<table>
<thead>
<tr>
<th>Title</th>
<th>TURBULENT CASCADES IN PHYSICAL SCALES OF 3D INCOMPRESSIBLE FLUID FLOWS (Modern approach and developments to Onsager's theory on statistical vortices)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>DASCALIUC, Radu; GRUJIC, Zoran</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2012, 1798: 107-120</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-06</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/2433/172967">http://hdl.handle.net/2433/172967</a></td>
</tr>
<tr>
<td>Right</td>
<td>Type</td>
</tr>
<tr>
<td>Departmental Bulletin Paper</td>
<td>Textversion: publisher</td>
</tr>
<tr>
<td>Kyoto University</td>
<td></td>
</tr>
</tbody>
</table>
TURBULENT CASCADES IN PHYSICAL SCALES OF 3D INCOMPRESSIBLE FLUID FLOWS

R. DASCALIUC AND Z. GRUJIĆ

Abstract. The purpose of this survey article is to present a recent progress in the study of turbulent cascades in physical scales of 3D incompressible fluid flows, as well as to indicate some directions of the current research.

Date: November 28, 2011.
1. INTRODUCTION

Despite many advances in analysis, modeling, and experimental study of 3D incompressible fluid flows, the problem of understanding turbulence is still largely open. Fundamentally, the phenomenological theory Kolmogorov introduced in 1940s ([Ko41-1, Ko41-2]) remains the most influential due to its simplicity and overall good fit with experimental data ([GSM62, ZTMW94]). The challenges however remain the same: to connect the phenomenology to the underlying laws of motion and to understand mechanisms leading to formation, persistence, and disappearance of turbulent regions within a fluid flow (see e.g. [Fr95, FMRT, DP01]). Mathematically, these problems are linked to open questions in the theory of the Navier-Stokes (NSE) and Euler (EE) equations; particularly relevant are the issues of uniqueness and regularity as well as qualitative behavior of the solutions.

Naturally, this is a very active area of research in applied mathematics. On one hand, improved hardware capabilities and advances in computational techniques made it possible to perform numerical simulations of turbulent flow at very high resolutions (see, e.g. [DYS08, WK09, CBBL10]), on the other, new analytical tools allowed proofs of stronger regularity criteria and better understanding of scaling properties of solutions to NSE and EE (e.g. [L-R02, ISS03, ChKaLe07, Ku08, GrGu10-2, DLS10, CS11]), and as a consequence, led to partial confirmations of important tenets of turbulence theories directly from the equations of motion (see, e.g. [FMRT01, CCFS08, EA09, RDD11]). Most of the analytical approaches use Harmonic Analysis techniques in Fourier scales. This framework proved very effective in establishing new global regularity properties of NSE and EE and led to better understanding of homogeneous isotropic turbulence phenomenology in the context of periodic and whole space domains.

Another approach is to study the role local geometry and coherent structures play in turbulent behavior as well as possible singularity formations ([Ch94, MKO94, AK98, LM00, CF01, Gr01, MB02, CFL04, Shvy09, GM111]), for example, it was established that Hölder coherence of the vorticity direction in regions of high fluid intensity prevents singularity formation ([CoFe93, daVeigaBe02, Gr09]). Up to now however, there was no effective way to consider turbulent phenomenology in this context. The main obstacle seemed to be the lack of effective (amenable to analysis) definition of a scale in a physical domain setting.

In this article, we survey a recent approach that allows understanding turbulent phenomenology in the context of physical scales – without assuming homogeneity and isotropy – by directly zooming in to the regions of intense fluid activity.

2. ENSEMBLE AVERAGES; PHYSICAL SCALES

The ensemble averaging process to be described in this section in some detail was introduced in a recent study of turbulent cascades in physical scales of 3D incompressible flows [DaGr11-1, DaGr11-2, DaGr11-3, DaGr11-5]. However, it is a mathematical entity of its own, and it is instructive to present it as such.

A natural way of actualizing a concept of scale in a PDE model is to measure distributional derivatives of a quantity with respect to the scale. Let $x_0$ be in $B(0, R_0)$ ($R_0$ being the integral scale, $B(0, 2R_0)$ contained in $\Omega$ where $\Omega$ is the global spatial domain) and $0 < R \leq R_0$. Considering a locally integrable physical density of interest $f$ on a ball of radius $2R$, $B(x_0, 2R)$, a local physical scale $R$ – associated to the point $x_0$ – is realized via bounds on distributional derivatives of $f$ where a test function $\psi$ is a refined – smooth, non-negative, equal to 1 on $B(x_0, R)$ and featuring optimal bounds on the derivatives over the outer $R$-layer – cut-off function on $B(x_0, 2R)$.

More explicitly, $|\langle D^\alpha f, \psi \rangle| \leq \int_{B(x_0, 2R)} |f| |D^\alpha \psi| \leq \left( c(\alpha) \frac{1}{R} |f|, \psi^{\delta(\alpha)} \right)$ for some $c(\alpha) > 0$ and $\delta(\alpha)$ in $(0, 1)$. This – via duality – leads to various estimates on distributional derivatives of $f$ in $L^p$, reminiscent of Bernstein inequalities in the Littlewood-Paley decomposition of a tempered distribution.
TURBULENT CASCADES

The precise requirements on the cut-offs are as follows. The spatiotemporal cut-off $\phi$ is of a product form, $\phi = \phi_{x_{0}, R, T} = \psi \eta$, where $\eta = \eta_{T}(t) \in D(0, T)$ and $\psi = \psi_{x_{0}, R}(x) \in D(B(x_{0}, 2R))$ satisfying $0 \leq \eta \leq 1, \eta = 1$ on $(T/3, 2T/3)$, $\frac{\partial \eta}{\partial t} \leq \frac{\partial \psi}{\partial t}$ and $0 \leq \psi \leq 1$, $\psi = 1$ on $B(x_{0}, R)$, $\frac{\partial \psi}{\partial x_{j}} \leq \frac{\partial \eta}{\partial x_{j}}$, for some $\frac{1}{2} < \rho_{1}, \rho_{2} < 1$. Sometimes, the above conditions on $\eta$ are replaced by $\eta = \eta_{T}(t) \in C^{\infty}(0, T)$ supplemented with $0 \leq \eta \leq 1, \eta = 0$ on $(0, T/3)$, $\eta = 1$ on $(2T/3, T)$, $\frac{\partial \eta}{\partial t} \leq \frac{\partial \psi}{\partial t}$ (e.g., in the study of the 3D enstrophy cascade). The case $x_{0} = 0$ and $R = R_{0}$ corresponds to the integral domain cut-off $\phi_{0}, \phi_{0} = \eta \psi_{0}$. (There are additional technical conditions for $x_{0}$ near the boundary of $B(0, R_{0})$, c.f. [DaGr11-1].)

A physical scale $R$ – associated to the integral domain $B(0, R_{0})$ – is realized via suitable ensemble-averaging of the localized quantities with respect to $(K_{1}, K_{2})$-covers at scale $R$.

Let $K_{1}$ and $K_{2}$ be two positive integers, and $0 < R \leq R_{0}$. A cover $\{B(x_{i}, R)\}_{i=1}^{n}$ of the integral domain $B(0, R_{0})$ is a $(K_{1}, K_{2})$-cover at scale $R$ if

$$\left(\frac{R_{0}}{R}\right)^{3} \leq n \leq K_{1}\left(\frac{R_{0}}{R}\right)^{3},$$

and any point $x$ in $B(0, R_{0})$ is covered by at most $K_{2}$ balls $B(x_{i}, 2R)$. The parameters $K_{1}$ and $K_{2}$ represent the maximal global and local multiplicities, respectively.

For a physical density of interest $f$, consider time-averaged, per unit mass – spatially localized to the cover elements $B(x_{i}, R)$ – local quantities $\hat{f}_{x_{i}, R, T}$,

$$\hat{f}_{x_{i}, R, T} = \frac{1}{T} \int_{0}^{T} \int_{B(x_{i}, 2R)} f(x, t) \phi_{x_{i}, R, T}^{\delta}(x, t) dx dt$$

for some $0 < \delta \leq 1$, and denote by $\langle F \rangle_{R}$ the ensemble average given by

$$\langle F \rangle_{R} = \frac{1}{n} \sum_{i=1}^{n} \hat{f}_{x_{i}, R, T}.$$
3. TURBULENT CASCADES IN PHYSICAL SCALES

One of the hallmarks of turbulence phenomenology pioneered by Kolmogorov and Onsager in the 1940's [Ko41-1, Ko41-2, Ko41-3, On45, On49] is existence of the inertial range, the range of scales in which the dissipation effects are strongly dominated by the nonlinear (inertial) transfer of averaged energy from larger to smaller scales. This process is also referred to as 'energy cascade'. In addition, the cascade is thought to be highly local-in-scale, i.e., the averaged energy flux at the given scale is supposed to be significantly correlated only with the fluxes at the nearby scales. A great mathematical challenge has been to establish existence and locality of turbulent cascades directly from the mathematical model, namely the 3D NSE.

Prior to [DaGr11-1], the only rigorous mathematical work on existence of the energy cascade was the work by Foias, Manley, Rosa and Temam [FMRT01] in which the authors obtained existence of the energy cascade in the Fourier space – i.e., in the wavenumbers – in the setting of infinite-time averages of Leray solutions to the 3D NSE satisfying the global energy inequality. The averaging process utilized in [FMRT01] was global-in-scale and did not lead to a proof of locality. On the other hand, mathematical evidence of locality was first presented by L'vov and Falkovich [LF92], and later by Eyink [E05, EA09] and Cheskidov, Constantin, Friedlander and Shvydkoy [CCFS08].

In the case of 'decaying turbulence' (zero driving force, non-increasing global energy), [DaGr11-1] presented a proof of both existence and locality of the energy cascade in the physical scales of the flow, under an assumption plausible in the regions of intense fluid activity. In the language of turbulence, the condition translates to the requirement that Taylor micro-scale be dominated by the integral scale of the flow. The result is obtained in the realm of distributional solutions to the 3D NSE satisfying the local energy inequality. The main idea of the proof was to first 'discretize' the flow by localizing it to spatial balls at the given scale, and then 'reconstruct' it via a suitably defined ensemble-averaging process – described in the previous section – capable of detecting significant sign-fluctuations of the physical density of interest (the case in point being the energy flux); the key device in the reconstruction process being the local energy inequality. This furnished the first proof of existence of the energy cascade in physical space, as well as the only mathematical setting in which both existence and locality of the cascade were derived simultaneously from the 3D NSE.

Let $x_0$ be in $B(0,R_0)$ ($R_0$ being the integral scale, $B(0,2R_0) \subset \Omega$ where $\Omega$ is the global spatial domain) and $0 < R \leq R_0$, and let $u$ be a weak solution to the 3D NSE on $\Omega \times (0,2T)$ satisfying the local energy inequality,

$$\nu \iint \nabla |u|^2 \phi \leq \iint \frac{1}{2} |u|^2 (\partial_t \phi + \nu \Delta \phi) + \iint \left( \frac{1}{2} |u|^2 + p \right) u \cdot \nabla \phi,$$

for any nonnegative test function $\phi$ (e.g., a suitable weak solution). Physically, the term $\nu \iint |\nabla u|^2 \phi$ represents the local spatiotemporal energy dissipation rate due to viscosity, while a (non-negative) defect in the local energy inequality due to possible singularities/lack of smoothness can be interpreted as the local spatiotemporal anomalous dissipation. For a refined cut-off function $\phi = \phi_{x_0,R,T} \text{ on } B(x_0,2R) \times (0,2T)$ denote by $\Phi_{x_0,R}$ a local inward flux around $x_0$ at scale $R$,

$$\Phi_{x_0,R}(t) = -\int \left( (u \cdot \nabla) u + \nu \phi \right) \cdot u \phi \, dx = \int \left( \frac{1}{2} |u|^2 + p \right) u \cdot \nabla \phi \, dx,$$
TURBULENT CASCADES

by $\Phi_{x_0,R,T}$ a local time-averaged flux, by $\dot{\Phi}_{x_0,R,T}$ a local time-averaged energy and by $\dot{\varepsilon}_{x_0,R,T}$ a local time-averaged total (viscosity plus anomalous) energy dissipation rate, all per unit mass,

$$\dot{\Phi}_{x_0,R,T} = \frac{1}{TR^3} \int \Phi_{x_0}(t), \quad \dot{\varepsilon}_{x_0,R,T} = \frac{1}{TR^3} \int \frac{1}{2} |u|^2 \partial_t \phi + \int \frac{1}{2} |u|^2 + p \partial_t \phi + \dot{\Phi}_{x_0,R,T}.$$

(3.3)

Also denote by $e$ and $\varepsilon$ the time-averaged energy and total energy dissipation rate per unit mass associated to the integral domain on $(0, 2T)$, $e_0 = \dot{\varepsilon}_{0,R_0,T}$ and $\varepsilon_0 = \dot{\varepsilon}_{0,R_0,T}$. Then, the main result describing the universality of the averaged flux per unit mass $\langle \Phi \rangle_R$ throughout the inertial range, and implying existence of the energy cascade in decaying turbulence (in the viscous case) can be stated as follows [DaGr11-1, DaGr11-3].

**Theorem 3.1.** Let $\gamma \in (0, 1)$ and $c, K$ suitable constants depending only on the cover parameters $K_1$ and $K_2$.

Define a modified Taylor length scale $\tau_0$ by $\tau_0 = \left( \frac{\tau_{0}}{T} + \nu \right)^{1/2}$, and assume that $\tau_0 < \frac{3}{c} R_0^2$. Then,

$$\frac{1}{K^2} \frac{1 - \gamma}{1 + \gamma} \left( \frac{R}{r} \right)^2 \leq \frac{\langle \tilde{\Phi} \rangle_{R}}{\langle \tilde{\Phi} \rangle_{r}} \leq K^2 \frac{1 + \gamma}{1 - \gamma} \left( \frac{R}{r} \right)^2$$

(3.4)

for all $R$ inside the inertial range determined by

$$\tau_0^2 < \frac{c}{K^2} \left( \frac{R_0^2}{T} + \nu T \right) - \frac{\gamma}{r^2}$$

Denoting the averaged flux at scale $R$ by $\langle \Phi \rangle_R$, $\langle \Phi \rangle_R = R^3 \langle \Phi \rangle_R$, the following manifestation of locality of the averaged flux throughout the inertial range is immediate,

$$\frac{1}{K^2} \frac{1 - \gamma}{1 + \gamma} \left( \frac{R}{r} \right)^2 \leq \frac{\langle \tilde{\Phi} \rangle_{R}}{\langle \tilde{\Phi} \rangle_{r}} \leq K^2 \frac{1 + \gamma}{1 - \gamma} \left( \frac{R}{r} \right)^2$$

In particular, both the infrared and the ultraviolet locality propagates exponentially along the dyadic scale, as predicted by the phenomenonology,

$$\frac{1}{K^2} \frac{1 - \gamma}{1 + \gamma} 2^{-3k} \leq \frac{\langle \tilde{\Phi} \rangle_{R}}{\langle \tilde{\Phi} \rangle_{2^k R}} \leq K^2 \frac{1 + \gamma}{1 - \gamma} 2^{-3k}$$

Onsager in 1949 wrote that "...in three dimensions a mechanism for complete dissipation of all kinetic energy, even without aid of the viscosity, is available" [On49]. More precisely, Onsager conjectured that the minimal spatial regularity of (weak) solutions to the 3D Euler equations (the inviscid model) needed to conserve the energy is $\left( \frac{1}{3} \right)^+$, and that in the case the energy is not conserved, the 'anomalous dissipation' - the dissipation due to the lack of regularity - triggers the energy cascade which then continues indefinitely all the way to the zero scale. The main mathematical works confirming Onsager's $\left( \frac{1}{3} \right)^+$-criticality conjecture are the works by Eyink [E94], Constantin, E. and Titi [CET94], Duchon and Robert [DR00], and Cheskidov, Constantin, Friedlander and Shvydkoy [CCFS08]. On the other hand, there had been no rigorous mathematical works showing that the anomalous dissipation is indeed capable of triggering the cascade.

Adopting the method introduced in [DaGr11-1] to 3D inviscid flows, [DaGr11-2] presented – under an assumption that the anomalous dissipation in the region of interest is strong enough with respect to the energy – a proof of both existence and locality of the energy cascade in the 3D Euler flows extending ad infinitum confirming the dynamical part of the Onsager’s conjecture. As a matter of fact – in the case of a spatially isolated singularity – provided the strict energy inequality holds on some neighborhood of the singular curve, the cascade condition will be satisfied on any small enough (in the spatial coordinates) neighborhood of the curve.

Let $u$ be a (hypothetical) weak $L^3$ in the space-time solution to the 3D Euler satisfying the local energy inequality,

$$\int \int \frac{1}{2} |u|^2 \partial_t \phi + \int \int \frac{1}{2} |u|^2 + p \ u \cdot \nabla \phi \geq 0$$

(3.5)
Keeping the notation in line with the viscous case – and focusing on \(B(x_0, R)\) – denote by \(\bar{\epsilon}_{x_0, R, T}\) the local time-averaged anomalous dissipation per unit mass associated to \(B(x_0, R)\), and define \((\Phi)_{R, \nu, \epsilon}\) and \(\epsilon\) as in the viscous case, setting \(\nu = 0\). In the same spirit, define the anomalous inviscid Taylor scale \(\tau_{0}\) by \(\tau_{0} = \left(\frac{R_0^{2}\epsilon_0}{T} \right)^{1/2}\). Then, the main result of [DaGr11-2] implying existence of the inviscid energy cascade in decaying turbulence states the following.

**Theorem 3.2.** Let \(\gamma \in (0, 1)\) and \(c, K\) as in Theorem 3.1. Assume that \(\tau_0^2 < \frac{\gamma}{\epsilon} R_0^2\). Then,

\[
\frac{1}{K}(1 - \gamma)\epsilon_0 \leq \langle \Phi \rangle_{R} \leq K(1 + \gamma)\epsilon_0
\]

for all \(R\) inside the inertial range determined by \((0, R_0)\).

Note that in the inviscid case, once the energy cascade commences, it continues indefinitely towards the zero-scale as predicted by Onsager. Consequently, the ultraviolet locality in the viscous case is more pronounced.

A short follow-up note [DaGr11-3] presented the first scale-to-scale evidence of ‘dissipation anomaly’ in physical scales of 3D turbulent incompressible flows. Dissipation anomaly – non-vanishing of the averaged energy dissipation rate in the infinite Reynolds number limit – plays a key role in both empirical and phenomenological turbulence; in fact, it is often referred to as ‘zeroth law of turbulence’.

Let \(\{u^{\nu}\}\) be a family of weak solutions to the 3D NSE satisfying the local energy inequality converging strongly in \(L^3(\mathbb{R}^3 \times (0, 2T))\) to a (hypothetical) weak \(L^3\) solution to the 3D Euler \(u\). Recall that Duchon and Robert [DR00] noticed that in this case the inviscid limit \(u\) also satisfies the local energy inequality (3.5). Henceforth, a superscript \(\nu\) will be used to denote the energy, the flux and the (total) energy dissipation rate corresponding to a solution \(u^{\nu}\), while the quantities related to \(u\) will be denoted as in the inviscid section. The main result of [DaGr11-3] reads as follows.

**Theorem 3.3.** Suppose that the inviscid cascade condition, \(\tau_0 < \frac{\sqrt{\gamma}}{c R_0}\), holds for the inviscid limit \(u\). Then, for every \(R^{*}, 0 < R^{*} < R_0\), there exists \(\nu^{*}, \nu^{*} > 0\), such that for any \(\nu, 0 < \nu \leq \nu^{*}\),

\[
\frac{1}{K_{\gamma}}\epsilon_0 \leq \langle \Phi^{\nu} \rangle_{R} \leq K_{\gamma}\epsilon_0
\]

throughout the inertial range determined by \([R^{*}, R_0]\), where \(K_{\gamma} = \frac{K}{1 - \gamma}\).

It is plain to verify that for all \(\nu, 0 < \nu < \nu^{*}\), the energy cascade \(\frac{1}{K}(1 - \gamma)\epsilon_0^{\nu} \leq \langle \Phi^{\nu} \rangle_{R} \leq K(1 + \gamma)\epsilon_0^{\nu}\) holds inside the ever-expanding inertial ranges \(\left[\left(\frac{\tau_{0}^{\nu}}{\mathcal{C}(R_0^2 + \nu T)}\right)^{1/2}, R_0\right]\). This provides an intrinsic version of Theorem 2.3 – without an explicit reference to the vanishing viscosity limit (of course, \(\epsilon_0^\nu \to \epsilon_0\)).

The latest work in the series [DaGr11-5] merged the ideas and techniques from the previous work on localization of the geometric depletion of the nonlinearity in the 3D NSE [GrZh06, Gr09, GrGu10-1] with the ideas and techniques exposed in [DaGr11-1, DaGr11-2, DaGr11-3].

A role of the coherent vortex structures in turbulent flows was recognized as early as the 1500’s in Leonardo da Vinci’s “deluge” drawings. On the other hand, Kolmogorov’s K41 phenomenology does not discern geometric structures; the K41 eddies are essentially amorphous. As stated by Frisch in his book Turbulence, The Legacy of A.N. Kolmogorov [Fr95], “Half a century after Kolmogorov’s work on the statistical theory of fully developed turbulence, we still wonder how his work can be reconciled with Leonardo’s half a millennium old drawings of eddy motion in the study for the elimination of rapids in
TURBULENT CASCADES

the river Arno." A discrete statistical theory of 3D vortex filaments was presented by Chorin in [Ch94], while the first continuous statistical theory of 3D vortex filaments was given by P.-L. Lions and Majda in [LM00].

The enstrophy of the flow is defined as the $L^2$-norm of the vorticity; it is a natural candidate for encoding the information on the geometry of the flow in the theory of turbulent cascades. The main result in [DaGr11-5] states that $\frac{1}{2}$-Hölder coherence of the vorticity direction—a purely geometric condition—paired with a condition on a modified Kraichnan scale, and under a certain modulation assumption on evolution of the vorticity over the region of interest, leads to existence and scale-locality of 3D enstrophy cascade in physical scales of the flow. This provided a mathematical evidence that in contrast to 3D energy cascade, 3D enstrophy cascade is locally anisotropic, yielding a form of a reconciliation between Leonardo’s and Kolmogorov’s views on turbulence on the enstrophy level.

The vorticity-velocity formulation of the 3D Navier-Stokes equations (NSE) reads

\[
\partial_t \omega + (u \cdot \nabla) \omega = (\omega \cdot \nabla) u - \Delta \omega
\]

where $u$ is the velocity and $\omega = \text{curl} u$ is the vorticity of the fluid (the viscosity is set to 1).

Localization of evolution of the enstrophy to cylinder $B(x_0, 2R) \times (0, T)$ leads to the following version of local enstrophy flux,

\[
\int \frac{1}{2} |\omega|^2 (u \cdot \nabla \phi) \, dx = - \int (u \cdot \nabla) \omega \cdot \phi \, dx.
\]

Since $\nabla \phi = (\nabla \psi) \eta$, and $\psi$ can be constructed such that $\nabla \psi$ points inward, (3.9) represents local inward enstrophy flux, at scale $R$—more precisely, through the layer $S(x_0, R, 2R)$—around the point $x_0$.

Consider a $(K_1, K_2)$-cover $\{B(x_i, R)\}_{i=1}^{n}$ at scale $R$, for some $0 < R \leq R_0$. Local inward enstrophy fluxes, at scale $R$, associated to the cover elements $B(x_i, R)$, are then given by

\[
\int_0^t \int \frac{1}{2} |\omega|^2 (u \cdot \nabla \phi_i) \, dx \, ds = \int_0^t \frac{1}{2} |\omega(x, t)|^2 \psi_i(x) \, dx + \int_0^t \int |\nabla \omega|^2 \phi_i \, dx \, ds
\]

for any $t$ in $(2T/3, T)$ and $1 \leq i \leq n$. An explicit representation formula for the localized vortex-stretching term $(\omega \cdot \nabla) u \cdot \phi_i \omega$ obtained in [Gr09] reads

\[
(\omega \cdot \nabla) u \cdot \phi_i \omega(x) = -c \, P.V. \int_{B(x_0, 2R)} (\omega(x) \times \omega(y)) \cdot G_\omega(x, y) \phi_i^{\frac{1}{2}}(y) \phi_i^{\frac{1}{2}}(x) \, dy + \text{LOT}
\]

where $\epsilon_{ijkl}$ is the Levi-Civita symbol, $(G_\omega(x, y))_k = \frac{\partial^2}{\partial x_i \partial y_k} \frac{1}{|x-y|} \omega_i(x)$, and LOT denotes the lower order terms.

The key feature of the highest order term $\text{VST}$ is that it faithfully reproduces the geometric structure of the ‘free’ vortex-stretching term $(\omega \cdot \nabla) u \cdot \omega$.

Denoting the time-averaged local fluxes per unit mass associated to the cover element $B(x_i, R)$ by $\hat{\Phi}_{x_i, R}$,

\[
\hat{\Phi}_{x_i, R} = \frac{1}{t} \int_0^t \frac{1}{R^3} \int \frac{1}{2} |\omega|^2 (u \cdot \nabla \phi_i) \, dx,
\]
the main quantity of interest is the ensemble average of \( \{ \hat{\Phi}_{x_{i},R} \}_{i=1}^{n} \),

\[
\langle \Phi \rangle_{R} = \frac{1}{n} \sum_{i=1}^{n} \hat{\Phi}_{x_{i},R}.
\]

(3.13)

The assumptions guaranteeing the universality of the averaged enstrophy flux per unit mass \( \langle \Phi \rangle_{R} \) across the range of scales – existence of the enstrophy cascade – are as follows [DaGr11-5].

(A1) **Coherence Assumption** Denote the vorticity direction field by \( \xi \), and let \( M > 0 \) (large). Assume that there exists a positive constant \( C_{1} \) such that

\[
|\sin \varphi(\xi(x,t),\xi(y,t))| \leq C_{1}|x-y|^{\frac{1}{2}}
\]

for any \((x,y,t)\) in \((B(0,2R_{0}) \times B(0,2R_{0}+R_{0}^{\frac{3}{2}})) \times (0,T)\) \(\cap \{ |\nabla u| > M \} \); \( \frac{1}{2} \)-Hölder coherence in the regions of intense fluid activity (large gradients). The previous local regularity results [GrZh06, Gr09] imply that – under (A1) – the \( \text{a priori} \) weak solution \( u \) is in fact smooth inside \( B(0,2R_{0}) \times (0,T) \) and can – moreover – be smoothly continued (locally-in-space) past \( t = T \); in particular, we can write (3.10) with \( t = T \).

(A2) **Modified Kraichnan Scale** Denote by \( E_{0} \) time-averaged enstrophy per unit mass associated with the integral domain \( B(0,2R_{0}) \times (0,T) \),

\[
E_{0} = \frac{1}{T} \int \frac{1}{R_{0}} \int \frac{1}{2} |\omega|^{2} \phi_{0}^{2\rho-1} \, dx \, dt,
\]

by \( P_{0} \) a modified time-averaged palinstrophy per unit mass,

\[
P_{0} = \frac{1}{T} \int \frac{1}{R_{0}} \int |\nabla \omega|^{2} \phi_{0} \, dx \, dt + \frac{1}{T} \frac{1}{R_{0}} \int \frac{1}{2} |\omega(x,T)|^{2} \psi_{0}(x) \, dx
\]

(the modification is due to the shape of the temporal cut-off \( \eta \)), and by \( \sigma_{0} \) a corresponding modified Kraichnan scale, \( \sigma_{0} = \left( \frac{E_{0}}{P_{0}} \right)^{\frac{1}{2}} \). Then, the assumption (A2) is simply a requirement that the modified Kraichnan scale associated with the integral domain \( B(0,2R_{0}) \times (0,T) \) be dominated by the integral scale, \( \sigma_{0} < \beta R_{0} \), for a suitable constant \( \beta < 1 \).

(A3) **Localization of the Integral Domain and Modulation** The general set up considered is one of the Leray solutions satisfying (A1). As already mentioned, (A1) implies smoothness; however, the control on regularity-type norms is only local. On the other hand, the energy inequality on the global spatiotemporal domain \( \mathbb{R}^{3} \times (0,T) \) implies \( \int_{0}^{T} \int_{\mathbb{R}^{3}} |\omega|^{2} \, dx \, dt < \infty \); localization of the integral domain will be determined by the condition

\[
\int_{0}^{T} \int_{B(0,2R_{0}+R_{0}^{\frac{3}{2}})} |\omega|^{2} \, dx \, dt \leq \frac{1}{C},
\]

for a suitable constant \( C > 1 \).

The modulation assumption on the evolution of local enstrophy on \((0,T)\) – consistent with the choice of the temporal cut-off \( \eta \) – reads

\[
\int |\omega(x,T)|^{2} \psi_{0}(x) \, dx \geq \frac{1}{2} \sup_{t \in (0,T)} \int |\omega(x,t)|^{2} \psi_{0}(x) \, dx.
\]

The purpose of (A3) is to have a suitable control on evolution of the enstrophy over the integral domain; uncontrolled fluctuations of the enstrophy would prevent the cascade.
TURBULENT CASCADES

Theorem 3.4. Let $u$ be a Leray solution on $\mathbb{R}^3 \times (0, T)$ with the initial vorticity $\omega_0$ in the space of finite Radon measures. Suppose that $u$ satisfies (A1)-(A3) on the spatiotemporal integral domain $B(0, 2R_0 + R_0^3) \times (0, T)$. Then,

$$\frac{1}{4K_*} F_0 \leq \langle \Phi \rangle_R \leq 4K_* F_0$$

for all $R, \frac{1}{2} \sigma_0 \leq R \leq R_0 \ (K_* = K_*(K_1, K_2) > 1)$.

The locality of the averaged enstrophy flux is analogous to the locality of the averaged energy flux (cf. [DaGr11-5]).

4. CURRENT RESEARCH

4.1. Propagation of universality; applications. There are several properties of the ensemble averaging process described in section 2 that appear plausible. Perhaps the most elemental one is that if the averages at a certain scale are ‘stable’, i.e., nearly independent of a particular choice of a $(K_1, K_2)$-cover ($K_1$ and $K_2$ fixed), then essentially the same universality property should propagate to larger scales. The preliminary calculations indicate that in order to obtain a precise quantitative propagation result, the universality assumption should hold on an interval, rather than at a single scale (this is to be expected due to the presence of smooth cut-offs with prescribed rates of change). Two types of results seem within reach. Let $f$ be a locally integrable function (a density), and $K_1$ and $K_2$ two positive integers.

TYPE I. Assume that there exists $R_* > 0$ such that for any $R$ in $[R^*, 2R_*)$ and any $(27K_1, 16K^2_2)$-cover at scale $R$, the averages $\langle F \rangle_R$ are all comparable to some value $F_*$; more precisely, $\frac{1}{C_1} F_* \leq \langle F \rangle_R \leq C_1 F_*$. Then, for all $R \geq 2R_*$ and all $(K_1, K_2)$-covers at scale $R$, the averages $\langle F \rangle_R$ satisfy $\frac{1}{C_2} F_* \leq \langle F \rangle_R \leq C_2 F_*$. 

TYPE II. Assume that there exists $R_* > 0$ such that for any $R$ in $(\frac{1}{2} R^*, \frac{3}{2} R_*)$ and any $(K_1, K_2)$-cover at scale $R$, $\frac{1}{C_1} F_* \leq \langle F \rangle_R \leq C_1 F_*$. Then, for all $R \geq \frac{3}{2} R_*$ and all $(K_1, K_2)$-covers at scale $R$, the averages $\langle F \rangle_R$ satisfy $\frac{1}{C_2} \left( \frac{R}{R_*} \right)^{K} F_* \leq \langle F \rangle_R \leq C_3 \left( \frac{R}{R_*} \right)^{K} F_*$.

Shortly, in a Type I result, the universality is assumed with respect to more refined covers, while in a Type II result, the non-exactness of the propagation caused by the smooth cut-offs is reflected in a correction to the universal value $F_*$ by the ratio of the scales $R$ and $R^*$.

An (immediate) application in view is to obtain an improved version of Theorem 3.4; more precisely, to essentially remove the assumption on the localization of the integral domain (the first part of (A3)). This was the only truly technical assumption – (A1) was simply a mathematical quantification of coherence, (A2) a condition on Kraichnan scale of the type appearing in 2D theory (cf. [FJMR02, DaGr11-4]), and the other part of (A3) a modulation condition preventing wild fluctuations of the vorticity magnitude that would be incompatible with universality of the cascade.

4.2. Scaling laws and dissipation number in physical scales. Kolmogorov K41 theory is a statistical theory of homogeneous isotropic turbulence. Homogeneity and isotropy imply that the representation of the key turbulence phenomena in the Fourier space is a faithful representation of the corresponding phenomena in the physical space. They are also essential in formulating various universal scaling laws including Kolmogorov power law for the energy spectrum. In particular, the concept of the energy spectrum is canonical. The theory of turbulent cascades in physical scales presented in [DaGr11-1, DaGr11-2, DaGr11-3] does not assume any homogeneity; the homogeneity is replaced by a suitable ensemble averaging process. As a result, defining a sensible analogue of the K41 spectrum requires some care. Preliminary investigations suggest that the following construction may prove fruitful.
Define the local energy associated with a shell $S(x_0, R) = \{ x : R < |x - x_0| < 2R \}$ around a point $x_0$ belonging to the integral domain $B(0, R_0)$ (with suitable modifications in the case the shell intersects the boundary of the domain) by $e_{S(x_0, R)} = \frac{1}{T} \mathbf{1}_{R_0} \int_0^T \int_{S(x_0, R)} |u|^2 \phi_{S(x_0, R)}^\delta \, dz \, dt$, for some $\delta \in (0, 1)$; the refined cut-offs $\phi$ can be chosen such that $\phi_{B(x_0, R)} + \sum_{j=1}^{m_R} \phi_{S(x_0, 2^j R)} = \phi_0$, where $m_R = \lfloor \log_2 \left( \frac{R}{R_0} \right) \rfloor$, and $\phi_{B(x_0, R)}$ is a refined cut-off corresponding to $B(x_0, R)$. Then, around any point $x_0$ - the following dyadic decomposition of the total (integral scale-) energy $e_0$ transpires, $e_0 = e_{B(x_0, R)} + \sum_{j=1}^{m_R} e_{S(x_0, 2^j R)}$

where $e_{B(x_0, R)} = \frac{1}{T} \mathbf{1}_{R_0} \int_0^T \int_{B(x_0, 2R)} |u|^2 \phi_{B(x_0, R)}^\delta \, dz \, dt$. Next, introduce $(K_1, K_2)$-averaged dyadic decomposition of $e_0$ seeded at scale $R_d$ as follows. Let $\{B(x_i, R_d)\}_{i=1}^{n_d}$ be a $(K_1, K_2)$-cover at scale $R_d$. (At this point, $R_d$ is simply a ‘small scale’). Then, for each $x_i$ there exists a local dyadic decomposition of $e_0$ as described above. For simplicity, denote

$$B_i = B(x_i, R_d), \quad \phi_i = \phi_{B(x_i, R_d)}, \quad e_i = e_{B(x_i, R_d)},$$

$$S_{i,j} = S(x_i, 2^j R_d), \quad \phi_{ij} = \phi_{S_{ij}}, \quad e_{ij} = e_{S_{ij}} \quad \text{and} \quad m_d = \lfloor \log_2 \left( \frac{R_0}{R_d} \right) \rfloor.$$

Note that, for individual $j$, the shells $\{S_{ij}\}_{i=1}^{n_d}$ do not necessarily cover the integral domain. Defining by $E_0 = \frac{1}{n_d} \sum_{i=1}^{n_d} e_i$ the average energy associated with scales below $R_d$, and by $E_j = \frac{1}{m_d} \sum_{j=1}^{m_d} e_{ij}$ the average energy associated with the scale $2^j R_d$, the following identity holds,

$$(4.1) \quad e_0 = E_0 + \sum_{j=1}^{m_d} E_j; \quad \text{this is the sought after decomposition of } e_0.$$

Assume that $E_j$ follow Kolmogorov-type power law $E_j \sim e^{2/3} (2^j R_d)^{2/3}$ ($e$ is the total energy dissipation rate corresponding to the integral domain). The local energy inequality written on each shell $S_{ij}$ together with the estimates on derivatives of $\phi_{ij}$ yields

$$e_{ij} - c \left( \frac{1}{T} + \frac{\nu}{(2^j R_d)^2} \right) e_{ij} \leq \Phi_{ij} \leq e_{ij} + c \left( \frac{1}{T} + \frac{\nu}{(2^j R_d)^2} \right) e_{ij},$$

where $e_{ij}$ and $\Phi_{ij}$ are the total energy dissipation rate and the inward energy flux associated with $S(x_i, 2^j R_d)$, respectively; averaging in $i$ and summing up in $j$, we obtain

$$e - c \sum_{j=1}^{m_d} \left( \frac{1}{T} + \frac{\nu}{(2^j R_d)^2} \right) E_j \leq \Phi_0 \leq e + c \sum_{j=1}^{m_d} \left( \frac{1}{T} + \frac{\nu}{(2^j R_d)^2} \right) E_j,$$

where $\Phi_0$ is the space-time average of the flux into $B(0, R_0)$. The sufficient condition for the energy cascade presented in [DaGr11-1] implies $\Phi_0 \sim e$; this together with the above Kolmogorov-type power law implies

$$\frac{e^{1/3}}{\nu} = \frac{1}{m_d \sum_{j=1}^{m_d} \left( \frac{1}{R_d^{4/3}} - \frac{1}{R_0^{4/3}} \right) \sim \frac{1}{R_d^{4/3}},$$

or equivalently,

$$(4.2) \quad R_d \sim \left( \frac{\nu}{e} \right)^{1/4},$$

which is precisely the definition of Kolmogorov dissipation scale in the empirical theory of homogeneous isotropic turbulence.
TURBULENT CASCADES

The main goal here is to investigate the conditions under which such scaling power laws are possible. In particular, unraveling the power law $E_j \sim \epsilon^{2/3}(2^j R_d)^{2/3}$ – in the absence of anomalous dissipation – reveals that it is essentially a requirement on saturation of a suitable inequality involving Morrey-type quantities of $u$ and $\nabla u$; hence, Morrey-type analysis of weak solution to the 3D NSE will be a main mathematical device (cf. [Ku08, OL03, CP01]).

ACKNOWLEDGEMENTS Z.G. thanks the organizers of Modern approach and developments to Onsager’s theory on statistical vortices RIMS camp-style seminar in Kyoto, August 28-31, 2011, for an inspiring scientific experience.

REFERENCES


R. DASCAIUC AND Z. GRUJIÇ


arXiv:1103.4158


arXiv:1101.2209


arXiv:1107.0058


References


Department of Mathematics, Oregon State University, Corvallis, OR 97332

Department of Mathematics, University of Virginia, Charlottesville, VA 22904