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Abstract. In this paper, a method is proposed to solve the problem of mono-

tone smoothing splines using general linear systems. This problem, also called
monotone control theoretic splines, has been solved only when the curve gen-
erator is modeled by the second-order integrator, but not for other cases. The

difficulty in the problem is that the monotonicity constraint should be sat-
isfied over an interval which has the cardinality of the continuum. To solve
this problem, we first formulate the problem as a semi-infinite quadratic pro-
gramming, and then we adopt a discretization technique to obtain a finite-

dimensional quadratic programming problem. It is shown that the solution of
the finite-dimensional problem always satisfies the infinite-dimensional mono-
tonicity constraint. It is also proved that the approximated solution converges
to the exact solution as the discretization grid-size tends to zero. An example

is presented to show the effectiveness of the proposed method.

1. Introduction

Control theoretic splines are either interpolating or smoothing splines, depending
on the constraints and cost function, with a constraint written as a system of
linear differential equations [25]. The spline curve is obtained as the output of
a given linear system. This concept is generalization of the smoothing spline by
Wahba [17, 28] in that a richer class of smoothing curves can be obtained relative
to polynomial curves. They have been proved to be useful in trajectory planning [8,
22], mobile robots [26], contour modeling of images [15], probability distribution
estimation [3, 4], and so on. For more applications and a rather complete theory
of control theoretic splines, see the book [10].

On the other hand, monotone control theoretic splines are also important in
deriving a model or an estimation of a parameter such as the growing rate of
an individual [7, 9, 10]. Also, there have been a few applications of monotone
smoothing in the statistical literature. The work of Ramsay [21] and the discussion
associated with the paper seems to be the first use. A more recent paper by
Kelly [16] is a nice application.

Monotonicity is achieved by adding a non-negative (or non-positive) derivative
constraint on the output of the target linear system over a time interval. Since the
interval is an infinite subset of [0,∞), this constraint becomes infinite-dimensional,
which makes the problem difficult to solve. In [7, 9], this has been solved when the
target linear system is a second-order integrator 1/s2. However, for general cases,
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no solution has been obtained. More recently, the smoothing problem has been
solved with inequality constraints [1], in which inequality constraints are defined
only on sampling points, and the constraints may be violated between sampling
points.

In this paper, we propose a new method for constructing monotone splines guar-
anteeing the inequality constraint on a whole time interval, say [0, T ], with more
general linear systems. To solve this, we first formulate the problem as a semi-
infinite quadratic programming problem [13, 19]. Then we adopt a discretization
technique [14, 27] to reduce the infinite-dimensional constraints to a finite dimen-
sional constraints. This discretization is executed by partitioning the time interval
into finitely many subintervals and estimating the constraint on a finite grid. The
finite-dimensional quadratic programming problem can be solved with efficient al-
gorithms [2].

We also discuss the limiting properties of the approximated solution. Whereas
the approximated solution is constrained on a finite grid, we show that it satisfies the
original infinite-dimensional constraint provided the grid size is sufficiently small.
We also prove that the approximated solution converges to the exact solution as
the discretization grid-size tends to zero. By these properties, the proposed method
can be safely adopted for monotone control theoretic splines. We also construct an
illustrative example to show the effectiveness of our method.

The method proposed in this paper can be directly applied to model predictive
control (MPC), in particular nonuniformly-sampled-data MPC with continuous-
time inequality constraints. For the study, there are many researches; MPC with
uniform sampling and piecewise constant control [20, 12], with constraints only on
the sampling points [6], and with nonuniformly sampling but unconstrained [24].
To our knowledge, there is no method for nonuniformly-sampled-data MPC with
relatively general control inputs which guarantees continuous-time constraints as
we will consider in this paper.

The organization of this paper is as follows: Section 2 defines the problem of
monotone control theoretic splines. In Section 3, we formulate the problem as a
semi-infinite quadratic programming. Section 4 is the main section, where dis-
cretization approach is introduced and the limiting properties are discussed. Sec-
tion 5 suggests a formula for computing inner products used in our optimization. A
numerical example is illustrated in Section 6, and a conclusion is made in Section 7.

Notation. In this paper, we use the following notation. R, Rn, and Rn×n are
respectively the set of real numbers, n-dimensional real vectors and n×n matrices.
We denote L2[0, T ] by the Lebesgue space consisting of all square integrable real
functions on [0, T ] ⊂ R, endowed with the inner product

⟨x, y⟩ :=
∫ T

0

x(t)y(t)dt, x, y ∈ L2[0, T ].

For a matrix (a vector)M ,M⊤ is the transpose ofM . For a vector v = [v1, . . . , vn]
⊤ ∈

Rn, v ⪯ 0 means vi ≤ 0 for i = 1, 2, . . . , n, and for two vectors v and w, v ⪯ w if
v − w ⪯ 0. For a vector v ∈ Rn,

∥v∥1 :=

n∑
i=1

|vi|,

∥v∥∞ := max
i=1,...,n

|vi|.
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2. Monotone Smoothing Splines

In this paper, we consider the following problem of monotone smoothing splines:

Problem 1 (Monotone smoothing splines). Given a linear time-invariant system

ẋ = Ax+Bu, y = Cx, x(0) = x0 ∈ Rn,

where x(t) ∈ Rn is the state vector, u(t) ∈ R is the control input, y(t) ∈ R is the
plant output, A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and also given a data set

D :=
{
(t1, α1), (t2, α2), . . . , (tm, αm)

}
,

with time instants 0 < t1 < t2 < · · · < tm =: T and noisy data α1, . . . , αm ∈ R
on the time instants, find the control u ∈ L2[0, T ] and the initial condition x(0) =
x0 ∈ Rn that minimizes the following cost function:

J(u) := λ

∫ T

0

u(t)2dt+

m∑
i=1

wi

(
y(ti)− αi

)2
, (1)

where λ and wi’s are given positive numbers (weights), subject to the monotonicity
constraint

ẏ(t) ≥ 0, ∀t ∈ [0, T ]. (2)

The cost function (1) considers elimination of Gaussian noise on the data {α1, . . . , αm}
and limitation on the L2 norm of the control u. This formulation is an extension
of Wahba’s smoothing spline [17, 28].

This problem has been solved in [7, 9] only when C(sI−A)−1B = 1/s2. However,
for other cases, the problem has not been solved.

Remark 1. One might think that the problem can be solved via a technique of model
predictive control (MPC). The difficulty in using MPC is that we have to treat
the constraint (2) which is infinite dimensional. If we discretize this constraint as
ẏ(ti) ≥ 0 i = 1, 2, . . . ,m to use a standard MPC formulation, the original constraint
(2) will be guaranteed only on the sampling points t1, . . . , tm, not on the whole [0, T ].
As mentioned in Section 1, there is no method for the problem given in (1) and (2)
within the framework of MPC.

3. Formulation by Semi-Infinite Quadratic Programming

We here formulate the problem given in the previous section by semi-infinite
quadratic programming. We first assume that we search the optimal control u in
the following subspace of L2[0, T ] as taken in [25]:

Vm :=

{
u ∈ L2[0, T ] : u =

m∑
i=1

ηiϕti , ηi ∈ R
}
,

where ϕt ∈ L2[0, T ] is defined by

ϕt(τ) :=

{
CeA(t−τ)B, t > τ,

0, t ≤ τ.
(3)

This characterization is based on the representer theorem [17, 28, 23] for the regu-
larized cost functional (1) with the kernel k(t, τ) = ⟨ϕt, ϕτ ⟩; the optimal estimation
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y(t) is represented by

y(t) =

m∑
i=1

ηik(t, ti) =

m∑
i=1

ηi⟨ϕt, ϕti⟩.

One can consider other base functions {ϕi}Mi=1 than (3) and define the subspace
VM := span{ϕi}Mi=1 where M ≫ m. This is related to basis pursuit denoising [5],
with which we are not concerned in this paper.

By assuming that the control u is in the subspace Vm, the cost function (1) can
be described as [25]

J

(
m∑
i=1

ηiϕti

)
=

1

2
θ⊤Pθ + q⊤θ + α⊤Wα, (4)

where θ := [η1, . . . , ηm, x⊤
0 ]

⊤, α := [α1, . . . , αm]⊤, and

P :=

[
2(λI +GW )G 2GWF

2F⊤WG 2F⊤WF

]
, q := −2

[
G F

]⊤
Wα,

G :=

 ⟨ϕt1 , ϕt1⟩ ⟨ϕt2 , ϕt1⟩ . . . ⟨ϕtm , ϕt1⟩
...

...
. . .

...
⟨ϕt1 , ϕtm⟩ ⟨ϕt2 , ϕtm⟩ . . . ⟨ϕtm , ϕtm⟩

 , F :=

CeAt1

...
CeAtm

 ,

W := diag {w1, . . . , wm} .

Let ϕ̇t(τ) be the derivative of ϕt(τ), that is,

ϕ̇t(τ) :=
∂ϕt(τ)

∂t
=

{
CAeA(t−τ)B, if t > τ,

0, if t ≤ τ.
(5)

By using this, the derivative ẏ(t) can be calculated as ẏ(t) = Φ(t)⊤θ, where

Φ(t) :=


⟨ϕ̇t, ϕt1⟩

...

⟨ϕ̇t, ϕtm⟩
eA

⊤tA⊤C⊤

+ CB


ϕt1(t)

...
ϕtm(t)

0

 .

The constraint (2) now becomes Φ(t)⊤θ ≥ 0 for all t ∈ [0, T ]. In summary, Prob-
lem 1 is formulated by the following:

Problem 2. Find θ ∈ Rm+n that minimizes

f(θ) =
1

2
θ⊤Pθ + q⊤θ, (6)

subject to
g(θ, t) = −Φ(t)⊤θ ≤ 0, for all t ∈ [0, T ]. (7)

Note that the term α⊤Wα in (4) is omitted in (6) since this term is constant
(independent of θ) and does not change the optimal solution. Problem 2 is a
semi-infinite quadratic programming problem. By the optimal solution θ∗ to this
problem, we obtain the optimal control input u∗ by

u∗(t) =
m∑
i=1

θ∗[i]ϕti(t),

where θ∗[i] is the i-th element of θ∗.



MONOTONE SMOOTHING SPLINES USING GENERAL LINEAR SYSTEMS 5

4. Discretization Approach to Monotone Splines

4.1. Discretization. The difficulty in Problem 2 is that the inequality constraint
(7) is infinite dimensional. We here introduce an approximation technique for such
an infinite-dimensional constraint. To reduce this to a finite dimensional one, we
adopt the technique of discretization [14, 27].

We first divide the interval [0, T ] into M subintervals: [0, T ] = [T0, T1] ∪ · · · ∪
(TM−1, TM ], where {Ti} is the discretization grid satisfying 0 = T0 < T1 < · · · <
TM = T. Then we evaluate the function g(θ, t) in (7) on the grid points t =
T0, T1, . . . , TM . To guarantee the constraint (7), we choose real numbers ϵ > 0 and
r > 0 and adopt the following constraints:

g(θ, T0) ≤ −ϵ, . . . , g(θ, TM ) ≤ −ϵ, −r1 ⪯ θ ⪯ r1 (8)

where 1 = [1, 1, . . . , 1]⊤ ∈ Rm+n. The second inequality is component wise (see
Notation in Section 1), and means ∥θ∥∞ ≤ r. The finite-dimensional constraints
(8) can be represented as a matrix inequality,

Hθ ⪯ v, (9)

where

H :=
[
Φ(T0) . . . Φ(TM ) I −I

]⊤
,

v :=
[
−ϵ . . . −ϵ r1⊤ r1⊤ ]⊤

.

In summary, the problem of monotone control theoretic splines for arbitrarily
linear time-invariant system {A,B,C} can be approximately described by the fol-
lowing quadratic programming: find θ ∈ Rm+n which minimizes (6) subject to
(9). This is a standard quadratic programming and can be efficiently solved by
numerical softwares such as MATLAB.

Remark 2. We can also include equality constraints into our optimization. For
example, if we want to have y(T ) = 1 and ẏ(T ) = 0, then our constraints are
represented by [

⟨ϕT , ϕt1⟩, . . . , ⟨ϕT , ϕtm⟩, CeAT
]
θ = 1,[

⟨ϕ̇T , ϕt1⟩, . . . , ⟨ϕ̇T , ϕtm⟩, CAeAT
]
θ = 0.

These constraints are finite dimensional and can be included easily in our quadratic
programming. In general, equality constraints on the output y and the derivative ẏ
on time instants in [0, T ] can be represented by linear constraints as above.

Remark 3. Splines with another constraint than monotonicity such as concavity,
i.e., ÿ(t) ≤ 0, can be also solved by the same method.

4.2. Convergence analysis. Put N := m + n. Define feasible sets F for the

original optimization and F̃(M, ϵ, r) for the approximation respectively by

F :=
{
θ ∈ RN : g(θ, t) ≤ 0, t ∈ [0, T ]

}
, (10)

F̃(M, ϵ, r) :=
{
θ ∈ RN : g(θ, t) ≤ −ϵ, t ∈ {T0, . . . , TM}, ∥θ∥∞ ≤ r

}
. (11)

To prove our first proposition, we assume the following:

Assumption 1. The function Φ(t) is Lipschitz continuous, that is, there exists a
real number µ > 0 such that ∥Φ(t)− Φ(s)∥1 ≤ µ|t− s| for all t, s ∈ [0, T ].
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Remark 4. Systems whose relative degree is higher than or equal to 2 satisfy the
above assumption. First, by the definition of ϕ̇t(τ) in (5), we can say that for

j = 1, 2, . . . ,m, d
dt ⟨ϕ̇t, ϕtj ⟩ is bounded on [0, T ], and hence ⟨ϕ̇t, ϕtj ⟩ is Lipschitz on

[0, T ]. Also, the function eA
⊤tA⊤C⊤ is Lipschitz. These facts and CB = 0 (since

the relative degree ≥ 2) result in that Φ(t) is Lipschitz.

Define the discretization grid-size by

Imax(M) := max
{
|Ti − Ti−1| : i = 1, 2, . . . ,M

}
.

We then have the following proposition:

Proposition 1. Suppose that Assumption 1 is satisfied. Suppose also that M , ϵ
and r are chosen such that

Imax(M) ≤ ϵ

rµ
. (12)

Then we have F̃(M, ϵ, r) ⊆ F .

Proof. Let θ ∈ F̃(M, ϵ, r). By the definition of F̃(M, ϵ, r) in (11), θ satisfies
g(θ, Ti) ≤ −ϵ, i = 0, 1, . . . ,M . Then, for any t ∈ [0, T ], there exists i ∈ {1, . . . ,M}
such that t ∈ [Ti−1, Ti]. By Assumption 1 and the condition ∥θ∥∞ ≤ r in (11), we
have

g(θ, t)− g(θ, Ti) = − (Φ(t)− Φ(Ti))
⊤
θ ≤ rµ(Ti − t).

By this inequality, we have

g(θ, t) ≤ rµ(Ti − t) + g(θ, Ti) ≤ rµImax(M)− ϵ ≤ 0.

The last inequality is due to (12). Thus, θ ∈ F and hence F̃(M, ϵ, r) ⊆ F . □
By this proposition, we can guarantee the constraint (7) by searching the pa-

rameter θ in the finite-dimensional feasible set F̃(M, ϵ, r) provided that the number
M is sufficiently large to satisfy (12).

Next, we analyze the limiting property of the approximated solution when the
discretization grid size tends to zero. To prove the property, we assume the follow-
ing:

Assumption 2. The interior of F
int F :=

{
θ ∈ RN : g(θ, t) < 0, for all t ∈ [0, T ]

}
is nonempty.

Remark 5. Assumption 2 is slightly restrictive. A sufficient condition for this
is that A is a Metzler matrix1 and CA ⪰ 0 (CA ̸≡ 0). By the positive system
theory [11], A is Metzler if and only if eAt ⪰ 0 for all t ∈ R. Let u ≡ 0. Then, we
have ẏ(t) = CAeAtx0 ≥ 0 for all t ∈ R. Since CAeAtx0 is continuous on R, we
have ẏ(t) = CAeAtx0 > 0 for all t ∈ [0, T ], if we choose sufficient large x0 ≻ 0.
Therefore, int F is nonempty in this case.

Then we have the following theorem:

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied. Let M(ϵ, r) be the
minimum value among all M ’s satisfying (12). For f(θ) given in (6) , define

θ∗ := argmin
θ∈F

f(θ), θ∗ϵ,r := argmin
θ∈F̃(M(ϵ,r),ϵ,r)

f(θ).

1A matrix A is called a Metzler matrix if all the off-diagonal components are nonnegative.
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Then we have f(θ∗ϵ,r) → f(θ∗) as ϵ → +0 and r → ∞.

Proof. Since int F is nonempty, there exist θ̄ ∈ int F . It follows that there
exists δ > 0 such that

g(θ̄, t) ≤ −δ, ∀t ∈ [0, T ]. (13)

Then, since F is a convex set, we have θξ := ξθ̄+(1− ξ)θ∗ ∈ int F for all ξ ∈ (0, 1].
Fix arbitrarily ξ ∈ (0, 1]. Since f is a convex function, we have

f(θξ) ≤ ξ(θ̄) + (1− ξ)f(θ∗) = f(θ∗) + ξ∆, (14)

where ∆ := f(θ̄) − f(θ∗). Note that ∆ ≥ 0 by the definition of θ∗. Also, for all
t ∈ [0, T ], we have

g(θξ, t) = −Φ(t)⊤θξ = ξg(θ̄, t) + (1− ξ)g(θ∗, t) ≤ −ξδ,

where the last inequality is due to inequality (13) and g(θ∗, t) ≤ 0 for θ∗ ∈ F
defined in (10). Let r̄ := maxξ∈(0,1] ∥θξ∥∞ and fix arbitrarily r ≥ r̄. Then we have

θξ ∈ F̃(M(ξδ, r), ξδ, r). This gives the following inequality:

f(θ∗ξδ,r) ≤ f(θξ) ≤ f(θ∗) + ξ∆. (15)

On the other hand, by Proposition 1, we have F ⊇ F̃(M(ξδ, r), ξδ, r), and hence

f(θ∗) ≤ f(θ∗ξδ,r). (16)

Combining (15) and (16) gives f(θ∗) ≤ f(θ∗ξδ,r) ≤ f(θ∗) + ξ∆. We thus have

lim
ϵ→+0
r→∞

f(θ∗ϵ,r) = lim
ξ→+0
r→∞

f(θ∗ξδ,r) = f(θ∗).

□
Remark 6. By Theorem 1, the semi-infinite programming we consider here is
weakly discretizable [19]. Note that this does not necessarily imply that θ∗ϵ,r → θ∗.

By Theorem 1, the proposed approximation method given in the previous section
can be safely adopted for monotone control theoretic splines.

5. Computing Inner Product

To compute the Grammian G and the matrix Φ(t), we have to compute the
following inner products for fixed s, t ∈ [0, T ]:

⟨ϕs, ϕt⟩ =
∫ T

0

ϕs(τ)ϕt(τ)dτ,

⟨ϕ̇s, ϕt⟩ =
∫ T

0

ϕ̇s(τ)ϕt(τ)dτ.

These values can be easily computed by matrix exponentials [18]:

⟨ϕs, ϕt⟩ = B⊤eA
⊤s

(∫ h

0

e−A⊤τC⊤Ce−Aτdτ

)
eAtB

=: v⊤s
(
F⊤
22F12

)
vt,

where h := min(s, t), vτ := eAτB (τ = t, s), and the matrices F22 and F12 are
defined by [

F11 F12

0 F22

]
:= exp

([
A⊤ C⊤C
0 −A

]
h

)
.



8 M. NAGAHARA AND C. F. MARTIN

0 1 2 3 4 5 6 7

0.6

0.8

1

1.2

1.4

1.6

Output y(t)

Time (sec)

A
m

p
li

tu
d
e

Figure 1. Data (circles) and estimation y(t) by the proposed
method (solid), and a conventional discretization method (dash)

The inner product ⟨ϕ̇s, ϕt⟩ is also obtained by

⟨ϕ̇s, ϕt⟩ = v⊤s
(
H⊤

22H12

)
vt,[

H11 H12

0 H22

]
:= exp

([
A⊤ A⊤C⊤C
0 −A

]
h

)
.

6. Example

We here show an example of monotone control theoretic splines. Assume that
the system is given by

P (s) =
1

s2(s2 + 1)
. (17)

Note that for the second order integrator 1/s2 the exact optimal solution can be
obtained [7, 9], but for higher order systems as in (17), there has been no method to
construct monotone smoothing splines. Let the original curve be yorig(t) = 1.5−e−t,
and the noisy data is obtained by

ti = i, αi = yorig(ti) + εi, i = 1, . . . , 7,

where εi is an independently and identically distributed random variable of the
Gaussian distribution N (0, 0.05). The estimation result is shown in Fig. 1. We also
calculate the estimation by a standard method as used in [1] with the monotone
constraint only on the points t = 0, 1, . . . , 7. This figure shows that our estimation
works well while the conventional one shows oscilations in the intervals (3, 4) and
(5, 6), which indicates that the derivative is negative. To see this more precisely,
we show the derivative ẏ(t) in Fig. 2. We can see that the derivative by the
conventional method is non-negative on the sampling points t = 0, 1, . . . , 7, however
the constraint is violated in the intervals (3, 4) and (5, 6) (See Fig. 3 for an enlarged
plot). On the other hand, the derivative by our method is always non-negative on
the whole interval t ∈ [0, 7]. Fig. 4 shows the input u(t) for the both methods. By
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Figure 2. Derivative of estimation y(t) by the proposed method
(solid), and a conventional discretization method (dash)
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Figure 3. Enlarged plot of Fig. 2

this figure, we can see that the input signal u(t) of the conventional method shows
large gain on the intervals (3, 4) and (5, 6) where the conventional method violates
the monotonicity constraint.

7. Conclusion

In this paper, we have proposed a new method for solving the problem of mono-
tone control theoretic splines for general linear systems. By using discretization
technique, the problem is approximately described as a finite-dimensional quadratic
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Figure 4. Input u(t): proposed (solid) and conventional (dash)

programming. The optimal parameters can be efficiently obtained by numerical op-
timization softwares such as MATLAB. The obtained estimation is guaranteed to
satisfy the monotonicity constraint. We also proved limiting properties of approxi-
mated solutions. Future work may include quantification of the error introduced by
the proposed approximation, and also construction of monotone control theoretic
splines for MIMO (multi-input multi-output) systems.
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