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1 Introduction

This note is a survey of the works [9, 10] jointly with R. Farwig. We consider a viscous
incompressible fluid in 3-dimensional unbounded domains 2. The motion of such a fluid
is governed by the Navier-Stokes equations:

Ou—Au+u-Vu+Vp = f, teR, ze€q,

(N-S) divu = 0, teR, ze€Q,
ulaﬂ = 07 te R)

where u = (u!(z,t), u?(z,t),u’(z,t)) and p = p(z,t) denote the velocity vector and the
pressure, respectively, of the fluid at the point (z,t) € Q x R. Here f is a given external
force. It is known that if f is almost periodic-in-time and small in some sense, then
there exists a small almost periodic-in-time solution to (N-S). In [9, 10], we consider the
uniqueness of almost and backward asymptotically almost periodic-in-time solutions to
(N-S).

In case where the domain 2 is bounded, the problem of existence of time-periodic
solutions was considered by several authors [34, 43, 16, 37, 32, 31, 40]. Maremonti [27]
was the first to prove the existence of time-periodic regular solutions to (N-S) in unbounded
domains. He showed that if Q = R® and if f(¢) is time periodic and small in some sense,
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then there exists a unique time-periodic solution u to (N-S) in the class
(1.1) {ue CR; L7); sup [lu(®)lls <7, sup IVu(t)ll2 < oo},

where 7 is a small number. The same problem in R3 is considered in [28]. Kozono-Nakao
[19] showed that if @ = R®, R, n > 3, or @ C R, n > 4, is an exterior domain, and if f (t)
is time periodic and small in some sense, then there exists a unique time-periodic solution
u to (N-S) in the class {u € C(R;L%); sup, ||u(t)|l. + sup, [Vu(t)lly < 7} (2 <7 <n,
% < @ < n), where + is a small number depending on Q,r and q. Kozono-Nakao used the
following integral equation

t

u(t) = /—t e_(t")APf(s)ds—/ e~ t=AP(y . Vu)(s)ds.

oo —00

In [38], the present author proved the stability of Kozono-Nakao’s periodic solutions.
Kubo [24] proved the same result as [19] in the case where  C R™, n > 3, is a perturbed
half space or an aperture domain. While he assumed a null flux condition in case of an
aperture domain, Crispo-Maremonti [4] proved existence of unique time-periodic solutions
for given time-periodic fluxes.

With respect to 3-dimensional exterior domains, we mention the results given by
Maremonti-Padula [29], Salvi [33], Yamazaki [42] and Galdi-Sohr [12]. Maremonti-Padula
[29] showed that for any 2 C R3, if f(¢) is time-periodic and can be expressed as f = V- F,
where f,F € C(R;L?), then there exists at least one time-periodic weak solution u
to (N-S) in the class Vu € L2 (R;L?). Moreover, they showed under some symmetry
assumptions on € and on f that there exists a unique time-periodic solution u to (N-S)
in the class defined in (1.1). In the case where Q is an exterior domain with a periodically
moving boundary, Salvi [33] proved the existence of weak time-periodic solutions and of a
strong periodic solution. In the case where Q C R", n > 3, is an exterior domain, R", or
R?, Yamazaki [42] showed that if f = V- F, F € BUC(R; L"/>*) and sup, || F'(2)]| 1~/
is small, then there exists a unique mild solution u to (N-S) in the class

{u € C(R; L™™); sup |lu(®)|lne < 7},

where v = v(Q) is sufficiently small. In particular, he shows that if f is time-periodic
or almost periodic-in-time, then the mild solution is time-periodic or almost periodic-in-
time. In the case of a 3-dimensional exterior domain, Galdi-Sohr [12] proved the existence
of a small periodic strong solution u in C(R; L™(R?)), r > 3, satisfying the condition that



sup(l + |z|)|u(z,t)| is small, under the assumption that f = div F is periodic and small
z,l

in some function spaces. Moreover, they proved the uniqueness of such solutions in
the larger class of all periodic weak solutions v with Vv € L?(0,T; L?), satisfying the
energy inequality fOT [Vvll2dr < — fOT(F, Vv) dr and mild integrability conditions on the
corresponding pressure; here T is a period of f. Another type of uniqueness theorem for
time-periodic L3 -solution was given in [39] without assuming the energy inequality. In
the case of an exterior domain Q C R3, the whole space R3, the halfspace R3, a perturbed
halfspace, or an aperture domain, it was shown in [39] that if 4 and v are time-periodic
L3-solutions in L2, (R; L5?) for the same force f, and if one of them is small, then u = v.

On the other hand, thus far, uniqueness of almost periodic-in-time solutions in un-
bounded domains is only known for a small almost periodic-in-time L3 -solution within
the class of solutions which have sufficiently small L*®(L? )-norm; i.e., if u and v are L3-
solutions for the same force f, and if both of them are small, then u = v, see [42]. In [9)],
we establish a new uniqueness theorem for almost periodic-in-time solutions. We show

that if v and v are almost periodic-in-time solutions in
C(R; L,,) N Lioo(R; L9?)
for the same force f, and if one of them is small, then u = v. Moreover, in [10] we show
a similar uniqueness theorem for backward almost periodic solutions.
2 Preliminaries and Results
Throughout this paper we impose the following assumption on the domain.

Assumption 1 Q C R3 is an exterior domain, the half-space Ri’_, the whole space
R3, a perturbed half-space, or an aperture domain with Q) € C*.

For the definitions of perturbed half-spaces and aperture domains, see Kubo-Shibata
[25] and Farwig-Sohr [6, 7).

Before stating our results, we introduce some notation and function spaces. Let

5o () = C§S, denote the set of all C™-real vector functions ¢ = (¢,---,¢") with
compact support in €2 such that div ¢ = 0. Similarly Cf’, is defined. Then L, is the
closure of Cg%, with respect to the L™-norm | - ||,. The symbol (-,-) denotes the L2 inner

product and the duality pairing between L™ and L™, where 1/r + 1/r' = 1. Concern-
ing Sobolev spaces we use the notations W*?(Q) and WF(Q), k € N, 1 < p,q < oo.
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Note that very often we will simply write L and W*® instead of L"(£2) and W*?(Q),
respectively. Let L”4(f), 1 < p,q < 0o, denote the Lorentz spaces and || - || 4 denote the
norm of L»9(2). We note that L”* is equivalent to the weak-L? space (L%,) and LPP is
equivalent to LP. Finally,

Lzzoc(K L6’2) ={g€ leoc(R; L6’2) ; Sltlp ”g”Lz(t,t+1;L5’2) < oo}

denotes the space of uniformly locally integrable L2-function on R with values in L%?(Q2).

For a Banach space B, let B* be the dual space of B. Let X be a Banach space of
functions on Q such that L2 N X is dense in X; if g € L2N X* and x-< g,¢ >x=(9,9)
for all ¢ € L2 N X, then we denote x-< -, >x by (-,) for simplicity.

In this paper, we denote by C various constants. In particular, C = C(%,--- ,*)
denotes a constant depending only on the quantities appearing in the parentheses.

Let us recall the Helmholtz decomposition: L™(Q) = L. & G, (1 < r < 00), where
G, ={Vpe L";p € L} ()}, see Fujiwara-Morimoto [11], Miyakawa, [30], Simader-Sohr
[35], Borchers-Miyakawa (2], and Farwig-Sohr [6, 8]; P, denotes the projection operator
from L" onto L7, along G,. The Stokes operator A, on L, is defined by A, = —P.A with
domain D(A,) = W2" N W,"" N L7. 1t is known that

(L7)* (the dual space of L) = L7, A (the adjoint operator of 4,) = A,

where 1/7 4+ 1/r" = 1. It is shown by Giga [13], Giga-Sohr [14], Borchers-Miyakawa [2]
and Farwig-Sohr [6, 8] that —A, generates a uniformly bounded holomorphic semigroup
{e~tAr:t > 0} of class Cp in L7. Moreover, it is found that

(2.1) llul|war < C|I(1 + Ar)ull, for all u € D(A,)

with a constant C = C(r,n,); see e.g. [15, Lemma 2.8].

In this paper, Wol; denotes the closure of D(A,) with respect to the norm ||@||y1.- =
V||, where V¢ = (0¢*/0z;); j=1,.. »- Its dual space (Wolf)* is equipped with the norm
”‘ﬁ“(v‘vol;j)* = sup {Lﬁ—%’% ; 0 W(}E}

Since Pu = Pyu for all w € L"NL? (1 < r,q¢ < o0) and since A,u = Agu for all
u € D(A,) N D(A,), for simplicity, we shall abbreviate P.u, Pyu as Pu for u € L" N L?
and A,u, Aqu as Au for u € D(A,) N D(Ay), respectively. Finally L2* denotes the space
PL%>(Q).

Following Kozono-Ogawa [20], we define mild L3*-solutions to (N-S).



Definition 1. Let T € (—o00,00] and f € L} (—o00,T; D(Ap)* + D(A,)*) for some 1 <

P,q < 00. A function v € Cy((—00,T); L>®) is called a mild L>*-solution to (N-S) on
(—00,T) if v satisfies

[4
(2.2) (v(t),%) = (6"(t"s)Av(8),¢)+/ ((v-Ve D4y, 0)(1)+ < f(7),e ¢4y > Y dr
forally € L¥* and all —co <t <s<T.
Next, we introduce the definitions of almost and backward asymptotically almost peri-

odic functions with values in a Banach space B; see e.g. [5, Ch. VI, [1, Sect. 4.7].

Definition 2. (i) A function f € BUC(R; B) is called an almost periodic function in B
on R if for all € > 0 there exists L = L(e) > 0 with the following property: For all a € R,
there exists T € [a,a + L] such that

sup Ift+7)—f@®)lz<e

Let us denote by AP(R; B) the set of all almost periodic functions in B on R.

(i) Let T < oo and f € BUC((—o0,T); B). Then, we call f an almost periodic
function in B on (—oco,T) if there exists a function f € AP(R;B) such that f =
f on (—o0, T).

Let AP((—o00,T); B) denote the set of all almost periodic functions in B on (—o0,T).

(i) Let T < co. A function f € BUC((—o0,T); B) is called a backward asymptoti-
cally almost periodic function on (—oo,T) if there exist f, fo € BUC((—o0,T); B) such
that

f=hHh+f fi€e AP((-0,T);B), f2€C-((—0,T);B),

where
C-((=00,T); B) := {u € BUC((—00,T); B) ; lim_|lu(t)]|5 = 0}.

Let us denote by AAP_((—o0, T); B) the set of all backward asymptotically almost periodic

functions in B on (—oo,T).
Now our main results read as follows:

Theorem 1 ([9]). Let Q satisfy Assumption 1. Then, there exists an absolute constant
d > 0 such that if u and v are almost periodic-in-time mild L3>*-solutions to (N-S) on

(—00,00) for the same external force f, if

(23) u,v € Lzzl,loc(R9 L6’2(Q)),
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and

(24) sup [|ulls.co <9,

then u = v.

Theorem 2 ([10]). Let Q satisfy Assumption 1. Then, there exists a constant §' =

§'(Q) > 0 such that if T < o0, u,v € AAP_((—00,T); L3>*®) are mild L3>*-solutions to
(N-S) on (—o0,T) for the same external force f,

(2.5) u,v € Lipe((—00,T); L*2()),

and if

(2.6) lim sup [[u(t)lls,c0 < &,
t——o00

then u =v on (—o0,T).

Remark. Our result is applicable to stationary solutions in L2. It is known that
if the external force f = f(z) is steady and small in some functional space, then there
exists a small steady solution u(z) satisfying (2.5) and (2.6), see e.g. [21]. Theorem 2
shows that if f is a small steady force, the only possible backward asymptotically almost
periodic L>*-solution with (2.5) is the steady state one.

Before coming to the main lemma of the proof, Lemma 2.3 below, let us recall several
properties of almost periodic functions and of the Stokes semigroup. It is straightforward

to see that Definition 1 on almost periodic functions is equivalent to the following one:

Proposition 2.1. f € C(R;B) is almost periodic in B if and only if for all ¢ > 0
there ezists | = l(€) > 0 with the following property: For all k € Z, there exists Tex €
[—(k + 1)1, —kl} such that

sup I f(t+T) ~ f(t)llB < e

Proposition 2.2. Assume that u,v are almost periodic in L>* and F is almost periodic
in L8/5(Q).



(i) For all € > 0, there exists | = l(e,u,v, F) > 0 with the following property: For all

k € Z, there exists Ty, = Tex(€, kyu,v, F) € [—(k + 1), —kl] such that
sup [|u(t + Tex) — u(t)[l3.00 < 6,
teR
(2.7) sup [|[v(t + Tex) — v(t)]l3,00 < €,
teR
Stllng) HF(t + Tek) — F(t)||6/5 S €.
€

(i) w = u — v is almost periodic in L>*.

For the proof, see [5, Theorems 6.9 and 6.7].

Lemma 2.1 ([17],[41],[14],[15],[2],[3],[42],[25],[23]). For allt > 0 anda € L2, the following

inequalities are satisfied:

(2.8) lle*allgr < Ct7 367 D||aflpos for 1 < p < g < oo,
3

(2.9) Ve *all, < Ct7373G-D|l|l, forl<p<q<3,

where C = C(p, q).
For all ¢ € Wy?2 it holds that

(2.10) Ve ™ gll2 < |Voll2, ¢>0,

and for ¢ € L2

(2.11) 2 / Ve 4|2 dr = |16
0

For the proof of (2.10), (2.11) see e.g. [39, Proposition 2.1].

Lemma 2.2 ([22]). Let1 < p,q < oo with1/r := 1/p+1/q < 1. Then, for all f € LP>(Q)

and g € L%?(Q), it holds that

(2.12) IS - gllr2 < Cllfllpcollglla.2;

where C = C(p,q).
For u € Wy () it holds that

(2.13) [ulls2 < ClVulls,

where C is an absolute constant.
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Finally, we come to the key lemma of the proof of uniqueness. If u and v are solutions
to the Navier-Stokes equations, then w := u — v satisfies

div w = 0, teR, z€,

Ow—Aw+w-Vu+v-Vw+ Vp =0, teR, z €9,
)
w|39=0.

Hence, if Q is a bounded domain and if u,v belong to the Leray-Hopf class, under the

hypotheses of Theorem 1, the usual energy method and the Poincaré inequality yield

lw®)2 < e @ )||lw(s)||3 for t > s. Consequently, in the case of bounded domains,

Theorem 1 is obvious. In the case where 2 is an unbounded domain, u and v do not belong

to the energy class in general and the Poincaré inequality does not hold in general. Hence,

since we cannot use the energy method, we will use the argument of Lions-Masmoudi [26].
We recall the dual equations of the above system (U).

3
—Op— AP - wVY —v-VYp+Vr = F, t<0,z€,

(D)
V¢ =0, t<0, €,
Ylaa = 0.

In the following key lemma we construct a sequence of weak solutions of (D) having a
property similar to that of almost periodic functions.

Lemma 2.3 ([9]). Let u and v be almost periodic in L>* and L3, respectively. Assume
that F is almost periodic-in-time in L8/3(Q)NL*(R) and sup ||ull300 < 8. Then, for alle €
t

(0, 6], there exists a constantl = l(¢) > 1 with the following property: For allk =1,2,---,
there exist Tu, € [—(k+ 1)I, —kl] and generalized weak solutions Yex € L*(3T ek, 0; Wol, 3) of
(D) in the sense

(2.14)
/ { — (9t + Tu), Ye(t + Tex)) + (9(2), Vi (2)) } dt

/7:1: /+Tk {(dtg wek + (Vg, vwek) - (g, Zu"V’(ﬂ:k) (g, v- v'l/}ek) (g, F)} drdt
for all g € L2 (R; D(Az) N (Wy2)*) with 49 € L (R; L2 N (WE2)). Moreover,

1 0
(2.15) 1 / Va2 dr < C(1 +sup [|F()[12/5),
|Tek| 3T.) t



1 0
] o, 1994 T) = Vo)l b < Ce(sup | FB)lys + 1),

where C is an absolute constant. Finally, (2.7) holds for those Ty, and for u,v, F.

(2.16)

We note that this lemma does not require the divergence-free condition on u.

3 Outline of the proof of Theorem 1

The proof is based on the idea given by Lions-Masmoudi [26] whereby the uniqueness
problem is reduced to the solvability of the dual equation. In order to prove Theorem 1,

we establish the following two lemmata.

Lemma 3.1 ([9]). Let w be an almost periodic function in L¥>*(S2). Assume that for
any almost periodic function F in L?(Q) N L¥5(Q) and any number € > 0 there ezists a

sequence {Te }52; such that

(3.1) T — —00 as k — oo,
0yt
(3.2) lim sup —1—2 / / (w(r), F(7)) drdt < Ce,
k—oo0 lﬂkl Ter Jt+Tek

where C' is independent of k and e. Then w =0 in Q x R.

Lemma 3.2. Let Q,u,v satisfy the hypotheses of Theorem 1, F be an arbitrary almost
periodic function in L2(Q) N LY5(Q) and let Ty, = T (u,v, F) € [—(k+ 1)I,—kl], k €N,
be the negative numbers given in Lemma 2.8. Then w := u — v satisfies (3.2) for all
e€ (0,4].

Outline of the proof of Lemma 3.2. Looking at the system (U) in Section 2, for ¢ > 3T
let

(3.3) w(t) = wo(t) + wi(t),
(3.4) wo(t) = e C-3TR)Ay(3T,,)

(3.5) (wi(t),¢) = t {(w- Ve =4 ) + (v- Ve "4, w)} dr for ¢ € C.
3T

We note that (3.5) holds for all ¢ € L2, and from (2.10) we conclude that |(w1(t), ¢)| <
C(u,v)(t — 3Tw)Y?|| V||, since w ® u,v ® w € L?(3Ti,0; L?) by Lemma 2.2. Hence,
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w; € L®(3T, 0

integral means,

£ £ e rar

(3.6) = 750 ng(wo(f), F(7)) drdt + ]5,0 ]ﬁT (wi(7), F(7)) drdt

=II() + Il.

By Lemma 2.1, we have

[ Fepar| < [ et AuE T P)lles dr
t+ Tk

t+Tex
< C|Twl** sup lw(7)l[3,00 suP | F(7)lg/5-

Hence

(3.7

“0'—\7[ 7[ (wo(r), F(r)) drdt| < CITua|™* sup [[w(r) o 5up | () o
zk +Tck

converges to 0 as k — oo since T, — —o0.
In order to estimate I;, we substitute w; into equation (2.14) for g. For details see [9].

Then, we obtain

(3.8)

/ / (F,w,)drdt
ek t+Tek

/ (w1 (t + Tek), Yer(t + Te)) — (wi(2), per()) dt

/ / wo-V¢ek,u)|det+/ / |(v - Vpek, wo)| drdt
Ter Jt+Tex Ter Jt+Tek

+| / (wn(t+ Ta), Yeslt + To) = vialt)) |+ | [ (wn(t + Tot) = wa(0), Yun(8)
Ter Tex

=N+ o+ J3+ Js.

By Lemma 2.1, we have

(3.9)

bt |1;k|2J1 =0

166

: (Wolf)*) Let t > Tox(> 3T.) and let us write, using the notation § for
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and

(3.10) lim —

= 0.
k—o0 Iﬂkl2J2

By the definition (3.5) of wy, (2.10), (2.7) (2.16), (2.15) we can show

uloc uloc

1
T2 <C(sup [wllsollullsz,, mizoz) + 5P [0acolwllzz, mizo2)

1 10
(3.1) x o [ IVt + Tet) = a0
|Te| Jr.,
<Cek.
and
(3.12) lim sup ——1—J4 < Ce.

koo | Ter|?

For details, see [9]. Finally, from (3.8), (3.9), (3.10), (3.11) and (3.12), we obtain

limsup |I;| = limsup
k—oo k—o0

750 ]{;Tk (wn (1), F(r)) drdt| < Ce.

This and (3.7) yield the assertion (3.2), which proves Lemma 3.2. O

Obviously, Lemmata 3.1 and 3.2 complete the proof of Theorem 1.
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