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Abstract 

The efficiency of the energetic ion confinement is reduced in a tokamak plasma by the non-axisymmetric field, 

namely the ripple field. The ripple field is produced by the finite number of the toroidal field coils. It is affected 

by the non-axisymmetric finite beta effect. The three-dimensional MHD equilibrium calculation code VMEC is 

used to analyze the non-axisymmetric finite beta effect in a ripple tokamak. In the VMEC code, the flux 

coordinates are used, so the calculation region is limited to the area of plasma. To calculate the orbit of them 

outside the plasma, we develop the field calculation code, which is based on the Biot-Savart law. The details of 

the method and results are described in this study. 

 

 

 1. Introduction 

 

A tokamak plasma is often approximately treated as 

an axisymmetric system. However, the finite number 

of the toroidal field coils breaks the axisymmetry of 

the plasma. The non-axisymmetric magnetic fields 

along the toroidal angle φ are called toroidal field 

(TF) ripples and the amount of energetic ion losses is 

increased by them. These losses produce several 

serious problems in a tokamak, such as the 

deterioration of the plasma heating efficiency and the 

concentration of heat loads on the first wall. 

To analyze these problems, the accurate magnetic 

field structures including the finite beta effects are 

necessary because the plasma equilibrium current 

also changes the magnetic field configurations. In the 

previous studies about energetic ion losses, the 

two-dimensional (2D) MHD equilibrium equations 

have been usually used by assuming the plasma to be 

axisymmetric in a tokamak plasma. The resulting 

MHD equilibrium field is axisymmetric. However, 

the three-dimensional (3D) magnetic field can be 

approximately obtained by superimposing the 

non-axisymmetric components of the vacuum field. 

The VMEC code is one of the 3D, free boundary 

MHD equilibrium calculation code and it has been 

ordinary used in a helical plasma [1][2]. These days, 

the VMEC code is often used to analyze the energetic 

ion losses also in a tokamak [3]-[5]. The full 3D MHD 

equilibria can be easily obtained by the VMEC code, 

while the calculation region is limited to the inside 

plasma region because flux coordinates are used in 

this code. In the result, the fraction of the lost energy 

and the loss position of the energetic ions could not 

be accurately evaluated. 

The equilibrium field is described as the sum of the 

magnetic fields from the external coil current and the 

plasma equilibrium current. If the plasma is assumed 

to be a kind of coils, the equilibrium field can be 

calculated from every coil shape and every coil 

current by using the Biot-Savart law. We developed 

the equilibrium field calculation code, which is based 

on this idea. The separatrix structures and the heat 

loads on the wall can be analyzed with this code. 

In Sec.2, the field calculation code is precisely 

explained. In Sec.3, the 3D magnetic configuration, 

which is obtained by this code, is analyzed. Finally, 

the summaries and conclusions are described in 

Sec.4. 

 

 

2. Details of the developed calculation code 

 

The equilibrium field can be calculated inside the 

plasma by the VMEC code in the flux coordinates 

(s,θ,ζ), where s, θ and ζ are the normalized toroidal 

magnetic flux, the poloidal angle and the toroidal 

angle, respectively. The toroidal angle φ of the 

cylindrical coordinates (R,Z,φ) is used as the toroidal 

angle ζ of the flux coordinates. 

Inside the plasma, the field in the flux coordinates is 

transformed to that in the cylindrical coordinates by 

the inverse mapping method [6]. However, outside the 

plasma boundary, this inverse mapping method can 

not be used. As previously mentioned, the 



equilibrium field can be calculated outside the plasma 

by the Biot-Savart law, 
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where jp is the plasma equilibrium current and Bext is 

the magnetic field from the external coil currents. 

We compare magnetic fields which are obtained by 

both calculation methods on the plasma boundary. 

The calculation model is referred to as the steady 

state 9MA scenario in ITER [4][6]. Figure 1 (a) and (b) 

show the relative error of each field component 

ΔBR/|B|, ΔBZ/|B| and ΔBφ/|B| on the plasma boundary 

between the results from the VMEC code and the 

developed field calculation code along the poloidal 

angle θ at φ=0 and along the toroidal angle φ at θ=0, 

respectively. Because of 1/|r-r’|, the calculation error 

appear in these figures, but the maximum relative 

error is only about 0.2%. Therefore, we can conclude 

that the developed field calculation code has high 

enough numerical accuracy. In this case, the 

normalized toroidal magnetic flux s, the poloidal 

angle θ and the toroidal angle ζ is divided to 40, 360 

and 720, respectively. To calculate the field structures, 

a lot of computational time and resources are required. 

Therefore, the equilibrium field is transformed from 

the flux coordinates to the cylindrical coordinates 

inside the plasma and calculated by the Biot-Savart 

law outside the plasma. 

 

 

3. Results 

 

3.1 Orbit of fusion alpha particles outside the plasma 

 

In this study, the steady state 9MA scenario in 

ITER is used as the calculation model. Figure 2 (a) 

and (b) show the safety factor profile q and the 

pressure profile P [MPa] as the function of the 

normalized toroidal magnetic flux s. The MHD 

equilibria are calculated by the VMEC code. The 

equilibrium field is transformed from the flux 

coordinates to the cylindrical coordinate by the 

calculation method explained in Chapter 2. The black 

lines in Fig.2 (c) show the poloidal magnetic flux 

surfaces. The separatrix configuration can be clearly 

seen in Fig.2 (c). 

First, the orbits of the fusion alpha particles are 

calculated by solving the guiding center orbit 

equation in the cyrindlical coordinates. In this 

calculation, the collision is ignored. Therefore, if the 

guiding center reaches the boundary (the plasma 

boundary or the first wall) the particles are assumed 

to be loss, else if the tracing time exceeds 0.01s, they 

are assumed to become non-loss particle. The green 

dots in Fig.3 (a) show the birth points of 10,000 

fusion alpha particles on the poloidal cross-section. In 

the case of the VMEC code alone, the orbit can be 

traced only inside the plasma. However, thanks to the 

additional procedure, we can calculate it up to the 

first wall. 

In Fig.3 (a), the blue dots show the position of the 

particles, which reach the plasma boundary, and the 

the red dots show the position of the particles, which 

reach the first wall. These positions are quite different 

Fig.2 (a) The safety factor profile q, (b) the pressure 

profile P [MPa] and (c) the poloidal magnetic 

flux surfaces in the steady state 9MA scenario 

in ITER 

 

(b) (c) 

(a) 

(b) (a) 

Fig.1 The relative error of each field component between the results from the VMEC code and the 

developed field calculation code on the plasma boundary (a) along the poloidal angle θ at φ=0 and 

(b) along the toroidal angle φ at θ=0 

 



between the two results, so the heat loads can not be 

correctly evaluated only from the VMEC results. All 

particles, which reach the plasma boundary, have 

often been assumed to be loss because the magnetic 

field line is not closed outside the plasma. In this 

calculation, 124 of the total 10,000 fusion alpha 

particles reach the plasma boundary. However, only 

98 of these collide with the first wall. This difference 

mainly comes from the width of the banana orbit. 

Figure 3 (b) shows the orbit of a particle which has a 

large banana width. It only reaches the plasma 

boundary during part of its orbit, but does not become 

loss. It clearly shows that the loss could not be 

correctly dtermined only from the VMEC results, so 

the additional procedure in this study is required. 

 

 

3.2 Non-axisymmetric field from the plasma current 

 

The strongest advantage of the VMEC code is that 

are able to research the non-axisymmetric finite beta 

effect. We should compare the full 3D MHD 

equilibria and the approximated 3D field, which is 

obtained by superimposing the vacuum ripple field 

on the 2D MHD equilibrium field. The ripple ratio δ 

is defined by 
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where Bmax and Bmin are the maximum and minimum 

field strength along the toroidal direction φ at the 

fixed (R,Z) position[4]. In this study, the δ of the full 

3D VMEC and the 3D approximated field are called 

δ3D and δ2D, respectively. Figure 4 (a) shows the δ3D 

distribution on the poloidal cross-section. δ3D is the 

strongest at the outer torus and the maximum value 

about 0.01. The δ3D–δ2D distribution on the poloidal 

cross-section is shown in Fig.4 (b) to show the 

non-axisymmetric finite beta effect on the δ 

distribution. It is obviously seen from Fig.4 (b) that 

the non-axisymmeric finite beta effect increase the 

ripple ratio. The maximum difference between δ3D 

and δ2D is about 0.0002. We should analyze how this 

increase in δ affects on the energetic ion losses.  

 A more reliable orbit calculation code is required to 

obtain more realistic and accurate results. The 

F3D-OFMC code has been widely used to calculate 

the ripple induced orbit losses [7][8]. The guiding 

center orbits are traced by this code while considering 

the slowing down and the pitch angle scattering. In 

this code, the finite Larmor radius effect is 

considered near the first wall. Figure 5 shows the loss 

rate of 10,000 fusion alpha particles calculated by the 

F3D-OFMC code. The red and blue line show the 

loss rate of the full 3D VMEC results and the 3D 

approximated field, respectively. The loss rate is 

defined as the ratio of the total kinetic energy of all 

loss particles at the loss point and the total initial 

energy of all particles. The final loss rates for the full 

3D VMEC and the 3D approximated field are about 

0.040 and 0.039, respectivity. The non-axisymmetric 

finite beta effect increases the ripple ratio and the loss 

rate by a small percentage. The red and blue points in 

Fig.6 show the loss positions for the two results. The 

shape of the first wall and the finite number of the 

toroidal fied coils are also shown in this figure. The 

loss positions for both results are concentrated on the 

bottom of the ripple (between the toroidal field coils). 

A clear difference between them could not be seen on 

this figure. We can conclude that the 

non-axisymmetric finite beta effect is negligibly 

small and the approximated 3D field has high 

numerical accuracy under the conditions of this 

research. 

Fig.4 (a) The ripple ratio δ for the full 3D MHD 

equilibrium field (δ3D) and (b) the diffecence 

of δ between the full 3D and the approximated 

3D field (δ3D–δ2D) 

 

(a) (b) 

Fig.3 (a) The birth points of the fusion alpha particles 

(the green dots), the positions of the loss 

particles on the plasma boundary (the blue 

dots) and these positions on the first wall (the 

red dots), and (b) the orbit of banana particle 

which reaches the plasma boundary 
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4. Summary 

 

 In this study, the VMEC code is used to analyze the 

non-axisymmetric finite beta effect. However, the 

equilibrium field could not be calculated inside the 

plasma because the flux coordinates are used. We 

propose and develop the field calculation code, which 

is based on the Biot-Savart law. The magnetic field 

configuration, which obtained by this method, is 

compared to the VMEC result and the maximum 

relative error is less than 1%.  

Next, the orbits of the fusion alpha particles are 

calculated. If particles reach the plasma boundary, 

they are often assumed to be loss because the 

magnetic field line is not closed outside the plasma. 

However, some of them does not become loss even if 

they reach the plasma boundary during part of its 

orbit. In this study, 124 of the total 10,000 fusion 

alpha particles reach the plasma boundary and only 

98 of these collide with the first wall. The loss could 

not be correctly dtermined only from the VMEC 

results. Therefore, the additional procedure in this 

study is required. 

To analyze the non-axisymmetric finite beta effect 

on the ripple induced orbit losses, we compare the 

results of the full 3D MHD equilibria and the 3D 

approximated field, which is obtained by 

superimposing the vacuum ripple field on the 2D 

MHD equilibrium field. The non-axisymmetric finite 

beta effect increases the ripple ratio by a small 

percentage. The effect of this increase is investigated 

by tracing the orbit of the fusion alpha particles by 

the F3D-OFMC code. The loss rates of the full 3D 

MHD equilibria and 3D approximated field are 0.040 

and 0.039, respectively. It shows that the loss rate is 

also increased by the non-axisymmetric finite beta 

effect. However, this effect is negligibly small. 

Furthermore, a difference of the loss positions could 

not be clearly found between the two 3D fields. 

Therefore, we can conclude that the 

non-axisymmetric finite beta effect is not strong 

under the condition of this research. 

An ITER plasma of the volume averaged beta 

<β>~2% is used as the calculation model in this study, 

which has small non-axisymmetric effect and small 

finite beta effects. In order to create a tokamak 

reactor with smaller ripple induced losses, it must be 

clarified how much do the number of the toroidal 

field coils, the aspect ratio and the beta value change 

the energetic ion losses. 
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Fig.6 The loss position of the fusion alpha particles 

on the first wall for the full 3D MHD 

equilibria (the red dots) and the 3D 

approximed field (the blue dots)  

 

 

Fig.5 The loss late for the full 3D MHD field (the 

red line) and the 3D approximated field (the 

blue line)  

 


