<table>
<thead>
<tr>
<th>Title</th>
<th>Limiting Negations in Probabilistic Circuits (New Trends in Algorithms and Theory of Computation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Morizumi, Hiroki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2012, 1799: 81-83</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/172998</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Limiting Negations in Probabilistic Circuits

Hiroki Morizumi
Interdisciplinary Faculty of Science and Engineering, Shimane University
morizumi@cis.shimane-u.ac.jp

Abstract

The minimum number of NOT gates in a Boolean circuit computing a Boolean function \(f \) is called the inversion complexity of \(f \). In 1958, Markov determined the inversion complexity of every Boolean function and particularly proved that \(\lceil \log_2(n+1) \rceil \) NOT gates are sufficient to compute any Boolean function on \(n \) variables. In this note, we consider circuits computing probabilistically, and prove that the decrease of the inversion complexity is at most a constant if probabilistic circuits compute a correct value with probability \(1/2 + p \) for some constant \(p > 0 \).

1 Introduction

When we consider Boolean circuits with a limited number of NOT gates, there is a basic question: Can a given Boolean function be computed by a circuit with a limited number of NOT gates? This question was answered by Markov [2] in 1958 and the result plays an important role in the study of the negation-limited circuit complexity. The inversion complexity of a Boolean function \(f \) is the minimum number of NOT gates required to construct a Boolean circuit computing \(f \), and Markov completely determined the inversion complexity of every Boolean function \(f \). In particular, it has been shown that \(\lceil \log_2(n+1) \rceil \) NOT gates are sufficient to compute any Boolean function.

The inversion complexity has been studied for many circuit models such as constant depth circuit [5], bounded depth circuits [6], formulas [3], bounded treewidth and upward planar circuits [1], and non-deterministic circuits [4]. In this note, we consider the inversion complexity in probabilistic circuits.

2 Preliminaries

A circuit is an acyclic Boolean circuit which consists of AND gates of fan-in two, OR gates of fan-in two and NOT gates. A probabilistic circuit is a circuit with actual inputs \((x_1, \ldots, x_n) \in \{0,1\}^n \) and some further inputs
$(r_1, \ldots, r_m) \in \{0,1\}^m$ called random inputs which take the values 0 and 1 independently with probability 1/2. For $0 < p \leq 1/2$, a probabilistic circuit $C(x)$ computes a Boolean function $f(x)$ with probability $1/2 + p$ if

$$\text{Prob}[C(x) = f(x)] \geq 1/2 + p \quad \text{for each } x \in \{0,1\}^n.$$

In this note, we call a circuit without random inputs a deterministic circuit to distinguish it from a probabilistic circuit.

Let x and x' be Boolean vectors in $\{0,1\}^n$. $x \leq x'$ means $x_i \leq x'_i$ for all $1 \leq i \leq n$. $x < x'$ means $x \leq x'$ and $x_i < x'_i$ for some i.

The theorem of Markov [2] is in the following. We denote the inversion complexity of a Boolean function f in deterministic circuits by $I(f)$. A chain is an increasing sequence $x^1 < x^2 < \cdots < x^k$ of Boolean vectors in $\{0,1\}^n$. The decrease $d_X(f)$ of a Boolean function f on a chain X is the number of indices i such that $f(x^i) \not\leq f(x^{i+1})$. The decrease $d(f)$ of f is the maximum of $d_X(f)$ over all increasing sequences X. Markov gave the tight bound of the inversion complexity for every Boolean function.

Theorem 1 (Markov[2]). For every Boolean function f,

$$I(f) = \lceil \log_2(d(f) + 1) \rceil.$$

In Theorem 1, the Boolean function f can also be a multi-output function.

3 Inversion Complexity in Probabilistic Circuits

3.1 Result

We denote by $I_{pc}(f, q)$ the inversion complexity of a Boolean function f in probabilistic circuits with probability q. We consider only single-output Boolean functions since probabilistic circuits are not defined as ones computing multi-output Boolean functions.

Theorem 2. For every Boolean function f,

$$I_{pc}(f, 1/2 + p) \geq \lceil \log_2(2p \cdot d(f) + 1) \rceil.$$

By Theorem 1 and Theorem 2, if p is a constant, then the decrease of the inversion complexity from deterministic circuits is at most a constant, which means that probabilistic computation save only the constant number of NOT gates. Especially, if $p = 1/4$, then,

Corollary 1. For every Boolean function f,

$$I_{pc}(f, 3/4) \geq I(f) - 1.$$
3.2 Proof

Proof (of Theorem 2). Let C be a probabilistic circuit computes f with probability $1/2 + p$, and let X be a chain such that $d_X(f) = d(f)$, i.e., the decrease of f is the maximum on X. Consider some i such that $f(x^i) = 1$ and $f(x^{i+1}) = 0$. Since C computes each of $f(x^i)$ and $f(x^{i+1})$ correctly with at least $2^m(1/2 + p)$ random inputs, the number of random inputs such that C computes both of $f(x^i) = 1$ and $f(x^{i+1}) = 0$ correctly is at least,

$$2^m \cdot (1 - 2 \cdot (1 - (1/2 + p))) = 2^m \cdot 2p.$$

Since, for all i such that $f(x^i) = 1$ and $f(x^{i+1}) = 0$, the number of random inputs such that C computes both of $f(x^i) = 1$ and $f(x^{i+1}) = 0$ correctly is at least $2^m \cdot 2p$, there is random inputs r such that C with r computes $f(x^i) = 1$ and $f(x^{i+1}) = 0$ correctly for at least $2p \cdot d(f)$ i's. Let C' be a circuit which obtained by fixing random inputs in C to r. C' is a deterministic circuit and computes a Boolean function f' such that $d(f') \geq 2p \cdot d(f)$. By Theorem 1, C' includes at least $\lceil \log_2(2p \cdot d(f) + 1) \rceil$ NOT gates, which is also included in C.

\[\square\]

References

