] — R a measurable function. For all 1 > 0,
if the integral F (/l_lx) dw,(x) exists, then we denote

Cla,b]

/ FQ™ ' x)dwy(x) = J(A)
Cla,b}

If there exists a function J*(2) analytic in the half-plane C* such that J(1) = J*(2) for almost
all real 4 > 0, then we write

/ ! F(x)dwy(x) = J*(A)
Cla,b]

and we call that J*(A) is the analytic analogue of Wiener integral of F over C[a,b] with param-

eter A, and for non-zero real number ¢, if the limit hm J*(A) exists, then we set
——ig
A€C+

an anf,
lim J*(1) = / ! F(x)dw,(x)
C|

E&'-" [a,b]

and we say that the limit is the analytic analogue of Feynman integral of F.

Notation. For A€ C* and y € C[a, b] let

ananw,

(Tan aF)(y) = / F(x+y)dw,(x),

Cla,b)

1 1
and given a number p such that 1 < p < oo, p and p’ will always be related by ; + ? =1. Let

{H,} and H be analogue of Wiener measurable functions such that for each p > 0,

n—oo

lim / |Ha(0y) — H(py))|?dwy(y) =
Cla,b]

Then we write

(1.31) lim (W2 )H, = H
n—00
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and we call H the scale invariant limit in the mean of order 2 of H, over Cla,b]. We define a
similar definition for any real number instead of n. Let g be non-zero real number. For 1 < p <2

we define the L? analytic Fourier-Feynman transform of F, which we denote by T ZIF by the

formula
TP F)O) = xleigl (w{,f:s)(ﬂm,AF )[6))

A——ig

whenever this limit exists. Let F be a functional on analogue of Wiener space such that
(Tan,aF)(y) exists in C* for s-almost every y. We define the L analytic analogue of Fourier-
Feynman transform of F, which we denote by 7;(,}sz , as that functional (if it exists) on analogue
of Wiener space such that
(TnyF)) = lim (Ton aF)0)
,1—€>—-iq

for s-almost every y. For each natural number n and a partitiona =ty < t; < --- <t, = b, let
A, be the collection of functions F: C[0,¢] — R satisfying (1) and (2) below:

(1) fis a measurable function on R"+1,

2) F) = f(x(to), x(t1), ..., x(tn).

L) Let(-D!=1"=1,2m"=2n)2n-2)---2,2n— D' =2n—1)(2n—3)---3 -1 for

a natural number n. Let [] ¢, = cxcpy1---cpifn>kand [ c,=1ifn<k.
p=k p=k
By the elementary calculus for integral and the properties of Gamma functions, for a positive

real number A and for a non-negative integer m, we have the following equality.

(2]

(1.32) /\/__u exp{— }d L) =) (5)A*@k— g

k=0
(2]

_Z un 2k.
(m— 2k)'(2k)” “o

Here ['] is the Gauss symbol.
Using Dirichilet’s integral in [14] and the change of variables theorem, we can show the

following equality.

IT;!
133 —s;_1)ld 52 ys) =Rk 2L
(1.33) ”H(sj §j-1) (HmL)(S1 52+ 15n) CES S

where ki,k2, ..., k, are all non-negative integers, A, = {(s1,52,...,5,) |0<s1 <s$2<--- <5, <
t} and so = 0.
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For a natural number n, let

) 1 2—kp 3—kn—ky—y N—2akj
134 D plkika, k)= > Y Y plhaka,. . k).
ko kn=0ky_1=0 kn_,=0 k=0

u
For1 <u<n-1, ky_, moves fromO0to (u+1)— 3 kn_(p—1), SO

p=1
u+l1 u
@+2) =Y knep-ny =@+ D)= _kn_(p-1)) —kn-u] +1> 1.
p=1 p=1

Hence 2 —k,, 3 — (ky + kn—1),...,n— E;zz k, are all large than or equal 1 which implies that

> plky,ka,. .. ky) is well-defined.
k,n

§2. The complex-Valued Analogue of Wiener Measure w,

In this section, we will introduce a complex-valued analogue of Wiener measure w, on
Cla, b] and we will give some examples of it.

Let n be a non-negative integer. For f = (to,t1,...,t) Witha =1y <t; < --- <t, < b, let
k: Cla,b] — R"*! be a function with

Jr(x) = (x(t0), x(11), . . . , x(tn)).

n
For Bj € B(R) (j=0,1,2,...,n), the subset J;l( HBj) of Cla, b] is called an interval and let Z
j=0
be the set of all intervals. For a non-negative finite Borel measure ¢ on (R, B(R)), let

n n

mo(J (] Bj) = / [, Wot Lo, ...ud [T mua,....un)| diuo)
Jj=0 By -I—IlBj j=1 ,

]=

where
W(n+1;%ug,uy u )=(ﬁ ——1—)exp{—lzn:(uf—"j‘1)2}
LR} ] g y¥p ,=11/27r(tj——tj_]) 2 tJ—tj_l

j j=1

Then the set B(C[a,b]) of all Borel subsets in Cla,b], coincides with the smallest o-algebra
generated by 7 and there exists a unique positive measure w,, on (C[a, b}, B(Cla, b])) such that
we(l) = my(I) for all I'in 7.

4 4
For ¢ € M(R) with the Jordan decomposition ¢ = )_ ajpj, let w, = >_ ajw, . We say that
j=1 j=1

w,, is the complex-valued analogue of Wiener measure on (Cla, b], B(C[a, b])), associated with
. If ¢ is a Dirac measure dg at the origin in R then w,, is the classical Wiener measure.
By the change of variables formula, we can easily prove the following theorem.
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Theorem 2.1 (The Wiener Integration Formula). If f: R**! — C is a Borel measurable

function then the following equality holds.

f(X(tO),X(tl), oo ,x([n)) dwtp(x)
Cla,b]

n
= e fluo,uy, ..., u)W(n+ 1;5u0,u1,. .., un)d([ [ mp x @)((u1,u2, . . ., un), uo)
n j=1

where = means that if one side exists then both sides exist and the two values are equal.

Remark. Let ¢ € M(R).
(1) Itis not hard to show that w,, has no atoms.

(2) wy(Cla,b)) = ¢(R).
(3) Let J;: Cla,b] — C be a function with J;(x) = x(t). Then for E in B(R), w‘p(J,—l(E)) =

[S: (@I(E).

Example 2.2. Let ¢ € M(R).
(1) Let I = {x € C[0,#] | x(0) € B} where B is in B(R). Then wy(I) = ¢(B).
(2) Suppose that f(u) = u is ¢-integrable. Then for 0 <s <1,

/ x(8)dwy(x) = / udp(u).
CI0,1] R

If ¢ =6, then / x(s) dwy(x) = p and if ¢ has a normal distribution with mean « and variation
Cl[0,1]
o2 then / x(s)dwy(x) = a.
Cl0,1]
(3) Suppose that g(u) = u? is ¢-integrable. Then for 0 < s <¢,

/ x(s)? dwy(x) = / W do(u) + sp(R).
C[0,7] R

If ¢ = 6, then / x(s)zdw¢(x) = p2 + s and if ¢ has a normal distribution with mean @ and
Cl0,1]
variance o then

/ x(s)zdw‘p(x) =?+0%+s.
C[0,¢]

(4) Let F(¢p) be the Fourier transform of a measure ¢, that is, [F(¢)](€) = / exp{iu} dp(u).
R

Then for 0 <s <t,

2
[ expliess)} duyto) = expl{~ 5 HF@I®).
C[0,]
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2

If ¢ = 6, then / exp{i&x(s)} dwy(x) = exp{— % + ip€} and if ¢ has a normal distribution
Cl[0,1]

with mean @ and variance o then

(s +02)§2

| expixtsr)duy = expl -5 1 g,
C[0,t]

Let 0 < s <t be given and let J;: C[0,7] — R be a function with Js(x) = x(s). We assume that
(@n) converges to ¢ weakly. By calculation similar as in this example, since (F(g,)) converges
to F(¢p) pointwise, (F(w, (J; 1 (-)))) converges to F(w,(J;~ O))] pointwise, so by the continuity
theorem in [1, Theorem 12-5A, p 273], (w,,(J;"'(-))) converges to w,(J; ' (-)) weakly.

(5) We assume that k() = u? is p-integrable. For 0 < 51,5, <,

/ x(s1)x(s2) dwy(x) = (min{sy,s2De(R) + / wde(u).
clo,] R

If ¢ =6, then / x(s1)x(s2) dwy(x) = min{s;,s2} + p2 and if ¢ has a normal distribution with
o (113
mean a and variance o~

/ x(s1)x(s2) dw,(x) = min{sy, 52} + o+
Cl0,1]

(6) For 0 < 51 < 57 <53 < 54 <t and for a, B € R, using the change of variable formula, we

have

P(R)w,({x € C[0,1] | x(s2) — x(s1) < @ and x(s4) — x(s3) < B})
= wy({x € C[0,1] | x(s2) — x(s51) < a})- wy({x € C[0,1] | x(s4) — x(s3) < B}).

Hence, if ¢ is a probability measure then x(s2) — x(s1) and x(ss) — x(s3) are independent.
Theorem 2.3. For ¢ € M(R), |w,| = w|, on (Cla, bl, B(Cla,b))).

We consider a set A = {E € B(Cla,b)) | |w,|(E) = w)y,(E)}. Then we have 7 C A. Since
|w,| and w),, are both measures on (Cla, b, B(Cla, b)), |w,| = w), on B(Cla,b)).

Theorem 2.4. If a sequence (@) of non-negative finite measures, converges to ¢ in the
sense of total variation norm then a sequence (w,,) converges to w, in the total variation

norm.

From [2], we can find a sequence (P,) of measures on Cla,b] such that (P,) does not con-
verges to P weakly even though every finite dimensional measures of P, converges to some
finite dimensional measure of P weakly. Here, we want to find the conditions such that (w,,)
converges to w,, weakly whenever (g,) converges to ¢ weakly.
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Lemma 2.5. Let X : [a,b] x Cla,b] — R be a function with X(s,x) = x(s). Then fora <t; <
b and for € > 0,

1 /2 2
we({x | sup{x(s) —x(@)|a<s<t} > e} < - 71exp{—267
Lemma 2.6. For e >0and 1> 0,

wp({x| sup |x(t) —x(€)| < A}) = w,({x| sup |x(t) —x(0)| < /l})2
0<r<e 0<t<%

Corollary 2.7.

we({x| sup |x(s)—x(t1)| > 4}) < = \/i “_(2 \/:e"_ ).
0<s<

Corollary 2.8. For each positive € and 1, there exists a § with 0 < § < 1 such that for 51, s>
in [a, b]

we({x| sup |x(s1)—x(s2)| > €}) <.
sy —s2|<6

From [2], we find the following theorem.

Theorem 2.9. The sequence (P,) of probability measures on Cla,b] is tight, that is, for
positive € there exists a compact set K such that P,(K) > 1 — € for all natural number n, if and
only if

(i) for each positive 1, there exists an « such that P,({x||x(a)| > a}) < n for all n and
(i1) for each positive € and 1, there exists a 6 with 0 < § < 1 and a natural number ny such

that for n > ny,
B({x| sup |x(s1)—x(s2)| > €}) <.

lsl —Szl((s

From [2], we can find a sequence (P,) of measures on C[a,b] such that (P,) does not con-
verges to P weakly even though every finite dimensional measures of P, converges to some
finite dimensional measure of P weakly. Here, we want to find the conditions such that (w,, )
converges to w, weakly whenever (p,) converges to ¢ weakly.

Theorem 2.10. Let P,, P be probability measures on (Cla,b), B(Cla,b])). If the finite di-
mensional distributions of P, converge weakly to those of P, and if (P,) is tight, then (P,)
converges to P weakly.

Theorem 2.11. Suppose (py,) is tight. Then (w,,) is also tight.

Lemma 2.12. Let f: R**! — R be bounded continuous. Let T = (to,1,... ,tn) be a vec-
torin R withtgy=a <t <+ <t, <b and Jz: Cla,b] — R" a function with J{x) =
(x(t0), x(t1), . . ., x(tn)). Suppose {(pn) converges to ¢ weakly. Then

lim flug,uy,... ,u,,)dw(pmJT_l(x) = lim fUx)dw,,, (x)

m—0o0 Rn+] m—oo C[a,b]
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n(uj—uj_1)?

A T S
= le/ flug,ur,. .., un)—; =) d [ mp(us,...,un)dem(uo)
MmO JR JR” 1’[1\/27({,7?,_—1) =1
j=
= FU(x)) dwy(x).
Cla,b]

Theorem 2.13. If (p,) is tight and {(g,) converges to ¢ weakly, then (w,,) converges to w,
weakly.

Remark. The referee point out the following facts: for y € Cla,b], there are @ € R and
x € Cola,b] with y = @+ x where @ = y(a) and x =y — @ € Cp[a, b]. Lety: Cla,b] - R®Cola,b]
be a function with ¥(y) = (@, x) as in above. Then ||y||cc < |@|+ ||*]lc0 = (@, 2)|| = |l¥()||. By
Two norm theorem [26], ¢ is a homeomophism. So we have w, = (¢ X m) oy~!. Using this
facts, we can easily prove the following corollary.

Corollary 2.14. Let f be in L'(R) and set ¢(E) = / f(x)dmp(x) where f >0 and E is a
E
Borel subset of R. For any integrable function F,

2.1 F(x,y)dwy, X wy(x,y)
Cla,b] xCla,b)]

=/ F(xcos —ysin@,xsinf+ ycos0)dw, X wy(x,y),
Cla,b} xCla,b]

for all real number 6 if and only if the function f(x) has the form Ae=*" where A and a are

positive constants.

§3. A Translation Theorem on (Cla,b], B(Cla, b)), w,)
and the Paley-Wiener-Zygmund Integral

It is well-known fact that there is no quasi-invariant probability measure on the infinite di-
mensional vector space [49]). So, there is no quasi-invariant probability measure on Co[a,b]
or C[a,b]. In 1944, under the some assumptions, Cameron and Martin established a transla-
tion theorem on (Co[a,b],m,,) in [5]. In this section, we will prove a translation theorem on
(Cla,b],w,) under the similar assumptions to Cameron’s assumptions. From these concepts,
we will show that the Paley-Wiener-Zygmund integral is well-defined w,, -a.e.

By either the similar method as in the proof of Cameron and Martin’s translation theorem
on Cy[a, b] in [5] or Remark 2, we can prove the following theorem.

Theorem 3.1 (The Translation Theorem on (Cla, b], B(Cla, b)), w,)). Let h € Cla,b] and of
A
bounded variation. Let @ € R and set xo(s) = / h(wydmp(w)+afora<s<b. LetL: Cla,b] —

a
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Cla,b] be a function with L(x) = x+ xo and ¢ a probability measure on (R, B(R)). Let ¢, be
a measure on (R, B(R)) such that ¢,(B) = ¢(B+ ) for B € B(R) and ¢, < ¢. Then if F is
wy-integrable then F(x + xp) is w,-integrable of x and

/ FO)dw,(y) = e 23 / Flx+xo)eJa ”(“Mx(“)dﬁ(x(o»d%(x).
Cla,b] Cla,b] dy

Putting F = 1 in Theorem 3.1, we have the following corollary.

Corollary 3.2. Under the assumptions in Theorem 3.1,

b
1
/ exp{— / h(u)dx(u)}da)‘p(x)=exp{—5Hh||%}.
Cla,b] a

Replacing & by Ak in Corollary 3.2, by the uniqueness theorem for analytic extension in the
theory of complex analysis, we have the following corollary.

Corollary 3.3. Under the assumptions in Theorem 3.1, for all A € C,

b 2
A
/ exp{—/l/ h(u)dx(u)} dw,(x) = exp{——~2—||h||%}.
Cla,b] a
‘ b
Theorem 3.4. Consider a random variable X : Cla,b] — R with X(x) = / h(u)dx(u) un-

a
der the assumptions in Theorem 3.1. Then X has a normal distribution with the mean zero and

the variation ||h|)3.

By the same method as in the proof of [50, Theorem 29.7], we can prove the following

theorem.

Theorem 3.5. Let {hy,hy,...,h,} be an orthonormal system such that each h; is of bounded
b

variation. Fori=1,2,...,n, let X;(x) = hi(s)dx(s). Then X1,X,,...,X, are independent,
each X; has the standard normal distribution. Moreover, if f: R" — R is Borel measurable,

F(X1(x), X2(x), . . ., Xn(x)) dwy(x)
Cla,b}

* n 1 " n
=(27T)_7/ f(ulau%---;un)exp{_i E :uj}dI_IImL(ulauza"'vun)
Rn . i=
j=1

where = means that if one side exists then both sides exist and the two values are equal.

Let {ex | k=1,2,...} be a complete orthonormal set in L?([a, b], m;) such that each e is of
bounded variation. For f in L*([a,b],m;) and x in C[a, b], let

b b _n b
/ f(s)dx(s) = lim / 1> [ rwewdmwew)dsw

k=14
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if the limit exists.
/ f(s) dx(s) is called the Paley-Wiener-Zygmund integral of f according to x. By the routine

method in the theory of Wiener space, we can prove that the integral / f(s) dx(s) is indepen-

dent on the orthonormal set {e; | kK = 1,2,...} and the Paley-Wiener-Zygmund integral exists
wy-a.e. x € Cla,b].

Remark. In 1980, Cameron and Storvick introduced the definitions and some related theo-
ries of the spaces S, S’ and §” of Wiener functionals. If we replace (Co[a, b], m,,) by (Cla,b], w,)
in their paper, we can prove various results on (Cla, b], w,) which are similar to Cameron and
Storvick’s results in [7].

§4. The Generalized Fernique’s Theorem for Analogue of Wiener Measure Space

From Lemma 2.5, we have the following lemma.

Lemma 4.1.

1 /2 K?
4.1 my({x€C| sup |x(s)—x(0)] > K}) < < ;exp{—j}

0<s<1

for a positive real number K.

In this section, we investigate the existence of the integral / exp{a( sup |x(s)|)?}dmy,(x)
0<s<1

for two positive real numbers «, p.

Theorem 4.2. For0< p<2, / exp{a( sup [x(s)—x(0)|)?}dmy(x) is finite for all positive
c 0<s<1

1
real number a. If p = 2 then / exp{a sup |x(s) —x(0)|P}dmy(x) is finite for 0 < @ < 5
C 0<s<1

Theorem 4.3. I[f0< p<1and / exp{2a|u|P} dp(u) is finite for some positive real number
R

a, then / exp{a sup |x(s)|P}dmy(x) is finite.
c 0<s<1

Theorem 4.4. If1 < p<2and / exp{2°a|u|P }dp(u) is finite, then
R

/ exp{a sup |x(s)|? }dm¢(x)

0<s<1

is finite.
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1
Theorem 4.5. Ifa < > and / exp{4a|u|*} dyp(u) is finite then
R

/exp{ar sup |x(s)12}dm¢(x)
C 0<5<1
is finite.
Remark. 1If p > 2 and @ > 0 then by Theorem 2.1,
4.2) /exp{a sup |x(s)|P} dmy(x) > /exp{alx(l)l”}dm(p(x)
c 0<s<1 [

1 1
= EAAexP{Q|ul|p—5(ul—uo)z}dmL(ul)dtp(uo)

. \/_IZT;/ /|ul|<leXp{a‘”1|p“ l(”l — up)*} dmy (u1) dyp(ug)
\/ﬂ//m”»exl){a'ull ——(ul —MO)Z}dML(ul)d(p(uo)

= +o00.

Remark. Suppose ¢ = dy, that is, (C,m,) is the concrete Wiener measure space. Then by the

theorems above, / exp{a sup |x(s)|?}dm,(x) s finite for 0 < p < 2 and all real number @ and
C 0<s<1

1
/ exp{a sup lx(s)lz}dm¢(x) is finite for @ < —. Moreover, / exp{a sup |x(s)|P}dm,(x) =

c 0<s<1 2 c 0<s<1
+oo for p>2and a > 0.

§5. An Integration Formula for Analogue of Wiener Measure

t n
In this section, we investigate the integral of functionals such as F(x) = ( / x(s)zdmL(s))
0

4
and G(x) = exp{1 / x(s)zdmL(s)} and we give some corollaries, follows from our results.
0

Lemma 5.1. Let0 =150 < 51 <s2 < -+ < 8, =¢. Suppose u(z)” is @-integrable. Then

(5.1 ﬁ x(sj)* dw,(x)
Cl0,1] j=1
H{(l—Zk)(zl ZZk ~ 1)}
=Z,{ i o Tl(si—si-)Y) /R”gn_Zijlkjdw(uo)-

Jj=1

kn (n—320_ kj)!(2n—2 _Zlk,- ~ DN T &1 /=1
J=
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4 n
Theorem 5.2. Let F(x) = ( / x(s)2dmL(s)> on C[0,t] where n is a natural number. Sup-
0

pose u(z,” is @-integrable. Then

5.2) F(x)dwy(x)
C[0,1]

H{(I—Zk,)(Zl—ZZk _ 1)}k

' - —n 223" k;
ol j=n+2—1 j=n+2-1 _ /“o i Y 4o (o).
kn (n+ 2 ki)l(n— Z ki)l(2n—2 Z kj— D! T2k — nHn /R
j=1 j=l j=] j=1
In Theorem 5.2, by putting ¢ = 1 and ¢ = dy, the Dirac measure at the origin 0 € R, w,, is the
2n-2

concrete Wiener measure on Co[0,¢], that is, w, = m,, / uon 2tk dp(ug) =0if n # Z k;

R j=1

M-25" k;
and /R Uy 2jetky dp(ug) = 1ifn = Z;'e] k;. So, we have the following corollary.
1 n
Corollary 5.3. Let F(x) = ( / x(s)zdmL(s)) on Col0,1]. Then
0

H{(l—Zk,)(Zl—ZZk -1}

r1=2 jenya j=n+2-1

n
I1@k;— 1!
j=1

1
(5.3) /c o FeYdmu®) = S —Dn %:

Theorem 5.4. Suppose At < % and exp{u*"} is p-integrable on R for all natural number n.

t
Let G(x) = exp{4 / x(s)*dm(s)} on C[0,t). Then G(x) is w,-integrable and
0

5.4 / G(x)dwy(x)
C[0,1]
H{(I—Zk,)(zt ZZk PS>
= <P(R)+Z/l"z j=nt2-1 j=n+2-1

n=l ko (n+Zk)'(n—Zk)'(2n 2Zk —1)"H(2k -

2n— :
x/uon 22k 7 dp(up).
R

In Theorem 3.1 of section 4, by putting A(x) = 0 on [0,t], if F is w,_,-integrable then
F(x+ a)is w,_,-integrable and

/ F(x)dwy,_,(x) = / F(x+ a)dwy(x).
Cl0,1] C[0,1]

Using this, we can prove the following corollary.
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1
Corollary 5.5. Suppose At < > and exp{u*"} is ¢_,-integrable where « is a real number.

t
Let G(x) = exp{4 / (x(s) + a)zdmL(s)} on C[0,t]. Then G(x) is wy-integrable and
0

(5.5) / G(x)dw,(x)
C[0,1]
{(I—Zk )(21—2Zk — D)}k
—¢(R)+Zflnz =2 Jj=n+2—1 Jj=n+2-1
n=1 kn (n+Zk])'(n Zk)'(Zn ZZk —1)"H(2k -

2n-2
X/uon ZI i d(p—(t(VO)
R

In Theorem5.4, putting ¢ = 1 and ¢ = &y, we have the following corollary by [4].

Corollary 5.6. For any positive real number A,
1
/ exp{—4 / x(5)2dmy (s)} dm,,(x)
Col0,1] 0

{(I—Zk )(21—2Zk -1}

s Ar 1 1=2 Jj=n+2-1 Jj=n+2-1 —. _1
= 1+Zn|2n(2n_1)nz n = (coshv2)=2.
n=1 " ko H(ij-— nn
j=1

§ 6. Probabilities of Analogue of Wiener Paths
Crossing Continuously Differentiable Curves

In this section, we give the analogue of Wiener measure my, of {x € C[0,T] | x(0) < £(0)
and x(so) > f(so) for some so € [0,7]} by use of integral equation techniques. This result is a
generalization of Park and Paranjape’s 1974 result [31].

Let T > 0 be given and m,, the standard Wiener measure on the space Co[0, T'] of all contin-
uous functions x with x(0) = 0. From [45] and [46], we can found the following equations: for
b>0,

+oo
6.)  mu({x€Cl0,T]]| sup x(z)>b})=2 / Lt
b

0<t<T VT \/—
and
(6.2) my({x € Co[0,T]1| sup (x(t) —at) > b})
0<r<T

‘ +o0 1 oab (aT-b)/VT 1 2
= —e ’i‘du—l-e “/ ——e~ Zdu.
/(aT+b)/\/_ V2n —o0 V2n
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In 1974, Park and Paranjape proved the following theorem [31].

Theorem 6.1. Let f(t) be continuous on [0, T], differentiable in (0,T), and satisfy | f'(t)| <
C
" O<p< —;—) for some constant C. Then for b > — f(0),

(6.3) my({x€ Cl0,T]| ZUB (x(t) = f&)) 2 b})
t

+00 1 2
=2/ —-e Tdu 4/ M(T, t) / ——e Tduldt
(f(N)+b)/VT V2n (f(D)+b)/VT V21 ]
1
+ 4"/ K (T,1) / —¢ % du
Z [ (fO+b)/Vi V21

—4/ M(t,s)/ e duds dt,
0 (Fsr+b)/v5 V2m ]

where
P (FO—-fG6N/vVi=s
—_ —_— Td 0<s<t<T),
Mit,5) = as/_ V. dw Oss<isD)
0 0<Lt<s<T),
T
Ki(T,?) =/ M(T,s)M(s,t)ds,
t
and

T
Kn1(T,0) = / Ky (T, )K1 (s, t)ds.
t

The main purpose of this section is to find the analogue of Wiener measure m, of {x €

C[0,T]| sup (x(t)— f(¢)) > O} for continuously differentiable function f on [0, T1], which is a
0<t<T

generalization of Theorem 6.1.
b

Throughout in this section, f(u)du means the Henstock integral of f.
Let f: [0,7] — R be contimgously differentiable and f(s) =0 if s <0. For ¢ € [0,T], the
limit tim L0 1)

s—t— t—s

For x € C[0, T], let 7(x) be the first hitting time of the curve f from below by x, that is, x(1(x)) =
f(7(x)). If x never reaches the curve f, let 7(x) = +oo.
Fort € [0,T1], let

exists and equals to 0.

(6.4) A; = {x € C[0,T] | x(0) < £(0) and for some so € [0,7], x(s0) > f(50)}.
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Let G: R — R be a function with

0 (t<0),
Gt)=qmyA;) O<t<T),
my(Ar) (T <1).

Lemma 6.2. G is increasing and continuous with G(0) = 0.
Lemma 6.3. If0 < s <t < T then 1(x) = s and x(t) — x(s) are independent.
The following theorem is one of main theorems in these notes.

Theorem 6.4. For 0 <t < T, G(t) satisfies the following Volterra’s integral equation of the
second kind

_L, MO (w1 —up)?) ’
6.5) G@t) =2 /_ oo [ /f ) \/z_mexp{—————z?—}dul]dcp(uo)-Z /0 G(s)M(t,5)ds

where

p /(f(t)—f(S))/ Vi=s 2

— “Tdu 0<s<t<T),
M@,s)=1{ 35 ) ., v e Oss<i=D)
0 0<t<s<T)

The equality (6.5) and the change of order of integration gives

f(0) +oo N2
©66)  Gt)=2 / [ / 1 eXp{—M}dul]dsO(uo)
f

~00 @ V2t 2
e pfO - proo o))
-4 /0 [ /_ oo [ /f(s) ﬁexP{—T}dul]dtp(uo)] M(t,s)ds

t t
+4/ [/ M(s, z)M(t,s)ds] G(2)dz,
0 *Jz

if M(s,2)M(z,5)G(z) is integrable on {(s,z) |0 <z < s <t}.
By [47], we obtain the main theorem in these notes.

t
Theorem 6.5. If / M(s,z)M(t,s)ds is square integrable on {(z,t) |0 < z <t < T} then the
Z
equation (6.5) has one and essentially only one solution in the class L*. This solution is given

by the formula

(6.7)

SO proo (w1 — up)*)
c0= 2/_00 [/f(t) Vi P T dul]d(p(u())
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o te pfO proo s
nan+1 : 0
+§(—1) 2 /0 [/_oo [/f(s) ’_27rse p{ ————}dm]dcp(uo)]H (¢, 5)ds,

t
where H\(t,s) = M(t,s) and H,+1(t,s) = / H,(t,2)H,(z,s)dz.
S

Remark. If ¢ = 8¢ then the equation (6.3) and the equation (6.7) are exactly same.

Remark. Let ¢ = 6o and f(t) = b a constant function with b > 0. The M(t,s) =0 for 0 <
s <t < T, so we have the equation (6.1), that is,
+o0

G@)=2 A \/_exp{— }du.

§7. The Relationship Between Conditional Expectation and Bartle Integral
with Respect to a Vector Measure V,,

In this section, we will show that the Bartle integral with respect to V,, can be written as the
iterated integrals with respect to complex-valued measure. From this, we recognize the relation
between the Bartle integral and the conditional expectation on (Cla, b], w,) [41].

Let ¢ be a probability measure on (R, B(R)). Let n be a non-negative integer. Let X be a
R”*!1_valued measurable function on (Cla, b}, B(Cla,b]),w,). We write Px for a measure on
(R**1 B(R™*1)) determined by X, that is, Px(E) = w,(X ~1(E)) for E € B(R"*!).

For ¢ € M(R) and B € B(C[a, b)), let [V(B)I(E) = wy,(BNX ~1(E)). Then V, is a measure-
valued measure on (Cla, b], B(C[a, b))) in the total variation norm sense.

Theorem 7.1. Let ¢ be a probability measure on (R, B(R)) and f bounded measurable on
(Cla,b), B(Cla,b))). Then

[Ba)-  f()aV,)](E) = /E E(f1X)(© dPx(®)

Cla,b]
for E € BR™1).

For a non-negative finite real valued measure in M(R), let ¢" be a normalized measure of

E . .
©, that is, <pN (E)= I‘pl( (R)) for E in B(R) if ¢ is a non-zero measure and <pN is a zero measure if ¢
4

is a zero measure. For ¢ in M(R) with the Jordan decomposition ¢ = Z ajpj, Wy = Z @jWy;
J=1 J=1
and for j = 1,2,3,4, w,, = ¢ J|(]R)<p1}’ . Hence, for ¢ € M(R) with the Jordan decomposition

4
¢ =Y ajp;, for B€ B(C[a,b]) and for E € B(R),
j=1

4
[Ve®](E) = [D_ejlej| RV B)(E),

j=1
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so we have

4
Vo= ajlej|®WV,y.

J=1

Theorem 7.2. Let ¢ € M(R). For a bounded measurable function f on (Cla,b], B(Cla,b]))
and X (x) = x(b), :

[(Ba) - f®)dV,(0)](E) = L / / e~k / e f(x) dw,y(x) dmy (u) dmy(£)
2r Jg JR Cla,b]

Cla,b)

fJor E € B(R).

Remark. By putting ¢ = 6o, w, = w and X(x) = x(b), the classical Wiener measure and
[Ba)-|  f(n)aV,x)](E)= / f@dw(x).
Cla,b] X—1(E)

Here f is a bounded measurable function and E € B(R).

Theorem 7.3 (The Wiener Integration Formula for V). Suppose for k =1,2,...,n, i is a
n
nonnegative integer such thatm =n+ Y i jtlanda=t=tp <ty <tz <--- <ty <
j=1
NENp+1=ho<h) <hp<- <ty <ty Sth-1+1 =bandfor j=12,...,n Let
X(x) = (x(20), x(t1), ..., x(ty)). If f: B™ — R is a Borel measurable function then the following

equality holds:
(7.1) [(Ba) - /C : b]f ()’(to,o),y(to,l),---,y(tn_l,in+1))de(y)] (E)

n
*
=/[ Sf(uo0,u0,1,- - -y un—1,ig+1)Wms1 I1 XE121 (4g0)
R *J/Rm—1 g=0

m—1
-d( [T w)uoo,u0,1,- --aun—l,i,,+l)] dmy(uo ),
i=1

where E'8! is the gM-section of E.

§8. The Simple Formula for Conditional Expectation
on Analogue of Wiener Measure Space

In this section, we prove the simple formula for conditional expectation on analogue of
Wiener measure. Throughout in this section, leta =ty < #; < --- < t, = b be given, let

DIS) = D X, p@DE—D) +

s—t
Jj=1 A

— L (5(t)) — Yt )]+ (B)E gy (5)
Jj-1
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for y € C[a,b] and

S—-tj

[(8) = D _X1tj_1.1pOuj1 +

_11 () — wj— )]+ Unt () (5)
j=1 B

tj—tj

for (ug, ui,... ,u,) € R*1,
By [38], we have following theorem from the direct calculations E(exp{iliX +ilY}) =
E(exp{ili X}) E(exp{iA2Y}) and E(exp{il1 X +iA3Z}) = E(exp{il1 X }) E(exp{iA3Z}).

Theorem 8.1. Let ¢ be a probability measure on (R,B(R)). Leta=ty <t <--- <51 <
ti1<s$<tj<s<--<ty=band X, Y and Z three functions from Cla,b] into R with
X)) = y(s) — y1(s), Y(¥) = ¥(s1) and Z(y) = y(s2), respectively. Then X andY are stochastically
independent and X and Z are stochastically independent.

In 2008, Professor D. H. Cho [9] proved the next theorem by the quite different and long
method on the analogue of Wiener space over paths in B compare with our proof in [38].

Theorem 8.2 (The Simple Formula for Conditional Expectation). Let ¢ be a Borel proba-
bility measure on R. Let J;: Cla,b] — R™*1 be the function with J(y) = (y(to), y(t1), - - - , Y(tn)).
Let F be my-integrable on Cla,b]. Then for E € BR",

8.1) [(Ba) -/ F(y)dv;;’(y)](E)= / E“’(FIJ;)dP},f(ﬁ),
C(B) E

that is,

E®(F|J) = E(F(y — [yl + [@D).

We know that for any bounded measurable function F on C[a,b] and for any probability
measure ¢ on (R, B(R)), there is a conditional expectation E(F |J). What happen if the proba-
bility measure ¢ change?

Theorem 8.3 (The Uniqueness Theorem for Giving Distributions). For a bounded measur-
able function F on C[a,b), there is a unique conditional expectation E(F |J;), independent of the
selection of the distribution ¢ such that

(B~ Foavy(E)= [ EER@ARD
Cla,b] E

for any E € B(R"*!) and for any Borel probability measure @ on R.

Remark. In Theorem 8.3, if we take ¢ = & then ug does not appear in the representation of
E(F|J;) because up = 0.



§9. A Measure-Valued Feynman-Kac Formula

Cameron and Storvick [6] introduced an operator-valued function space integral in 1968.
Johnson and Lapidus [18] established the existence theorem of the operator-valued function
space integral as an operator from L2(R") to itself for certain functionals involving some Borel
measures, and in 1987, Lapidus [23] proved that the integral satisfies the Schrodinger wave
equation. In 1992, Chang and the first author [8] established the existence theorem of the
operator-valued function space integral as an operator from L? to rac< p < 2) for certain
functionals involving some Borel measures. The first author proved that the integral satisfies
a Volterra-Stieljes integral equation in [36] In this section, we will achieve the measure-valued
Feynman-Kac formula for the integral with respect to a measure-valued measure of suitable
functional. Throughout in this section and the next sections, we assume X (x) = x(b) and Vf =

Vo ([39D).

Theorem 9.1. Let ¢ € M(R), 7 a complex-valued Borel measure on [a,b] and 6 € Lo, 13-
Then

|6(s, x(s))| < [16(s, )l ;00
Jor |n| x wiy-a.e. (s,x) € [a,b] x Cla,b] .

Throughout this section let 7 = u+ v be a complex-valued Borel measure on [a, b] such that
n

u is the continuous part of 7 and v = Zocpérp wherea=1o <71 <72 <--- <1, =bandc,
p=
(p=0,1,...,n) are complex numbers, ¢ € M(R) and 6 € Ly;0,1,n- For non-negative integers g

and jy, ..., jn With g = ji + ja+ -+ + ju, let

Dgjisareesin = {1,1581,25 4181y s 82,15+ 5801, ju_15Sn 15+ -15nju) | To =@ <511 <

<81 <T1 <821 <o < Tp ) < St <00 < Sy, < T = b}

For convenience, we set Mp,.) = My for a < s < b and 79 = so0, Tn =1 = Sn,jo+1 and
Tk = Sk+1,0 = Sk,j,+1 for k=1,2,...,n — 1. For non-negative integers m,qo, ..., qgn+1, j1,- -5 Jjn
withm=gqo+qi1+-+¢qur1 and gp1 = j1 + j2+ - - + jn, let K(m,n,q, j): Aqn+1;j17]"2,...,j,, X
Cla,b] — C be a function defined by

n o Ji
IT 6Gsi j, x(si ;)]
i=1j=1

K,7,, (S5 S ), %) = [ﬁ)e(n,x(n))qf][

and D(m,n,q, j): Dy, 1:51,j2jn — R a function defined by

n nJji
D(m,n,q, ))(S1,15- - ,8n,j) = [_l:% ll6Cri, I & LT Hl 16Gsi,j5 Il gs00]-

i=1j=

75
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Lemma 9.2. (1) |K(m,n,q, j)| < D(m,n,q, j) in || x w,-a.e.
(2) It follows that

nJi
I D(man,q’j)(sl,la---,Sn,j,,)d(H H#)(sl,lv"'asn,jn)l

A‘I,H.]:j[ ----- Jn i=1j=1

1 n _
< (l_{) 16CTis Moo ) N6l gio0, 1)+
i=

qn+l! i

n o Ji
(3) D(m,n,q, j) is (I1 T1 #) x V,,-Bartle integrable on Ny, ,.j,.....jn % Cl0,t].
i=1 j=1

Lemma 9.3. 6(s,x(s)) is u x V,,-Bartle integrable on [0,t] x C[0,¢].

nJi
Theorem 9.4. (1) K(m,n,q, j) is (I] 1] #) x V,-Bartle integrable.
i=1j=1

nJji
(2) For T I1 |ul-a.e. (s1.15. - ,5n,j,)» K(m,n,q, )((S1,1,--.,5n,j,),) is Vp-Bartle integrable.
i=1j=1

n i
(3) (Ba)- / K(m,n,q, )((s1,1,---,5n,ju),X)dVy(X) is I1 I p-Bochner integrable.
Cl0,] i=1j=1

The proof of the following theorem is patterned to some extent on earlier work by Johnson
and Lapidus in [18] but the present setting requires a number of new concepts and results in the

previous parts of this section.

Theorem 9.5 (A Measure- Valued Feynman-Kac Formula). exp{ (s, x(s))dn(s)} is V-

[a,b]
Bartle integrable on Cla,b] and for E € B(R),
[(Ba)- exp{ [  0(s,x(5)) dn(s)} dVp(x)(E)
Cla,b) [a,b]
- [1c
) D D=
m=0go+-+qni1=m H qp! J1+ - +in=dnt1
p=0
nJi
/A [ oLy 00 LXT (511,80, YONIE ([T [T 10511, 8m)
i=1j=

dn+1 ;j] veenrdn

Moreover,

|(Ba)- - exp{ - 6(s, x(5)) dn(s)} dV,(x)|(R) < 4|p|(R)[exp{|| 6 lly;00,1:n}] -

Here, fork=2,3,...,n,

Ly = Mo,y © STk‘Sk,jk ° M"(sk,jk) © Sxk,jk =Sk j—1 0770 Mus, ) © Ssy1 —so



and
Ly = My yn oSy, =S1,j; OMG(S:,,',)OSSL,'I =S1,jy -1 97" o My, ;) -
From Theorem 9.5, directly we deduce the following corollaries.
Corollary 9.6. In Theorem 9.5, we assume that n = u, an arbitrary continuous measure on

[a,b]. Then for E in B(R)

[(Ba)- / exp{ 6(s, x(s)) dn(s)} dVy(0)I(E)
Cla,b] [a,b]

= Z [(St—sm OMG(sm) O--- OSSz—Sl OMH(S]))(T(SUQD’ 00 = 1))](E) d(Hﬂ)(sl 1825 .- asm)a
=0 A

i=1
where Ny, = {(s1,52,...,5m) €[0,£]" |0 <s1 <s2 <-+- <5 <1 }.

Corollary 9.7. In Theorem 9.5, we assume thatn=v = Z:=o Cp0r,, a discrete measure on
[a, b] with finite support. Then for E € B(R),

[(Ba)- / exp{ 6(s,x(s)) dn(s)} dV,(x))(E)
Cla,b] [a,b]

n
o [1cy
=> X =
n
m=0go++qn=m [T gp!
p=0
[(Mg(Tn)q" OSTn —Tp—1 O OSTZ -7 OMO(Tl)ql )(T(Tl » P, 9(0’ )qO))](E)

Corollary 9.8. In Theorem 9.5, we assume that ¢, = 0. Then for E in B(R),

[(Ba)- / exp{ |  6(s,x(s)) dn(s)} dVp(0)I(E)
Cla,b] [a,b)

n—1 4p
H Cp

o0
=X X 5 X
N n—1 AL
m=0qo~+---+qn=m qu!j1+"'+jn=qn anijyvedn
p=0

[((St—s, ;, © Mo, ;)0 085, —1,_)OLn—10---0L1)

nJi
(T (s1,1,,6(0,)P)(E) d(_n1 _Hlll)(ﬂ,l yeeeySnju)e
i=1j=

§10. A Volterra Integral Equation for the Measure-Valued Feynman-Kac Formula

In this section, we prove that the equality in Theorem 9.5, satisfies a suitable Volterra integral

equation.

7
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Throughout this section, leta=0=10< 11 < <71 =t < t = b and let n be a Borel
measure on [O,}:] such that n = u+ v where u is the continuous part of 7 and v = Z;=0 Cplz,
further let 6 € L, Let

00,15m°

u(t') = (Ba)- / exp{ O(s, x(s)) dn(s)} dV,(x)
Cl[o,t"1 [0,/1
forr <t' <T.

The following theorem is the counterpart for the measure-valued measure V,, of the integral
equation for the Feynman-Kac formula with Lebesgue-Stieljes measure, obtained by Lapidus
in [23, 24, 25] and for the Feynman-Kac formula with an operator-valued measure, obtained by

Kluvanek in [20].

Theorem 10.1 (The Measure-Valued Feynman-Kac Formula). Fort <t' <t, u(t') satisfies
a Volterra integral equation, that is,

u(t') = Sp_,(u()) + (Bo)- 4 =0 Mace)uls) dp(s) .
(#d

Corollary 10.2. Under the assumptions in Corollary 9.6, for 0 < t' <t, u(t') satisfies a
Volterra integral equation, that is,

ut') = Sy(p)+ (Bo)- o ](S,/_soMa(s))(u(s)) du(s) .
€

Corollary 10.3. Under the assumptions in Corollary 9.7, for 0 < t' <1,

- 1 e
ut) = Z Z p:O

m=0qo+-+gn=m [ ] gqp!
p=0

[St’ —t© Mo(‘l'n)q" o STn —Tp—1 0::-0 ST2 -7 o MG(T] )i ](T(Tl P 0(07 .)qO))’
u(t’) = Sy _(u(@)),

and

(Bo)—- (Syr —s 0 My(5))(u(s)) du(s) =0, a zero operator.
(']

§11. The Dobrakov integral on the analogue of Wiener space

In this section, we will treat the theory of Dobrakov integral over Cla, b]. For B € B(Cla, b)),
let V(B): M(R) — M(R) with [V(B)](y) = V,,(B). Then V(B) is a bounded linear operator on
M(R). From [37], we can check that the following facts.
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Lemma 11.1. For ug € R, let P,y = {x € Cla,b]|x(a) = up}. Then V(B,,) = 1.

Theorem 11.2. Let F be a subset of R and let P(F) = {x € Cla,b]|x(0) belongs to F}. Then
F is finite if and only if V(P(F)) is finite if and only if P(F) is integrable.

Using Theorem 1.3, we have the following theorem.

Theorem 11.3. V is an operator-valued measure countably additive in the strong operator
topology but is not an operator-valued measure countably additive in the uniform operator

topology.

Theorem 11.4. M(R) is not a weakly complete Banach space i.e., there is a subspace of
M(R) which is isomorphic to the space cy.

Theorem 11.5. If F is a finite subset of R, then V is continuous on Py(F).

Lemma 11.6. Let the semivariation i be continuous on an integrable set, let A be an inte-
grable set and let f be a bounded strongly function. Then the function f - x » integrable.

Theorem 11.7 (The Wiener Integral Formula for Operator-Valued Measure). Let F =
{ur,uz,...,un} and let a =19 < t) < --- < t, = b be given. Suppose H is a function from
P(F) into M(R) such that H(x) = 6xayhx(a)(¥(t1),x(t2),. .., x(t,)) and hy, (k=1,2,...,n) are
bounded measurable functions on R". Then the Dobrakov integral f P(F) H(x)dV(x) exists and
the following equality holds.

[| H®AV®](E)
P(F)

/ / huk(vla027 . )
Rr—1

Y 1
exp{—5 Z Ev—;l%}exp{ 3 (—UL'—}dmL(vl) -dmp(vn_1)]dmy(vs)
25

= n
I1V27G@ —16_1) k=1
i=1

for all Borel subset E of R.
Example 11.8. Let 7 =2 and let F = {3,5}. Let H(x) = 6,0 exp{—x(1)*}. Then for E €
B(R),

-3
[ Hx)dV(X)I(E) = exp{——(u2 - l)z}duz + /exp{——(u2 - —)2}du2

P(E) 2\/_

§12. The Operational Calculus for a Measure-Valued Dyson Series

In this section, we investigate Feynman’s operational calculus for a measure-valued Dyson
series [35]. Throughout this section, let #; and #, be two real numbers with 0 < #; < ; and let
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¢ € M(R). Let X%*: Cla,b] — R be a function with X**(y) = y(b) for a < b. For E € B(R)
and for B € B(Cla,b]), V&'*(B) = w (BN X% (E)).

Theorem 12.1. Let (s0,51,52, - - ,Smin) E R withO<so <51 <+  <Sm=1 <Smy1 <
o+ < Smyn = tp. Let fi and f, be two complex-valued Borel measurable functions on R™t1 gnd

R", respectively such that

Si(uo,uy, ... um)W(m+1;(50,51,---,5m); U0, UL, - - - , Um)
m
is || x [] my-integrable on R™*! and
j=1
Sfiluo,uiy. .. um)fo(Ums1,- - s min)W(im+n+1;(50,81,. .., Smtn+1); U0, U1, . . ., Um+n)

m+n
is |¢| x [[ my-integrable on R™*"*1, Then

j=1

Fi(x) = fi(x(s0), x(s1); . . ., X(Sm))
is V"' -Bartle integrable on C[0,1,],
F(x) = fi(x(s0),X(51), - -, X(5m)) f2((Sm41); - - - s X(Smtn))
is Vo"2-Bartle integrable on C[0,t] and
F(x) = f2(x(sm+1); - - s X(Sm+n))

is Vé,‘ "2_Bartle integrable on Clt1,t;), where
B(E) = [(Ba)- / Fi()dv ()I(E)
C[0,41)

for E € B(R). Moreover,
(Ba)- F(x)dV"2(x) = (Ba)- / FB(x)advii(x).
Clo,1,) Clty 12

Remark. Let ¢ € M(R), let P;: C[0,7;] — C[0,#;] be a function with [Py (x)](s) = x(s) for
0<s<t and let P,: C[0,5;] — C[t1,t2] be a function with [P (x)](s) = x(s) for t; < s < 17.
Then by Theorem 12.1, V,2(1) = V3"2(Po(D)) for I € T where ¢ = V"' (Py(D)). But it is not
true always that V,"2(B) = V;"2(Py(B)) for B € B(CI0,12]) where $ = V,"" (Pi(B)). Because,
putting ¢ = 8p, 21 = 1, 1 = 2 and B = {x € C[0, ;]| either x(1) > 0 and x(2) > 0 or x(1) < 0 and

1

x(2) < 0 holds}, B € B(C[0,2]), [VO*(B)I(R) = > Vo (PU(B)) = V' (CI0,1]) = S1(éo), the
standard normal distribution, and

Ve (PaBNIR) = [51 0 S1(0)I(R) = [S2(50)I(R) = 1.



Here, we establish the operational calculus for a measure-valued Dyson series, the following

theorem in this note.

Theorem 12.2. Under the assumptions in the above theorem, let g(z) = exp(z) and 1 =
MU+ Vv a complex-valued Borel measure on [0,t;] such that y is a continuous part of n and
V=Z’;:(’;Cp61-p where 0 =10 <171 < < Tp=4 < Tp1 < < Tmyn = b and cp (p =

0,1,...,m+n) are complex numbers. Then exp( 0(s, x(s))dn(s)), exp( 0(s, x(s5))dn(s))
(0,41 (11,821

and exp( 0(s, x(s))dn(s)) are all Vg h é,‘ 2_ and Vg 2_Bartle integrable of x on C[0,11),
[0,5]
Clt1,2] and C[0,1,], respectively, where

o=@ exp([  dsxNmNVI)
C[0,4;] [0,41]

Moreover,

(Ba)- / exp( | 6(s,x(s))dn(s))aV, " (x)
Cl0,t5] [0,55]

— (Ba)- / exp( [ 8(s,x(s))dn(s)dV 2 (x).
C[Il ,t2] (tl ,t2]

Remark. (a) Let 8 be a constant function on [0,7,] x R, say 8(s,u) = ¢, let p be the Lebesgue
measure on [0,7;] and let ¢ = §p. Then

/ exp( 0(s,X(S))dU(S))dV£ 1 (x) = exp(ct1)S;, (60) = @
Cl0,11] (0,411
and
/ exp( [ 8(s,x(s)dn(s)dV, " (x)
C[tl vt2] [tl 1’2]

=/ exp( [ 6(s,x(s))dn(s))dV,"2(x),
Cl0,1;] (0,51

so, a formula, given in Theorem 12.2, holds.
(b) Taking g(z) = zin (a)

/ g([  6ls,x(s)dn()dVIN () = cti$,, (60) = ¥
Cl0,4] [0,1]
and

/ g(| 85, x()dn())dV,}"*(x) = Pi(t2 — 1)1, (d0)-
Cl 1] (1,61

Since / | g( 6(s,x(s))dn(s))dV£"2(x) = chS:,(60) a formula, given in Theorem 12.2,
Clon]  J0,5]

doesn’t hold for the general function g.
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§13. Fourier-Feynman Transform on Analogue of Wiener Space

In this section, we will develop the theories of fourier-Feynman transform on analogue of
Wiener space. First of all, we will establish the existence theorem for our transform. Moreover,
we will find the properties of it. In developing our theories, the rotation theorem is key role, so
we assume that a measure ¢ has the Radon-Nikodym derivative with respect to the Lebesgue

. d ...
measure having a form d—(p(x) = Ae ~ax? where A, a are two positive real numbers.
mp

Lemma 13.1. For a non-zero complex number A with Re A > 0 and for f € L*(R"*1), define

n+l

ﬂ 4 n 32
g(vo,vl,-.-,vn)=(E)T/R"'/Rf(“o,ul,-”,un)e 22500 dmy (ug) - - - dmy (up),

then g € L*(R") and ||gll2 < || fll2-

Lemma 13.2. For 1 > p > 2 and all non-zero real number q, if Fi & F,, then the existence
of Tq(p )(Fl) assure the existence of Tq(p )(Fz), and Tq(p )(Fl) ~ 7},(" )(Fz).

Theorem 13.3. Fora partitiona=1t <t; < --- <t, = b, let F(x) = f(x(t0),x(t1),...,x(ts))

an anwA

be in A,. Then for each y € Cla,b) and for all complex numbers A withRe A > 0, / F(x+
Cla,b]
Y)dwy(x) exists. Moreover,
an anwA
(13.1) / F(x+y)dwy(x)
Cla,b]
ntl M 1 [ °
=AAT [J] 2n(tj —t;-1)] 7/ / Sfo,v1,...,0n)
j=1 —o0 —00
_asn (wj—vj =00 )N 2 )
et T e~ =Y gy (vy) - dmy (v1 )dmy (vo).-

Moreover, let h(y(to), y(t1), - - - ,¥(tn); A) be the right side in (13.1), then

I, 0. 5 Dl <Ay T 1

and h(wp, w1, ..., wn; d) is analytic of A.

Theorem 13.4. Let f € L*>(R"!) and let q be a non-zero real number. For a partition

a=te<th <--<ty,=b,define
(13.2) 8o, v1,---,Un)
4 i 1] 200~ )]'%/w /oof(u R

= ——(— i—1tli_ Qs ULy ey

\/ﬂ ? j=1 d - —00 -0 "

igz”._l [(“j—“j—!)_.(”j_ j_l)]Z . ( - )2
e* 7= Tl e' 17" dmy (uy) - - - dmp (w1 )dmy(uo).
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Then g is in L>(R"*Y), and for all ug,uy, ... ,u,
(13.3) f(uo,ul,...,un)
\/ia ntl 7 1 [ >
=—=(g) 7 [ 2ﬂ(f'—t'—1)]—7/ / (v0,01,- -+ ,Un)
AVm jlz—Il Y —o0 ——ocg

i [(uj—uj_1)—(vj—vj_1)]2
-S43 — — )2
e E R T T 0= gy 1 iy (o1 00),

and

4 2
(13.4) 1712 = = llgll.

Theorem 13.5. For a nonzero real number q and a partitiona =19 <t; < --- < t, = b, if
F(x) = f(x(t),...,x(t,)) € A, then G = Ty(F) exists and G(y) = g(¥(t0), - . ., ¥(ta)) € A, where

(135) g(W(),W],-.-,Wn)
2L (—ig) [T 220t — ;00174 i R )
= ——(—1i w(t;, —ti_ im vo,V1,-..,0
\/277 d j=1 / /=1 B—oo Dg Dpg 0 "
ig s~n [(vj—vj_l)—(wj—wj_])]z )
e’ 21 1j=tj—1 /9% —wo)® dmy(vy)---dmy(v))dmp(vp).
Moreover,
(13.6) 1Tyl <4vad|gla.
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