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Abstract

We consider the initial value problems for the incompressible Euler equations with non-
decaying initial velocity like a trigonometric function. We prove that if the initial velocity
is real analytic then the solution is also real analytic with respect to spatial variables. Fur-
thermore, we shall establish the lower bound for the size of the radius of convergence of
Taylor’s expansion.

1 Introduction

In this note, we consider the initial value problems for the Euler equations in the whole space
R™ with n > 2, describing the motion of perfect incompressible fluids,

%%+(u-V)u+Vp=O in R* x (0,7),
divu =0 inR" x (0, T), (E)
u(z, 0) = uo(z) in R",
where u = u(z,t) = (u'(z,t),...,u"(z,t)) denotes the unknown velocity fields, and p =
p(z,t) denotes the unknown pressure of the fluids, while up = uo(z) = (uj(z),...,ug(z))

denotes the given initial velocity field satisfying the compatibility condition div ug = 0.

This note is a survey of our paper [14], and the main purpose of this note is to prove the
propagation properties of the real analyticity with respect to spatial variables for the solution
to (E) with non-decaying initial velocity. For the local-in-time existence and uniqueness of
smooth solutions to (E), Kato [8] proved that for the given initial velocity vy € H™(R™)" with
divug = 0and m > n/2 + 1, there exists a T' = T'(||uo||z=) > O such that the Euler equation
(E) possesses a unique solution u in the class C([0, T]); H™(R™))". Kato and Ponce [9] extended
this result to the Sobolev spaces of the fractional order W*?(R") := (1 — A)~*/2LP(R™) for
s >n/p+1withl < p < oco. Later, Chae [5] [6] obtained a local-in-time well-posedness for
(E) in the Triebel-Lizorkin spaces F;; (R") for s > n/p+1with1 < p, ¢ < 00, and in the Besov
spaces By ((R") fors > n/p+1,1<p<oo,l1<g<wors=n/p+1,1<p<oo,qg=1,
respectively. Pak and Park [13] proved the local well-posedness for (E) in the Besov space
BL,(R").



For the real analyticity of the solution to (E) in the framework of the Sobolev spaces
H™(R™), Alinhac and Métivier [2] proved that Kato’s solution is real analytic in R" if the
initial velocity is real analytic. See also Bardos, Benachour and Zerner [3], Le Bail [11] and
Levermore and Oliver [12]. Kukavica and Vicol [10] considered the vorticity equations for (E)
in H*(T3)3 with s > 7/2 and proved the propagation properties of the real analyticity. In par-
ticular, they improved the estimate for the size of the radius of the convergence of the Taylor
expansion for the solution to the vorticity equations.

In this note, we prove the propagation of the analyticity for the solution to (E) constructed
by Pak and Park [13] in the framework of the Besov space B ;(R"). Note that the Besov space
BL, ;(R™) contains some non-decaying functions at space infinity, for example, the trigonomet-
ric function e with the wave vector a € R”. In particular, we give an improvement for the
estimate for the size of the radius of convergence of Taylor’s expansion.

Before stating our result about the analyticity, we set some notation and function spaces. Let
& (R™) be the Schwartz class of all rapidly decreasing functions, and let .#/(R") be the space
of all tempered distributions. We first recall the definition of the Littlewood-Paley operators.
Let ® and ¢ be the functions in .#(R") satisfying the following properties :

supp @ C {¢eRr™ | €] < 5/6}, supppcC {€€R” | 3/5< /€1 <5/3},

O+ FE) =1 £eR,

j=0

where @, () := 2"p(27z) and f denotes the Fourier transform of f € .%(R") on R". Given
f € F'(R™), we denote

D x f j ::'_17
Ajf =S @ixf =0, Suf =Y 0;f kel
0 J< =2 ik

where * denotes the convolution operator. Then, we define the Besov spaces Bj (R") by the
following definition.

Definition 1.1. For s € Rand 1 < p, ¢ < oo, the Besov space B (R") is defined to be the set
of all tempered distributions f € #/(R"™) such that the following norm is finite :

15, = ||{2 183 £ 110}
Let Ny := N U {0}, where N is the set of all positive integers. For k € Ny, put

k!
S T

@’

where c is a positive constant such that one has

(&
Z (ﬁ) migMia—g| < Mo & € NG,

0<B<a

o n n
> (ﬁ) Mg -1Mya—g+1 < |almie  a € Ng\ {0}".
0< 8L
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For example, it suffices to take ¢ < 1/16. For the detail, see Kahane [7] and Alinhac and
Métivier [1].

Our result on the propagation of the analyticity now reads:
Theorem 1.2. Let ug € B, ,(R™)" be an initial velocity field satisfying divuo = 0, and
let uw € C([0,T]; By, ,(R™))" be the solution of (E). Suppose that wq is real analytic in the
Jollowing sense : there exist positive constants K and py such that

0z uollsz, , < Kopy *lmyy

for all o € N3. Then, u(-,t) is also real analytic for all t € (0,T] and satisfies the following
estimate : there exist positive constants K = K(n, Ko), L = L(n, Ky) and A\ = A(n) such that

—|01| t
||<9;”u(.,t)|[,3éo'1 <K (-’}—?) My (1 + t)max{lal—l,o} exp {/\lal/ ”U(',T)”B;,‘ldT} (1.1)
0

Jorall o € N} andt € [0, T},

Remark 1.3. (i) Since K, L and X do not depend on T, (1.1) gives a grow-rate estimate for
large time behavior of the higher order derivatives of Pak-Park’s solutions.

(ii) From (1.1), one can derive the estimate for the size of the uniform analyticity radius of
the solutions as follows :

1
o\ o t
lim inf (m—) > ELQ(I +t) Lexp {—/\/ ||u(T)||B;°1d'r}.
0 :

(o] =00 a!

Moreover, since BY, ; (R™) is continuously embedded in C" (R™) (see Triebel [15]), we have by
(1.1) that .

a —% t
liminf(“a’” rm“)”“") ”>@(1+t)*1exp{—x / ||u(T)||B;“dT}.
i .

|a}—o0 a! L

Recently, Kukavica and Vicol [10] considered the vorticity equations of (E) in H*(T?)? with
s > 7/2, and obtained the following estimate for uniform analyticity radius :

lo3 IS "_;,[ t
liminf(”a”‘ rot u(®)r ) ' >p<1+t2>-lexp{—A / nw(r)nmowr}
0

ja|—o0 al

with some p := p(r,rot up) and A = A(r). Hence our result is an improvement of the previous
analyticity-rate in the sense that (1 +#2)~! is replaced by (1 +¢) 2, and clarifies that p = po/L.

This note is organized as follows. In Section 2, we recall the key lemmas which play impor-
tant roles in our proof. In Sections 3, we present the proof of Theorems 1.2.

2 Key Lemmas

Throughout this note, we shall denote by C' the constants which may change from line to line.
In particular, C = C(-,...,-) will denote the constants which depend only on the quantities
appearing in parentheses.

In this section, we recall some key lemmas and prove a bilinear estimate in the Besov space
Bl ;(R"). We first prepare the commutator type estimates and the bilinear estimates in the
Besov space B, ;(R") for nonlinear terms of (E).
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Lemma 2.1 (Pak-Park [13]). There exists a positive constant C = C(n) such that

D2 (S VA = Dj((u- V)Pl oo < Cllullge N1l
JEZ
holds for all (u, f) € BL, ,(R™)"*! with div u = 0.

Lemma 2.2. There exists a positive constant C = C(n) such that
Ifallss, < CUIflzmlglsy , + lgllzelfllss )

holds for all f, g € By, (R™).
Proof. For the proof, we use the Bony paraproduct formula [4]. Let us decompose fg as

co J+2

fg= ZSJ sfA, g+§jsj 398+ > AifMg.

=1 k=j-2
Since supp & [p;] Nsupp F[p;] = 0 if |j — j'| > 2, we see that
supp Z [Sj-3fA;g] C {€ e R™ | 2772 < [¢] < 29%?}

and

suppg [AJfAk:g] - {§ cR” | lgl < 2max{j,k}+2},
which yield that

Ai(fg) =3 8;j(Sp-sflyg)+ Y A (Sy_sgAsf)

i'>2 j'22
137 —jl<3 13/ -31<3

+ Y > A (AyfAmg)

max{j’,j"}2j—2 |5 ~5'|<2
=1L+ L+ I. 2.1
By the Hausdorff-Young inequality and the Holder inequality, we have that

1l e C > 1Si=3fll e 1859l oo

322

13 -51<8
<Cllfllze D 1859l - 2.2)
Ij’ji?fs?»
Similarly, it holds that
152l oo < Cligllzee D 147 oo - 23)

j'z2
|37 -31<3

Moreover, we see that

IBle<C ) D 185 fllp 1459

max{j',j"}2j-2 |5 —j'|<2

| oo
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<Clighe= > 185 fll o0 24)

J'zj—4

Hence it follows from (2.1), (2.2), (2.3) and (2.4) that

Ifallsn, =D 2 18;(f)ll

j€z
<CIfllee > D 21854l e + Clgllz > 21185 flle
j=-1 j'>2 j==1 j'>2
13/ -3l1<3 l3'-31<8
+Clgllee D D Z Ay fll e
J=-1j5'2j-4
=Ji+J2+ J3 2.5)

For the estimate of J;, we have that

L<OIflle= D> 275> 27148449l Lo

k<3 j=-1

< Cllf = lgllzn . 26)

Similarly, we have for I, that
I, < Clgllz=1 s, - @.7)

Concerning the estimate of /5, we have

IL<Cligle= Y 275> 2% 18544 fll 1o

k>—4 j=-1

< Cligllz=llfllzy ;- (2.8)

Substituting (2.6), (2.7) and (2.8) into (2.5), we obtain that
I1£gllz,, < C(Ifll=llgllsy, + lgllz=llflly,)-
This completes the proof of Lemma 2.2. O
Next, we give the estimate for the gradient of pressure 7 = Vp.
Lemma 2.3 (Pak-Park [13]). There exists a positive constant C = C(n) such that
()l < Cllullay,, o]z,
holds for all u,v € B, (R")" with divu = divv = 0, where
T(w,0) = Y V(D)7 8uk0,,0) = V(=A) T div {(u- V)v}.
Jk=1

Finally, we recall the Gronwall inequality.



Lemma 2.4 (The Gronwall inequality). Let A > 0, and let f, g and h be non-negative, contin-
uous functions on |0, T| satisfying

sy <A+ [ o+ [ no)s)ds

SJorallt € [0,T). Then it holds that

t
f(t) <Aef0th(-r)dr+/ efs h(r)d‘rg(s)ds

0

Jorallt € [0,T].

3 Proof of Theorem 1.2

Proof of Theorem 1.2. Let uy satisfy the assumption of Theorem 1.2. We first remark that v €
C([0,T]; Bg, (R™M)™) forall s > 1if ug € BS,,(R™)" forall s > 1. Hence u(-,t) € C=(R™)"
for all ¢ € [0,T] by our assumption on the initial velocity uo and the embedding theorem.
Moreover, the time-interval in which the solution exists does not depend on s. Indeed, we can
choose T" such that T' > C/||uol| ., with some positive constant C depending only on n by
the blow-up criterion, and the solution u satisfies

sup [lu(t)|| g, < Colluollsy G.D
te(0,T) ' ’

with some positive constant Cyy depending only on n.

Now we discuss with the induction argument. In the case o = 0, (1.1) follows from (3.1)
with K = CyKj. Next, we consider the case |a| > 1. We first introduce some notation. For
leNand A\, L > 0, we put

Xu(t) = rlnl%glclia;‘U(t)IIB;o,l, t€[0,7],

Mi(t
Y, = Y = max sup {—L(le(t)},
Isk<liefo,) \ Mk

where |
=k u(T dr
M (t) = M;?’L(t) = ng—(k-l)(l i t)—(lc—l)e Jo llu( )“Béo,l -

The similar notaion were used in [1] and [2]. In what follows, we shall show that Yo < 2K,
for all @ € N§ with |a] > 1 when )\ and L are sufficiently large. We now consider the case
la| = 1. Let k be an integer with 1 < k < n. Taking the differential operation 8, to the first
equation of (E), we have

01(0z,u) + (Op,u - V)u+ (u - V)8p,u + O, m(u,u) = 0, 3.2)

where

Vp =7(u,u) = z": V(=A)"18,,uk0,,v7 = V(~A)div{(u- V)u}.

Jk=1
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Applying the Littlewood-Paley operator A; and adding the term (Sj_ou - V)A;(Oy,u) to the
both sides of (3.2), we have

atAj(aka) + (Sj_z’u : V)A](azku)

(8,2t V)0 (0at) — (- V)art) — Ag(Bogte- V) = A @oyr(uyw). O

Here we consider the family of trajectory flows { Z;(y, t)} defined by the solution of the ordinary
differential equations

ot
Z;(y,0) = y.

Note that Z; € C*(R" x [0, T])", and div S;_ou = 0 implies that each y — Z;(y, ) is a volume
preserving mapping from R™ onto itself. From (3.3) and (3.4), we see that

{2 Z;(y,t) = Sj-2u(Z;(y,),¥), (34

atAj(aku) + (Sj_zu . V)Aj(aka) ‘( gl; {AJ(Bwku)(ZJ(y, t), t)} y

2t)=(Z;(wi)t)

which yields that
A0 (Zi5,0,8) = A 0u 1)) = [ 85((Ouu- TN(Zi(y,5),)ds
b [ {(Srmau 9)85(0) = Ay((w- D300} (Zi(0,9), s

_/0 A (0n,m(u,uw))(Z;(y, s), s)ds.
(3.5)

Since the map y — Z;(y,t) is bijective and volume-preserving for all ¢ € [0, T}, by taking the
L*-norm with respect to y to both sides of (3.5), we have

185 Oat) e <18, Berta)lm + [ 185(Ba D))
b (S0 D)8y (000) = 85w D)3} (e ds G
N INCR ST
Multiplying both sides of (3.6) by 27 and then taking the ¢'-norm in j, we obtain that
s, < Wty + [ 1@ V)l s+ [ 1 Beur(a,)(3)ll 51, 5
b [ P S D850) - Ay((w V) 9l s

JEZ
=L+ L+ 13+ 1, 3.7

It follows from the assumption on u, that

I < Kopg'ma. (3.8)



From Lemma 2.2, we see that

B < C [ [Va(s) o= [Vu(s) 5 ds
0 (3.9)

<C [ Iy, Xi(ds,

where we used the continuous embedding B}, ;(R") < C*(R"). For the pressure term I3, it
follow from Lemma 2.3 that

B <2 [ r@uu)(6) sy ds

. (3.10)
< [ luolsy, Xals)ds.
0 .
For the estimate of I, we have from Lemma 2.1 that
t
1< C [ uls)lay, 1oueu(s) ey,
° (3.11)
<C [ hu(s)lay, Xi(s)ds.
0 :
Substituting (3.8), (3.9), (3.10) and (3.11) into (3.7), we have
t
60,0, < Kogs'ms +Cu [ a9l Xi(s)ds (3.12)
: 0 :
with some positive constant C; depending only on n. Since k € {1,...,n} is arbitrary, it
follows from (3.12) that
t
X,(8) < Kopy'm + C1 [ [uls)llng, Xi(s)ds,
0
which implies by Lemma 2.4 that
X,(t) < Kopgtmye” 0 140l 47 (3.13)
By choosing A > C, we obtain from (3.13) that
M (t) X, (t) < Koe @V MOMay dr g
my
which yields that
Y: < K. (3.14)

Next, we consider the case |a| > 2. Let o be a multi-index with || > 2. Taking the
differential operation 92 to the first equation of (E), we have

0:(0%u) + Z (a) (0Pu - V)0ePu 4 8% (u,u) = 0. (3.15)

0<B<a ﬂ
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Applying the Littlewood-Paley operator A; and adding the term (S;_ou-V)A;(05u) to the both
sides of (3.15), we have
0;A;(02u) + (Sj—2u - V)A;(07u)
= (Sy-au- V)A;(@5) — Aj((u- V)82u)

(3.16)
- 3 (5)8 (@ 90z ) - (o)
0<B<ax
Similarly to the case of |a| = 1, we have from (3.16) that
18;(07u) ()l < [148;(0zuo) | oo
t
> (Z) / |45 ((BFu- V)8z7%u) (8)]] o ds
0<B<a 0
3.17)

v 1A (02w, ) (6) | o ds
+ / 100 - V) (82) — Aj(( - 9)02)} (5)]] o ds.

Multiplying both sides of (3.17) by 27 and then taking the ¢!-norm in j, we obtain that
l6zu(®)llsy, , < 107 uollsy

5 (%) [ etu- 9z utol
0<B<a

+/ l|6"‘7r(u,u)(s)||31 ds
/22’ 1{(Sjz2u - V)A;(02u) — Aj((u- V)OZu)} (8) | 1o ds

jEZ
= .]1 + J2 + J3 + J4. (318)

It follows from the assumption on v that
J }(op_||7nkﬂ. (3.19)

For the estimate of .J,, we have from Lemma 2.2 and the continuous embedding that

<2 ( )/ (1026~ IV 32 u(s) gy, + V02~ u(s) i 10£u(s) 1o, ) s

0<6<a

) CZ (5) [ 1ol 198t
° t ﬂu s 0 =B L] 1
+0 3 (5) [ 102ue im0z ot s

0<B8La
18122

t
e / IVu(s) e 82 (5) | 51 s
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t
+0 3 (5) [ 190 umluts i s
0<B<a 0
t t
<ol [ @)l Ka(s)ds+ € 3 (5) [ Xia (6 Xia-sran(s)s
0< B
18122

¢y (g) /0 ' X1 (5) X (5)4s. (3.20)

0<fB<a

For the pressure term J3, from Lemma 2.3, we have

7> (g) / (0, 82 Pu)(5)| 5, ds

0<B<a

<0 2 (5) [ 102 law Jog2u(s)lzy s

0<B<a

t
<C / lu()lpe Xia(s)ds +C 3

0<B<a

(g) /Ot X151(8) Xjapi(s)ds. (3.21)

For the estimate of Jy, it follows from Lemma 2.1 that

t
B <C [ (sl 108u(s)]|ay, s
o (3.22)
<O [ o)l Xioi (s

Substituting (3.19), (3.20), (3.21) and (3.22) to (3.18), we have
t
Jogu(®)len, < Kopy “Imio + Clol [ 1u(s) s, Xia(e)ds

+C Z (g)/o X181-1(8) Xja-p|+1(5)ds (3.23)

0<BLa
18122

+C Y (g) /0 tX|ﬁ|(8)X|a-aa(8)d8-

0<B<ax

Furthermore, for the third term of the right-hand side of (3.23), we see that

Z (g)/o Xi61-1(8) Xja-pi+1(5)ds

18122

o\ [* Mg -1(s) Mya_gi41(s) mig-1  Mia_pj+1
- L) s () et S e () ds
ogg:a (5) o mg—r 1(s) Miaepirr O Mig21(5) Miapier(s)

18122

t 38
> ; o L= al-2 Mol fg lu(Mll g1 dr
< <B>m|5|_1m|a_ﬁ|+lp0| |L|a| 2(Y|a|—1)2/0 (1+8)| | 26 0 Bl | ds

0<BLx
18122
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“lo t Mo [S 1wz dr
< |almia oy L2 (Yp-1)? /0 I (3.24)

Similarly, for the fourth term of the right hand side of (3.23), we have

( ) / Xip1(5) X|a-p)(s)ds

0<B<a (3.25)
Ml [ lju(r dr
< g D)7 [ (14 ) B e
Substituting (3.24) and (3.25) to (3.23), we have
Jo2u(Ol, < Koo+ Clal [ Tul6)ls, Xia(5s
+ Clalmiass DY) [ (1 syt e
0
which implies that
t
Xio(t) < Kopa|a|m]a| + Cla]/ Hu(s)IIB;o‘leal(s)ds
0 (3.26)

t A N T dr
+ Clajmapg ™ L2 (Yat-1)* /0 (1 4 s)lel-z Mo Iz, 7y

By Lemma 2.4, we obtain from (3.26) that

el Celol fi lu(llg dr ol 7 lal-
Xjo/(t) < Kopy *'myaje oI 4 Colafmyal g™ L (Yiaj-1)?

t s
N / (1+ S),a|_2ecz|a|f; lu(r)lipy,  dr+Alel g (g dr

with some positive constant C, depending only on n. By choosing A > C3 and L > 1, we thus
have

Mo (t)

Mq

Xial() < KoL0o1=D(1 4 ¢)~(el=0¢ ! BNl gy dr

t Ca2—-A ¢ T dr
B A
0

t
< Ko+ Calo| L7 (1 + 1) 707D (Vg1 )? / (1+ s)l"%ds
0

< Ko+ _(Yal 1)2

The above estimate with (3.14) implies that

2C
Yig < Ko + T2(Y|a,_1)2 (3.27)

for all o € NZ with |a| > 2. From (3.14) and (3.27), we obtain by the standard inductive

argument that
Yo < 2K (3.28)



for all o € Nj with |a| > 1, provided A > max{C};, C>} and L > max{1,8C,K,}. Therefore,
it follows from (3.28) that

N 2K ~la ale1 Mol fElu()llgr  dr
Jozu(t)llay, < T2 (B2) 7 mpe(1 4 gyette o e, (3.29)
forallt € [0,T] and & € Nj with |a| > 1. From (3.1) and (3.29) with K = Ky max{Cy, 2/L},
we complete the proof of Theorem 1.2. O
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