2011 年度冬の LA シンポジウム [10]

Relations between language classes in terms of insertion and locality

Kaoru Fujioka *

1 Introduction

Insertion systems use only insertion operations of the form (u, x, v) and produce a string $\alpha uxv\beta$ for a given string $\alpha uv\beta$ by inserting the string x between u and v. From the definition of insertion operations, using only insertion operations, we generate only context-sensitive languages.

Using insertion systems together with some morphisms, characterizing recursively enumerable languages is obtained in [8], [6]. Furthermore, similarly to the Chomsky–Schützenberger representation theorem [1], each recursively enumerable language can be expressed using an insertion system and a Dyck language in [7], and each context-free language can be expressed using an insertion system and a star language in [5].

In [2] and [3], within the framework of the Chomsky-Schützenberger representation theorem, some characterizations and representation theorems of languages in the Chomsky hierarchy have been provided by insertion system γ , strictly locally testable language R, and morphism h such as $h(L(\gamma) \cap R)$.

The purpose of this paper is to clarify the relation between the classes of languages $h(L(\gamma) \cap R)$ using insertion systems of weight (i, 0) for $i \geq 1$ and those using insertion systems of weight (i, 1) for $i \geq 1$.

2 Preliminaries

For a string $x \in V^*$ with an alphabet V, |x| is the length of x. For $0 \le k \le |x|$, let $Pre_k(x)$ and $Suf_k(x)$ respectively denote the prefix and the suffix of x with length k. For $0 \le k \le |x|$, let $Int_k(x)$ be the set of intermediate substrings of x with length k.

For a positive integer k, a language L over T is strictly k-testable if a triplet $S_k = (A, B, C)$ exists with $A, B, C \subseteq T^k$ such that, for any w with $|w| \ge k$, w is in L iff $Pre_k(w) \in A$, $Suf_k(w) \in B$, $Int_k(w) \subseteq C$. A language L is strictly locally testable iff there exists an integer $k \ge 1$ such that L is strictly k-testable.

Note that, for an alphabet T, a language T^+ is a strictly 1-testable language.

Let LOC(k) be the class of strictly k-testable languages. There is the following result.

Theorem 1 [4] $LOC(1) \subset LOC(2) \subset \cdots \subset LOC(k) \subset \cdots \subset REG$.

We define an insertion system $\gamma = (T, P, A)$, where T is an alphabet, P is a finite set of insertion rules of the form (u, x, v) with $u, x, v \in T^*$, and A is a finite set of strings over T called axioms.

We write $\alpha \stackrel{r}{\Longrightarrow}_{\gamma} \beta$ if $\alpha = \alpha_1 uv\alpha_2$ and $\beta = \alpha_1 uxv\alpha_2$ for some insertion rule $r: (u, x, v) \in P$ with $\alpha_1, \alpha_2 \in T^*$. We write $\alpha \Longrightarrow \beta$ if no confusion exists. The reflexive and transitive closure of \Longrightarrow is defined as \Longrightarrow^* .

^{*}Office for Strategic Research Planning, Kyushu University

A language generated by γ is defined as

$$L(\gamma) = \{ w \in T^* \mid s \Longrightarrow_{\gamma}^* w, \text{ for some } s \in A \}.$$

An insertion system $\gamma = (T, P, A)$ is said to be of weight (m, n) if

$$\begin{array}{lll} m & = & \max\{ \; |x| \; | \; (u,x,v) \in P \}, \\ n & = & \max\{ \; |u| \; | \; (u,x,v) \in P \; \text{or} \; (v,x,u) \in P \}. \end{array}$$

For $m, n \geq 0$, let INS_m^n be the class of all languages generated by insertion systems of weight (m', n') with $m' \leq m$ and $n' \leq n$. We use * instead of m or n if the parameter is not bounded.

Theorem 2 [8]

1.
$$INS_{i}^{j} \subseteq INS_{i'}^{j'} \ (0 \le i \le i', \ 0 \le j \le j').$$

2.
$$INS^1 \subset CF$$
.

A mapping $h: V^* \to T^*$ is called *morphism* if $h(\lambda) = \lambda$ and h(xy) = h(x)h(y) hold for any $x, y \in V^*$. For any a in T, if h(a) = a holds, then h is an identity morphism.

The following results related to Chomsky–Schützenberger like characterization are obtained using insertion systems of weight (i,0) or (i,1) for $i \geq 1$ and strictly k-testable languages $(k \geq 1)$.

Theorem 3 [2]

1.
$$H(INS_1^0 \cap LOC(1)) \subset REG$$
.

2.
$$H(INS_1^0 \cap LOC(k)) = REG \ (k > 2)$$
.

- 3. $H(INS_i^0 \cap LOC(1))$ and REG are incomparable $(i \geq 2)$.
- 4. $H(INS_i^0 \cap LOC(1)) \subset CF \ (i \geq 2)$.
- 5. $H(INS_i^0 \cap LOC(k)) = CF \ (i, k \ge 2).$

Theorem 4 [3]

1.
$$H(INS_i^1 \cap LOC(k)) = CF \ (i \ge 1, k \ge 2).$$

2.
$$H(INS_i^1 \cap LOC(1)) \subset CF \ (i \geq 1)$$
.

In the present paper, we specifically examine the relation between language classes $H(INS_{i_0}^0 \cap LOC(k_0))$ and $H(INS_{i_1}^1 \cap LOC(k_1))$ for $i_0, k_0, i_1, k_1 \geq 1$.

3 Main Results

For context-free languages, from Theorem 3 and Theorem 4, we obtain

$$CF = H(INS_{i_0}^0 \cap LOC(k_0))$$

= $H(INS_{i_1}^1 \cap LOC(k_1))$

with $i_0, k_0, k_1 \geq 2, i_1 \geq 1$.

We next examine the language class $H(INS_2^0 \cap LOC(1))$. From Theorem 3, $H(INS_2^0 \cap LOC(1))$ and REG are known to be incomparable.

Theorem 5 $H(INS_2^0 \cap LOC(1))$ and $H(INS_1^1 \cap LOC(1))$ are incomparable.

Proof Consider an insertion system $\gamma_1 = (T, \{(\lambda, ab, \lambda)\}, \{\lambda\})$ of weight (2,0) with $T = \{a, b\}$, a strictly 1-testable language $R = T^+$, and an identity morphism $h: T^* \to T^*$. The above definition indicates directly that $L(\gamma) = h(L(\gamma) \cap R)$.

We can show that $L(\gamma_1)$ is not in $H(INS_1^1 \cap LOC(1))$ by contradiction. We omit the proof here.

Now we consider an insertion system $\gamma_2 = (T, \{(a, a, \lambda), (b, b, \lambda)\}, \{a, b\})$ of weight (1, 1) with $T = \{a, b\}$, a strictly 1-testable language $R = T^+$, and an identity morphism $h: T^* \to T^*$. From the definition, we have $L(\gamma_2) = h(L(\gamma_2) \cap R) = \{a^i \mid i \geq 1\} \cup \{b^i \mid i \geq 1\}$.

From [2], $L(\gamma_2)$ is not in $H(INS_2^0 \cap LOC(1))$. \square

Theorem 5 implies the following Corollaries.

Corollary 1 $H(INS_2^0 \cap LOC(1))$ and $H(INS_1^1 \cap LOC(1)) \cap H(INS_1^0 \cap LOC(2))$ are incomparable.

Corollary 2 $H(INS_2^0 \cap LOC(1)) \subset H(INS_i^1 \cap \mathbf{References})$ LOC(1)) $(i \geq 2)$.

For the class of languages $H(INS_1^0 \cap LOC(1))$, from the size of parameters, we have the inclusions $H(INS_1^0 \cap LOC(1)) \subseteq H(INS_1^1 \cap LOC(1))$ and $H(INS_1^0 \cap LOC(1)) \subseteq H(INS_1^0 \cap LOC(2))$. Next we present the following proper inclusion.

Theorem 6 $H(INS_1^0 \cap LOC(1)) \subset H(INS_1^1 \cap$ $LOC(1)) \cap H(INS_1^0 \cap LOC(2)).$

Proof To show the proper inclusion, we consider an insertion system $\gamma_2 = (T, \{(a, a, \lambda), (b, b, \lambda)\},\$ $\{a,b\}$) of weight (1,1) with $T=\{a,b\}$, a strictly 1-testable language $R = T^+$, and an identity morphism $h: T^* \to T^*$.

In a similar way to Theorem 5, we can show that $L(\gamma_2)$ is not in $H(INS_1^0 \cap LOC(1))$. \square

Corollary 3 $H(INS_1^0 \cap LOC(1)) \subseteq H(INS_1^1 \cap$ $LOC(1)) \cap H(INS_1^0 \cap LOC(2)) \cap H(INS_2^0 \cap$ LOC(1)).

4 Concluding Remarks

In the present paper, we specifically examined the language classes $H(INS_{i_0}^0 \cap LOC(k_0))$ and $H(INS_{i_1}^1 \cap LOC(k_1))$ for $i_0, i_1, k_0, k_1 \geq 1$ and considered the relations of those language classes.

The following remain as open problems:

- $H(INS_2^0 \cap LOC(1)) \cap H(INS_1^1 \cap LOC(1)) =$ $H(INS_1^0 \cap LOC(1))$ holds?
- $H(INS_2^0 \cap LOC(1)) \cap H(INS_1^1 \cap LOC(1)) \supset$ $H(INS_2^0 \cap LOC(1)) \cap H(INS_1^0 \cap LOC(2))$ holds?
- $CF = H(INS_m^2 \cap LOC(k))$ holds for some $m, k \geq 1$?

- [1] N. Chomsky and M.P. Schützenberger. The algebraic theory of context-free languages. Computer Programming and Formal Systems. North Holland, pp.118-161, 1963.
- [2] K. Fujioka. Morphic characterizations in terms of insertion systems with a context of length one. DLT 2011, LNCS 6795, pp.474-475, 2011.
- [3] K. Fujioka. Morphic characterizations of languages in Chomsky hierarchy with insertion and locality. Information and Computation 209, pp.397-408, 2011.
- [4] R. McNaughton and S.A. Papert. Counter-Free Automata (M.I.T. research monograph no. 65) The MIT Press, 1971.
- [5] F. Okubo and T. Yokomori. Morphic characterizations of language families in terms of insertion systems and star languages. Int. J. Found. Comput. Sci., 22 (1), pp.247-260, 2011.
- [6] K. Onodera. A note on homomorphic representation of recursively enumerable languages with insertion grammars. IPSJ Journal, 44,5, pp.1424-1427, 2003.
- [7] G. Păun, M.J. Pérez-Jiménez, and T. Yokomori. Representations and characterizations of languages in Chomsky hierarchy by using insertion-deletion systems. Int. J. Found. Comput. Sci. 19,4, pp.859-871, 2008.
- [8] G. Păun, G. Rozenberg, and A. Salomaa. Homomorphic characterizations of recursively enumerable languages with very small language classes. Theoretical Computer Science, 250, pp.55-69, 2001.