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Abstract

In this brief note we first show that a general integrable tensor
satisfying the double divergence free equation has vanishing integrals
on the diagonal components. This general theorem has applications
to both of the compressible and the incompressible fluid equations.
In particular it leads to pressure conditions leading to the vanishing
of the velocity in the various fluid equations. In the second section
we derive a formula representing average integrals of the pressure in
terms of the integrals of the velocity components in the incompressible
fluid equations.
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1 Double divergence free tensors

Here we are concerned on the following double divergence free equation sat-
isfied by T' = (T}).

N
> 8;0:Tj =0, (1.1)

dk=1
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We present examples of
(i) The incompressible Euler equations in R":

Ov
—a—t+(’U~V)’U— —Vp

div v =0,

(E) (1.2)

where v = (v, ---vN), v} = v¥(z,t), j =1,---, N, is the fluid velocity,
and p = p(z,t) is the pressure. Taking divergence operation on (E), we
have the well-known velocity-pressure relation,

N
> 0;6k(vjve) = —Ap,

jk=1
which is (1.1) with Tj(z,t) = v¥(z, t)v*(z,t) + p(, t)d;k
(ii) The compressible Euler equations:
Osp + div(pv) = 0,

(CE) { 8:(pv) + div(pv ® v) = —Vp,
p=ap’,

where p = p(z,t) is a density. In the stationary case the system (CE)
can be written in the form of (1.1) with Tj(z) = p(z)v! (z)v*(z) +
p(z)8jk, p = ap”.

(iii) In the classical field theories in the Minkowski space, (RV*!,n),n =
diag(—1,1---1), many of the stationary field equations can be written

in the form,
N
> 8T =0
j=1

for all k =1,---,N. Taking the divergence operation of this equation
with respect k, we obtain (1.1).

Here is an implication of the L}(R”") condition on T}, solving (1.1).
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Theorem 1.1 Let T € LY(RY). Then, we have
/ Tu(@)dx, =0 Vik=1,-- N (1.3)
RN-1

almost everywhere on R(dz;), where we denoted
dX;— = d.’El s da:j_ldxj+1 T dCL'N.

Proof In the weak formulation,

Z / Tixd;0w(z)dz =0 Yw € CP(RY),

Jik=1

We choose w(z) = e“m*mog(z), where og € CP(RY) is the previous cut-off.
After taking R — oo, we obtain

0 = — Z/ T;0; 6k(e“5'"w"‘)dx—£2/ Trnme™ ™ dx
Jrk=1

_ 52/ { / Tmmdxm} e i,
—00 RN-1

= ffnf(fm)’ where f :cm) fRN 1 mm(x)dx

Hence, f(&,) = 0 V& # 0. Since f € CoR)(f € LY(RY)), we extend
by continuity that f(&,) = 0 for all &, € R. Therefore, f(z,,) = 0 for all
Tm € R. I

Corollary 1.1 Let (v,p) solves (E), and satisfies [v|*+|p| € L*(RN). Then,
we have

v (z, t)0*(z, t) dx; = — jk/ p(z,t) dx; (1.4)

RN-1 RN-1

forall j,k=1,--- N, and almost everywhere on R(dz;).

Remark 1.1 Note that the above corollary is sharper than the result derived
in [1](see also [3]).
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Remark 1.2 Applying Theorem 1.1 to the compressible Euler equations we
easily obtain that any stationary weak solution to the compressible Euler
equations having finite energy corresponds to the vacuum, p = O(see [4]).

One immediate consequence of the above corollary is the following.

Corollary 1.2 For alla € RY and b € R we have
LN ({zeRY|p(z) <0}n{z e RY|a-z=1b}) >0,

where LV ~1(-) denotes the Lebesgue measure on the hypersurface in RY de-
fined by a-x = b. Namely the set S, where the p(x) is non-positive, intersects
with every hyperplane in RN,

The following result is can be regarded as a “spherical” version of Theorem
1.1.

Theorem 1.2 Let T € L*(RY,(1 + |z|)~'dz). Then, we have

/RN { [tr(T) z-T x] w'(|z]) + %gpﬁw”(lwl)} dz=0.  (L5)

|| |z[®

for all radial function w(z) = w(|z|) with

. 1.
T “ 14+ ( 6)

The proof follows from (2.2), choosing the radial test function w(z) = w(|z|).

Corollary 1.3 Let T = (Tj) is a symmetric, positive definite tensor with
T € LY(RY, (1 + |z|)~'dz), which satisfies (1.1)). Then T =0 on RV.

Next we specifically consider the incompressible Navier-Stokes and Euler
equations.

Theorem 1.3 Let (v,p) be a solution to the incompressible Navier-Stokes
or Euler equations, which satisfies

N
[v]2 + |p| € LYRY)  for some g€ (1, ]—V.—_-—l)
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Then, for all g > 0, and n > 0 there holds the equality,

/TOSWSTW7 [N - I%.I(N — 1)] p(z) + (N - l)nL|ZTO+np(x)dx
- /wmﬂ [(1 - (;",) v + ,%”l@ : xﬂ dz

D L ] 2 a7

Proof We choose w(z) = w(|z|) as follows.

(0, 0<|z| <o
w@ = 30 =rof o<l <oty
\n(lxl—ro—n)+%2. lz| > 1o+ 1
Then, we compute
0, 0<|z| <o
8,0pw(z) = 4 (1 ~ EE_O') Sjk + %g-c—k ro < |z| < o +1 s
\n<%—%%)' lz| 270 +7

Substituting w into (2.2), we obtain (1.7). O

Similar result to the above theorem is derived in [2] by a different argument.
The following two corollaries are an immediate consequences of Theorem 1.3.

Corollary 1.4 For all R > 0 we have LV ({x € RV |p(z) <0, |z| > R}) >
0.

Corollary 1.5 Let p(z,t) is the pressure corresponding to the nonzero ve-
locity v € L*(0,T; L*(RY)) N L0, T; HY(RY)) of a Leray-Hopf weak solu-
tion the Navier-Stokes equations. Then, for almost every t € (0,T) the set
{z € RY | p(z,t) < 0} is unbounded.
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2 On the Navier-Stokes equations

In this section we concentrate on the Navier-Stokes equations(the Euler equa-
tions for v = 0) on R3,
v

=+ (Vo= -Vptuvd (z1)€ R*x (0,7) (2.1)

div v=0, (z,t)€R*>x(0,7) (2.2)

Below we derive a formula representing a pressure average integral in terms
of the velocity integrals using the spherical coordinates and cylindrical co-
ordinates respectively. These are different approaches to a similar formula
derived in [2]. We first use the representation of the velocity field in terms
of the spherical coordinates, which is defined by

UV = Ur€r + Vgeg + Vgey,
where

e, = (sinfcos@,sinésin ¢, cosh)
eg = (cosBcos¢.cosbsin¢p, —sinb)
ey = (—sing,cose,0).

In the theorem below we use the following notation of the smooth cut-off
function.
) 0 ifr<R
rT)=
X3 1 ifr>R+6,
and, monotone increasing on (R, R + 9).

Theorem 2.1 If v is a smooth solution of the system (2.1)-(2.2) in R® x
(0,T), then the following equalities hold for all t € [0,T).

(i) If v e C([0,T); LYR3)) with 2 < q¢ < 3, then

|U|2 ”3 2
— — — | xrs(|z])dz + ;0 xRs(|z|)dz
|z|>R |z| |z R<|z|<R+6

= /1 L rs(|z))dz — / pOrxrs(|])dz

z|>R |z| R<|z|<R+$
(2.3)

for all R,6 > 0.
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(i) If there exists a sequence { Ry }ren with Ry 1 0o as k — oo such that
1
lim — (p+v2)dS =0, (2.4)
koo R2 8B(0,Ry)

then

/ ('”'2 ”Z)d = —p(0,t) — hmi v2dS.  (2.5)
|z[3 " |z)3 P R—0 R? Jopor) =~ '

Proof The system (2.1)-(2.2), in terms of the spherical coordinates is written
as follows.

2 2
vy + (v, + 205+ S05) v = L4 % — 8p+ v(Av),,

rs1n0
(2.6)
2
vUg U
Ovg + (vra + 39-!— n98¢) vg = — ro +7¢cot0
—@ + v(Av),, 2.7)
_ e v,
Orvy + (’U,.(") + 80 + 7 sin 96¢) v = T T cot 6

_ % +v(Av)y,  (2.8)

rsin 6
L 6,(%0,) + ——By(sin Bug) + —— B0, = 0 (2.9)
20\ I T sin g P\ YYe ng * ¢ " .
where
v, 2 2 cot Bug 2
(A’U).,. = A'U,-— 2 —ﬁao’l}e'— 2 - r2sin966w7
2 Vg 2cosf
A = A = B, — _ ,
(Av)o v0+r2 6v r2sin8  rZsin2f 0 ¢
Vg 2 2cosf
A = Avy — ” ————8 2.10
(Av)s YT 2 sin? § * r?sin 96& + rZsin2g ¢ (2.10)

Let B(0,7) = {z € R®||z| < r}. We integrate (2.6) over 0B(0, ), then

8t/ Up dsS + / (vrar -+ 2@80 + 8¢) Uy ds
0B(0,r) dB(0,r) r rsind

2
=/ (”9 Y% ap) ds + V/ (Av),dS.  (2.11)
8B(0,r) 8B(0,r)
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For the first term of the left hand side of (2.11) we have

Bt/ v dS = Bt/ divvdy =0 (2.12)
8B(0,r) B(0,r)

by the divergence theorem. Using (2.9), we can write the second term of the
left hand side of (2.11)

/ (v,a, + 2239 + % 3¢) v dS
8B(0,r) r rsin 6

_ 1, 55, 1 . 1
= /a S0 {r2 or(r*v2) + Og(vgu, sin 6) + = 03¢(v¢vr)} dsS

rsin@ T

_ Lo 22 ! - 1 2
- ./sz {TQa,(r v7) + Tsineag(vgv, sin §) + — 98¢(v¢vr)} r°d¥

T Ssin

= | 0,(r*?)dz, (2.13)
S2
where we set dX = sin #dfd¢. The viscosity term of (2.11) vanishes, since
/ (Av),dS = div(Av)dy =0 (2.14)
8B(0,r) B(0,r)

by the divergence theorem, and the divergence free condition for v. Taking
into account (2.12)-(2.14), we obtain from (2.11) that

2 V2

/ (v_e + ——¢-) dS = [ 8.(r*v?)dZ +/ 0,pdS (2.15)
aBo,) \ T r s? 8B(0,r)

Let us introduce a radial cut-off function o € C§°(R?) such that

1 ifr<i1
0(7‘)2{0 ifr> 2, (2.16)

and 0 < o(r) < 1 for 1 < r < 2. Then, for each R, R, > 0, we define

r

or(r)=o0 (ﬁ) (2.17)
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Below we fix R > 0 and choose R; > 2R. Multiplying (2.15) by or, () xrs(T)
and integrating it with respect r over (0, 00), we have

/R3 (vg + 7:?’) or, (T)xRs(r)dz _/ 528 L (r* 2o, (1) X R s(r))dZdr

r

000/ 202X r.s( )8TaRl(r)dZdr—/0 /szr v2og, (r)0rxrs(r)dSdr
+/0 /S2 o, (T)XRs(T)0.pridSdr
= —/ vfxg,g(r)&aﬁl(r)dx—/ viog, (r)0rxrs(r)de
R3 RS
—2 /R ] 7 (T)XR(r) pdz — /R  Pxr5(r)0:0r, () dz

T

- [ ponaxnsr) dz
R

after integration by part. We estimate

1 T
L < — V|0’ (—=)|dz
14l Ry SR <jz1<2r: | (R1)|
| % =
< llo’|| Lo (/ Ivrlqdil?) (/ ]_dx)
Rl R1§|$|$2R1 RIS|$|S2R1
2(g-3) 9
< CR, * ||vl|fe—0 (2.19)

as R; — oo since v € LI(R3) for 2 < g < 3.

1 C sa-2)
s & f pllo’()lde < —( / ipl? d:c) [0/l B
Ry JR,<jel<2my R

2(q—3)

< CR; ° |v||% —0 (2.20)

as Ry — oo for 2 < ¢ < 3. On the other hand, by the dominated convergence
theorem we easily find

I — —/ V20, xrs(r)dz, I — —2/ XR’é(r)pdw, Is — —/ pOrxrs(r) dz
R3 R3 T R3
(2.21)
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as Ry — oo. Hence, passing R; — oo in (2.15), and using the fact v} + v =
|v|? — v2, we get (2.3). In order to prove (2.24) we rewrite (2.15) in the form

‘/ % Y% %) 45— g /“(-+ 2)ds (2.22)
dB(0,r) 3 rs - S? Pt ' .

Integrating (2.22) over (0, Rx) with respect to r, and passing k — oo, we
obtain (2.24). O

Given R,h € (0,00] we define a cylinder Crp := {z € R*|22 + 25 <
R, —h < z3 < h}, and we denote its boundaries as

BCR,h = BR,h U SR,h, (2.23)

where Bgy = {z € R®| 2?3 + 23 < R, z3 = *h} is the upper and lower bases,
and Sg = {z € R¥|z2+22 = R, —h < x3 < h} is the side. In the theorems
below we use the representations in terms of the cylindrical coordinate,

V = Up€r + Vg€y + Uses,
where
e, = (cos ¢,sin ¢, 0), e, = (—sin ¢, cos¢,0,), e3 = (0,0, 1).

Theorem 2.2 Let (v,p) be a smooth solution of the system (2.1)-(2.2) on
R3 x (0,T). We assume that

Ip| + |v|* € L'(R®).

Then,
- 2o
/_oop(0,0,xg,t)dxg = /]R3 (ﬁ - —73) dz. (2.24)
Proof The system (2.1)-(2.2) can be written as
2
v
atvr + (’Urar + %‘ans + 'U3a3)'0r = ?¢ - rp + I/(Av)r, (2-25)
Ug VpUr 1
O + (vrOr + 'T—aqﬁ + v303)vy = — — — O+ v(Av)y, (2.26)

Bevy + (110, + —20 + vads)us = ~Oup + v(Bo)s, (2:27)

1 1
;GT(T’UT) + ;6¢’U¢ + O3v3 = 0, (2.28)



where
U
(AU)T = Av Ur 8¢’U¢ 7“2’
(A’U)d, = A’U¢ + 6¢’U,,- - 2;¢,
(Av)s = Auwvs. (2.29)

Multiplying (2.25) by r, and integrating it with respect to (¢, z) over (0, 27) x
(—00,00), we have

o 27 co 2w
/ / videdzs — / / rO,p dpdzs
el 0o 2 oot oo 2 v
= 0 / / vsr dpdxs + / / {(U,ﬁr + —‘33¢ + vga?,)v,.} r dodzs
—-o0 JO —o00 JO T

o 27
—v / / (Av),r dpdzs
-0 J0

=1 + 1, + I (2.30)

We have by the divergence theorem,

co 27 o) 27
/ | wntr 620,07 dpdzs = / / 0,1, 6, 23, D) dirdzs
—00 JO —00 JO
27

t lim /0 (50,6, 1) ~ vs(0, 6, ~h)} pdpde

h—oc0 0

= lim divedy = 0. (2.31)
h—o0 J B(0,r)x[~h,h]

Hence, I, = 0. Using the formula (2.28), we write

/ / { (roy) + 3¢(U¢vr)+33(v3vr)}rd¢dx3

= / 6 (rv?)dedzs. (2.32)

131
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Similarly to (2.31) we have
(o] 27 oo 27
/ / (Av), (7, ¢, z3,t)r dpdzs =/ / (Av),(r, ¢, x3,t)T ddpdz3
—o00 JO —o0 JO

27 T
wiim [ [ ((@0nslo.6,) = @0l 6.~} pdpad

= lim div (Av)dy = 0, (2.33)
h—00 J B(0,r) x[~h,h]

and I3 = 0. Hence one obtain,

o} 27 oo Vi 0o 27
/ / vidd)dxg = / O, (rv?)dodzs + / / rOrp dodrs
—o0 JO —00 J0 —o00 JO

0o 2w 0 27 00 2
=r / / ar(vf)d¢dx3 + / / vqubd:zzg +7r / / O,p dodzs,
—00 JO ~00 J0 A

and
00 2 'U2 ’U2 00 27
Iy (—T——") dpdrs =0, [ [+ itdodns (230)
—00 JO T r -0 JO

Integrating (2.34) with respect to r over (0, R;), and passing k — o0, ob-
serving
1
lim — v2dS =0,
R—0 R Shoo
due to the smoothness at 7 = 0, and there exists a sequence {7} 1 0o such
that

—0 ask— o

T=Tk

oo 27
/ (p + v?)dodz;

oo JO

due to the hypothesis |p| + |v|2 € L*(R?), we obtain (2.24). O

If we consider the system (2.1)-(2.2) on the domain
D=R>xT={zecR®(z,22) € R? z € (-L,L)} (2.35)

with the periodic boundary condition in the z3— direction. The similar proof
to the Theorem 2.2 leads to the following result.



Theorem 2.3 Let (v,p) be a smooth solution of the system (2.1)-(2.2) on
D x (0,T). We assume |p| + |[v|]? € L}(D). Then

co ’02 ,02
/ (0,0, z3, t)dzs = /9 (ﬁ - T—‘§> dz. (2.36)
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