
ABOUT THE CONNES EMBEDDING CONJECTURE
—algebraic approaches—
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Abstract. In his celebrated paper in 1976, A. Connes casually remarked that any finite
von Neumann algebra ought to be embedded into an ultraproduct of matrix algebras,
which is now known as the Connes embedding conjecture or problem. This conjecture
became one of the central open problems in the field of operator algebras since E. Kirch-
berg’s seminal work in 1993 that proves it is equivalent to a variety of other seemingly
totally unrelated but important conjectures in the field. Since then, many more equiv-
alents of the conjecture have been found, also in some other branches of mathematics
such as noncommutative real algebraic geometry and quantum information theory. In
this note, we present a survey of this conjecture with a focus on the algebraic aspects of
it.

1. Introduction. The Connes Embedding Conjecture ([Co]) is considered as one of the
most important open problems in the field of operator algebras. It asserts that any fi-
nite von Neumann algebra is approximable by matrix algebras in a suitable sense. It
turns out, most notably by Kirchberg’s seminal work ([Ki1]), that the Connes Embed-
ding Conjecture is equivalent to a variety of other important conjectures, which touches
most of the subfields of operator algebras, and also some other branches of mathematics
such as noncommutative real algebraic geometry ([Sm]) and quantum information theory.
In this note, we look at the algebraic aspects of this conjecture. (See [BO, Ki1, Oz1]
for the analytic aspects.) This leads to a study of the C∗-algebraic aspect of noncom-
mutative real algebraic geometry in terms of semi-pre-C∗-algebras. Specifically, we treat
some easy parts of Positivstellensätze of Putinar ([Pu]), Helton–McCullough ([HM]), and
Schmüdgen–Bakonyi–Timotin ([BT]). We then treat their tracial analogue by Klep–
Schweighofer ([KS]), which is equivalent to the Connes Embedding Conjecture. We give
new proofs of Kirchberg’s theorems on the tensor product C∗Fd⊗B(`2) and on the equiv-
alence between the Connes Embedding Conjecture and Kirchberg’s Conjecture. We also
look at Tsirelson’s Problem in quantum information theory ([Fr, J+, Ts]), and prove it is
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again equivalent to the Connes Embedding Conjecture. This paper is an expanded lecture
note for the author’s lecture for “Masterclass on sofic groups and applications to oper-
ator algebras” (University of Copenhagen, 5–9 November 2012). The author gratefully
acknowledges the kind hospitality provided by University of Copenhagen during his stay
in Fall 2012. He also would like to thank Professor Andreas Thom for valuable comments
on this note.

2. Ground assumption. We deal with unital ∗-algebras over k ∈ {C,R}, and every
algebra is assumed to be unital, unless it is clearly not so. The unit of an algebra is
simply denoted by 1 and all homomorphisms and representations between algebras are
assumed to preserve the units. We denote by i the imaginary unit, and by λ∗ the complex
conjugate of λ ∈ C. In case k = R, one has λ∗ = λ for all λ ∈ k.

3. Semi-pre-C∗-algebras. We will give the definition and examples of semi-pre-C∗-alge-
bras. Recall that a unital algebra A is called a ∗-algebra if it is equipped with a map
x 7→ x∗ satisfying the following properties:

(i) 1∗ = 1 and (x∗)∗ = x for every x ∈ A;
(ii) (xy)∗ = y∗x∗ for every x, y ∈ A;

(iii) (λx+ y)∗ = λ∗x∗ + y∗ for every x, y ∈ A and λ ∈ k.

The sets of hermitian elements and unitary (orthogonal) elements are written respectively
as

Ah := {a ∈ A : a∗ = a} and Au := {u ∈ A : u∗u = 1 = uu∗}.
Every element x ∈ A decomposes uniquely as a sum x = a + b of an hermitian element
a and a skew-hermitian element b. The set of hermitian elements is an R-vector space.
We say a linear map ϕ between ∗-spaces is self-adjoint if ϕ∗ = ϕ, where ϕ∗ is defined
by ϕ∗(x) = ϕ(x∗)∗. We call a subset A+ ⊂ Ah a ∗-positive cone (commonly known as a
quadratic module) if it satisfies the following:

(i) R≥01 ⊂ A+ and λa+ b ∈ A+ for every a, b ∈ A+ and λ ∈ R≥0;
(ii) x∗ax ∈ A+ for every a ∈ A+ and x ∈ A.

For a, b ∈ Ah, we write a ≤ b if b− a ∈ A+. We say a linear map ϕ between spaces with
positivity is positive if it sends positive elements to positive elements (and often it is also
required self-adjoint), and a positive linear map ϕ is faithful if a ≥ 0 and ϕ(a) = 0 implies
a = 0. Given a ∗-positive cone A+, we define the ∗-subalgebra of bounded elements by

Abdd = {x ∈ A : ∃R > 0 such that x∗x ≤ R1}.

This is indeed a ∗-subalgebra of A. For example, if x is bounded and x∗x ≤ R1, then x∗

is also bounded and xx∗ ≤ R1, because

0 ≤ R−1(R1− xx∗)2 = R1− 2xx∗ +R−1x(x∗x)x∗ ≤ R1− xx∗.

Thus, if A is generated (as a ∗-algebra) by S, then S ⊂ Abdd implies A = Abdd.
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Definition. A unital ∗-algebra A is called a semi-pre-C∗-algebra if it comes together with
a ∗-positive cone A+ satisfying the Combes axiom (also called the archimedean property)
that A = Abdd.

Since h ≤ (1 +h2)/2 for h ∈ Ah, one has Ah = A+−A+ for a semi-pre-C∗-algebra. We
define the ideal of infinitesimal elements by

I(A) = {x ∈ A : x∗x ≤ ε1 for all ε > 0}
and the archimedean closure of the ∗-positive cone A+ (or any other cone) by

arch(A+) = {a ∈ Ah : a+ ε1 ∈ A+ for all ε > 0}.
The cone A+ is said to be archimedean closed if A+ = arch(A+). A C∗-algebra A is of
course a semi-pre-C∗-algebra, with a zero infinitesimal ideal and an archimedean closed
∗-positive cone

A+ = {x∗x : x ∈ A}.
If A ⊂ B(H) (here B(H) denotes the C∗-algebra of the bounded linear operators on a
Hilbert space H over k), then one also has

A+ = {a ∈ Ah : 〈aξ, ξ〉 ≥ 0 for all ξ ∈ H}.
Note that the condition a being hermitian can not be dropped when k = R. It will be
shown (Theorem 1) that if A is a semi-pre-C∗-algebra, then A/I(A) is a pre-C∗-algebra
with a ∗-positive cone arch(A+).

Definition. We define the universal C∗-algebra of a semi-pre-C∗-algebra A as the C∗-
algebra C∗u(A) together with a positive ∗-homomorphism ι : A → C∗u(A) which satisfies
the following properties: ι(A) is dense in C∗u(A) and every positive ∗-representation π of
A on a Hilbert space H extends to a ∗-representation π̄ : C∗u(A)→ B(H), i.e., π = π̄ ◦ ι.
In other words, C∗u(A) is the separation and completion of A under the C∗-semi-norm

sup{‖π(a)‖B(H) : π a positive ∗-representation on a Hilbert space H}.
(We may restrict the dimension of H by the cardinality of A.)

We emphasize that only positive ∗-representations are considered. Every positive ∗-
homomorphism between semi-pre-C∗-algebras extends to a positive ∗-homomorphism be-
tween their universal C∗-algebras. It may happen that A+ = Ah and C∗u(A) = {0}, which
is still considered as a unital (?) C∗-algebra. Every ∗-homomorphism between C∗-algebras
is automatically positive, has a norm-closed range, and maps the positive cone onto the
positive cone of the range. However, this is not at all the case for semi-pre-C∗-algebras,
as we will exhibit a prototypical example in Example 1. On the other hand, we note that
if A is a norm-dense ∗-subalgebra of a C∗-algebra A such that arch(A+) = A∩A+, then
every positive ∗-representation of A extends to a ∗-representation of A, i.e., A = C∗u(A).
(Indeed, if x ∈ A has ‖x‖A < 1, then 1−x∗x ∈ A+ and hence ‖π(x)‖ < 1 for any positive
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∗-representation π of A.) It should be easy to see that the following examples satisfy the
axiom of semi-pre-C∗-algebras.

Example 1. Let Γ be a discrete group and k[Γ] be its group algebra over k:

(f ∗ g)(s) =
∑
t∈Γ

f(st−1)g(t) and f ∗(s) = f(s−1)∗ for f, g ∈ k[Γ].

The canonical ∗-positive cone of k[Γ] is defined as the sums of hermitian squares,

k[Γ]+ = {
n∑
i=1

ξ∗i ∗ ξi : n ∈ N, ξi ∈ k[Γ]}.

Then, k[Γ] is a semi-pre-C∗-algebra such that C∗u(k[Γ]) = C∗Γ, the full group C∗-algebra
of Γ, which is the universal C∗-algebra generated by the unitary representations of Γ.
There is another group C∗-algebra. Recall that the left regular representation λ of Γ on
`2Γ is defined by λ(s)δt = δst for s, t ∈ Γ, or equivalently by λ(f)ξ = f ∗ξ for f ∈ k[Γ] and
ξ ∈ `2Γ. The reduced group C∗-algebra C∗r Γ of Γ is the C∗-algebra obtained as the norm-
closure of λ(k[Γ]) in B(`2Γ). The group algebra k[Γ] is equipped with the corresponding
∗-positive cone

kr[Γ]+ = {f ∈ k[Γ] : ∃fn ∈ k[Γ]+ such that fn → f pointwise}
= {f ∈ k[Γ] : f is of positive type},

and the resultant semi-pre-C∗-algebra kr[Γ] satisfies C∗u(kr[Γ]) = C∗r Γ. Indeed, if f ∈
k[Γ]∩ λ−1(C∗r Γ+), then for ξ = λ(f)1/2δ1 ∈ `2Γ, one has f = ξ∗ ∗ ξ and f is the pointwise
limit of ξ∗n ∗ ξn ∈ k[Γ]+, where ξn ∈ k[Γ] are such that ‖ξn− ξ‖2 → 0. On the other hand,
if f is of positive type (i.e., the kernel (x, y) 7→ f(x−1y) is positive semidefinite), then
f = f ∗ and 〈λ(f)η, η〉 ≥ 0 for every η ∈ `2Γ, which implies λ(f) ∈ C∗r Γ+. It follows that
kr[Γ]+ = arch(k[Γ]+) if and only if Γ is amenable (see Theorem 1).

Example 2. The ∗-algebra k[x1, . . . , xd] of polynomials in d commuting hermitian vari-
ables x1, . . . , xd is a semi-pre-C∗-algebra, equipped with the ∗-positive cone

k[x1, . . . , xd]+ = ∗-positive cone generated by {1− x2
i : i = 1, . . . , d}.

One has C∗u(k[x1, . . . , xd]) = C([−1, 1]d), the algebra of the continuous functions on
[−1, 1]d, and xi is identified with the i-th coordinate projection.

Example 3. The ∗-algebra k〈x1, . . . , xd〉 of polynomials in d non-commuting hermitian
variables x1, . . . , xd is a semi-pre-C∗-algebra, equipped with the ∗-positive cone

k〈x1, . . . , xd〉+ = ∗-positive cone generated by {1− x2
i : i = 1, . . . , d}.

One has C∗u(k〈x1, . . . , xd〉) = C([−1, 1]) ∗ · · · ∗ C([−1, 1]), the unital full free product of
d-copies of C([−1, 1]).
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Example 4. Let A and B be semi-pre-C∗-algebras. We denote by A ⊗ B the algebraic
tensor product over k. There are two standard ways to make A⊗ B into a semi-pre-C∗-
algebra. The first one, called the maximal tensor product and denoted by A ⊗max B, is
A⊗ B equipped with

(A⊗max B)+ = ∗-positive cone generated by {a⊗ b : a ∈ A+, b ∈ B+}.
The second one, called the minimal tensor product and denoted by A ⊗min B, is A ⊗ B
equipped with

(A⊗min B)+ = (A⊗ B)h ∩ (ιA ⊗ ιB)−1((C∗u(A)⊗min C∗u(B))+).

(See Theorem 14 for a “better” description.) One has C∗u(A⊗α B) = C∗u(A)⊗α C∗u(B) for
α ∈ {max,min}. The right hand side is the C∗-algebra maximal (resp. minimal) tensor
product (see [BO, Pi1]). For A1 ⊂ A2 and B1 ⊂ B2, one has

(A1 ⊗min B1)+ = (A1 ⊗min B1) ∩ (A2 ⊗min B2)+,

but the similar identity need not hold for the maximal tensor product.

Example 5. The unital algebraic free product A ∗ B of semi-pre-C∗-algebras A and B,
equipped with

(A ∗ B)+ = ∗-positive cone generated by (A+ ∪ B+),

is a semi-pre-C∗-algebra, and C∗u(A ∗ B) = C∗u(A) ∗ C∗u(B), the unital full free product of
the C∗-algebras C∗u(A) and C∗u(B).

The following is very basic (cf. [Ci] and Proposition 15 in [Sm]).

Theorem 1. Let A be a semi-pre-C∗-algebra and ι : A → C∗u(A) be the universal C∗-alge-
bra of A. Then, one has the following.

• ker ι = I(A), the ideal of the infinitesimal elements.
• Ah ∩ ι−1(C∗u(A)+) = arch(A+), the archimedean closure of A+.

Although it follows from the above theorem, we give here a direct proof of the fact that
arch(A+)∩ (− arch(A+)) ⊂ I(A). Indeed, if h2 ≤ 1 and −ε1 < h < ε1 for ε ∈ (0, 1), then
one has

0 ≤ (1 + h)(ε− h)(1 + h) = ε(1 + h)2 − h− h(2 + h)h ≤ (4ε+ ε)1− (2− ε)h2,

which implies h2 < 5ε1. We postpone the proof and give corollaries to this theorem.

4. Positivstellensätze. We give a few results which say if an element a is positive in
a certain class of representations, then it is positive for an obvious reason. Such results
are referred to as “Positivstellensätze.” Recall that a C∗-algebra A is said to be residually
finite dimensional (RFD) if finite-dimensional ∗-representations separate the elements of
A, i.e., π(a) ≥ 0 for all finite-dimensional ∗-representations π implies a ≥ 0 in A. All
abelian C∗-algebras and full group C∗-algebras of residually finite amenable groups are
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RFD. Moreover, it is a well-known result of Choi that the full group C∗-algebra C∗Fd
of the free group Fd of rank d is RFD (see Theorem 26). In fact, finite representations
(i.e., the unitary representations π such that π(Fd) is finite) separate the elements of C∗Fd
([LS]). However, we note that the full group C∗-algebra of a residually finite group need
not be RFD ([Be1]). We also note that the unital full free products of RFD C∗-algebras
is again RFD ([EL]). In particular, C∗u(k〈x1, . . . , xd〉) is RFD. The results mentioned here
have been proven for complex C∗-algebras, but they are equally valid for real cases. See
Section 7. Theorem 1, when combined with residual finite dimensionality, immediately
implies the following Positivstellensätze (cf. [Pu, HM]).

Corollary 2. The following are true.

• Let f ∈ k[Γ]h. Then, π(f) ≥ 0 for every unitary representation π if and only if
f ∈ arch(k[Γ]+).
• The full group C∗-algebra C∗Γ of a group Γ is RFD if and only if the following state-

ment holds. If f ∈ k[Γ]h is such that π(f) ≥ 0 for every finite-dimensional unitary
representation π, then f ∈ arch(k[Γ]+).
• Let f ∈ k[x1, . . . , xd]h. Then, f(t1, . . . , td) ≥ 0 for all (t1, . . . , td) ∈ [0, 1]d if and only if
f ∈ arch(k[x1, . . . , xd]+). (See Example 2.)
• Let f ∈ k〈x1, . . . , xd〉h. Then, f(X1, . . . , Xd) ≥ 0 for all contractive hermitian matrices
X1, . . . , Xd if and only if f ∈ arch(k〈x1, . . . , xd〉+). (See Example 3.)

In some cases, the ∗-positive cones are already archimedean closed. We will see later
(Theorem 26) this phenomenon for the free group algebras k[Fd].

5. Eidelheit–Kakutani Separation Theorem. The most basic tool in functional anal-
ysis is the Hahn–Banach theorem. In this note, we will need an algebraic form of it, the
Eidelheit–Kakutani Separation Theorem. We recall the algebraic topology on an R-vector
space V . Let C ⊂ V be a convex subset. An element c ∈ C is called an algebraic interior
point of C if for every v ∈ V there is ε > 0 such that c + λv ∈ C for all |λ| < ε. The
convex cone C is said to be algebraically solid if the set C◦ of algebraic interior points of
C is non-empty. Notice that for every c ∈ C◦ and x ∈ C, one has λc+ (1− λ)x ∈ C◦ for
every λ ∈ (0, 1]. In particular, C◦◦ = C◦ for every convex subset C. We can equip V with
a locally convex topology, called the algebraic topology, by declaring that any convex set
that coincides with its algebraic interior is open. Then, every linear functional on V is
continuous with respect to the algebraic topology. Now Hahn–Banach separation theorem
reads as follows.

Theorem 3 (Eidelheit–Kakutani ([Ba])). Let V be an R-vector space, C an algebraically
solid cone, and v ∈ V \ C. Then, there is a non-zero linear functional ϕ : V → R such
that

ϕ(v) ≤ inf
c∈C

ϕ(c).

In particular, ϕ(v) < ϕ(c) for any algebraic interior point c ∈ C.
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Notice that the Combes axiom A = Abdd is equivalent to that the unit 1 is an algebraic
interior point of A+ ⊂ Ah and arch(A+) is the algebraic closure of A+ in Ah. (This
is where the Combes axiom is needed and it can be dispensed when the cone A+ is
algebraically closed. See Section 3.4 in [Sm].) Let A be a semi-pre-C∗-algebra. A unital
∗-subspace S ⊂ A is called a semi-operator system. Here, a ∗-subspace is a subspace
which is closed under the ∗-operation. Existence of 1 in S ensures that S+ = S ∩ A+

has enough elements to span Sh. A linear functional ϕ : S → k is called a state if ϕ is
self-adjoint, positive, and ϕ(1) = 1. Note that if k = C, then S is spanned by S+ and
every positive linear functional is automatically self-adjoint. However, this is not the case
when k = R. In any case, every R-linear functional ϕ : Sh → R extends uniquely to a
self-adjoint linear functional ϕ : S → k. We write S(S) for the set of states on S.

Corollary 4. Let A be a semi-pre-C∗-algebra.

• Let W ⊂ A be a ∗-subspace and v ∈ Ah \ (A+ + Wh). Then, there is a state ϕ on A
such that ϕ(W ) = {0} and ϕ(v) ≤ 0.
• (Krein’s extension theorem) Let S ⊂ A be a semi-operator system. Then every state

on S extends to a state on A.

Proof. Since A+ +Wh is an algebraically solid cone in Ah, one may find a non-zero linear
functional ϕ on Ah such that

ϕ(v) ≤ inf{ϕ(c) : c ∈ A+ +Wh}.
Since ϕ is non-zero, ϕ(1) > 0 and one may assume that ϕ(1) = 1. Thus the self-adjoint
extension of ϕ on A, still denoted by ϕ, is a state such that ϕ(v) ≤ 0 and ϕ(Wh) = {0}.
Let x ∈ W . Then, for every λ ∈ k, one has

λϕ(x) + (λϕ(x))∗ = ϕ((λx) + (λx)∗) = 0.

This implies ϕ(W ) = {0} in either case k ∈ {C,R}.
For the second assertion, let ϕ ∈ S(S) be given and consider the cone

C = {x ∈ Sh : ϕ(x) ≥ 0}+A+.

It is not too hard to see that C is an algebraically solid cone in Ah and v /∈ C for any
v ∈ Sh such that ϕ(v) < 0. Hence, one may find a state ϕ̄ on A such that ϕ̄(C) ⊂ R≥0.
In the same way as above, one has that ϕ̄ is zero on kerϕ, which means ϕ̄|S = ϕ. �

6. GNS construction. We recall the celebrated GNS construction (Gelfand–Naimark–
Segal construction), which provides ∗-representations out of states. Let a semi-pre-C∗-
algebra A and a state ϕ ∈ S(A) be given. Then, A is equipped with a semi-inner product
〈y, x〉 = ϕ(x∗y), and it gives rise to a Hilbert space, which will be denoted by L2(A, ϕ).
We denote by x̂ the vector in L2(A, ϕ) that corresponds to x ∈ A. Thus, 〈ŷ, x̂〉 = ϕ(x∗y)
and ‖x̂‖ = ϕ(x∗x)1/2. The left multiplication x 7→ ax by an element a ∈ A extends to a
bounded linear operator πϕ(a) on L2(A, ϕ) such that πϕ(a)x̂ = âx for a, x ∈ A. (Observe
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that a∗a ≤ R1 implies ‖πϕ(a)‖2 ≤ R.) It follows that πϕ : A → B(L2(A, ϕ)) is a positive

∗-representation of A such that 〈πϕ(a)1̂, 1̂〉 = ϕ(a).
If π : A → B(H) is a positive ∗-representation having a unit cyclic vector ξ, then

ϕ(a) = 〈π(a)ξ, ξ〉 is a state on A and π(x)ξ 7→ x̂ extends to a unitary isomorphism
between H and L2(A, ϕ) which intertwines π and πϕ. Since every positive ∗-representa-
tion decomposes into a direct sum of cyclic representations, one may obtain the universal
C∗-algebra C∗u(A) of A as the closure of the image under the positive ∗-representation⊕

ϕ∈S(A)

πϕ : A → B(
⊕

ϕ∈S(A)

L2(A, ϕ)).

We also make an observation that (A⊗min B)+ in Example 4 coincides with

{c ∈ (A⊗ B)h : (ϕ⊗ ψ)(z∗cz) ≥ 0 for all ϕ ∈ S(A), ψ ∈ S(B), z ∈ A⊗ B}.

7. Real versus Complex. We describe here the relation between real and complex
semi-pre-C∗-algebras. Because the majority of the researches on C∗-algebras are carried
out for complex C∗-algebras, we look for a method of reducing real problems to complex
problems. Suppose AR is a real semi-pre-C∗-algebra. Then, the complexification of AR
is the complex semi-pre-C∗-algebra AC = AR + iAR. The ∗-algebra structure (over C) of
AC is defined in an obvious way, and (AC)+ is defined to be the ∗-positive cone generated
by (AR)+:

(AC)+ = {
n∑
i=1

z∗i aizi : n ∈ N, ai ∈ (AR)+, zi ∈ AC}.

(This is a temporary definition, and the official one will be given later. See Lemma 11.)
Note thatAR∩(AC)+ = (AR)+. The complexificationAC has an involutive and conjugate-
linear ∗-automorphism defined by x + iy 7→ x − iy, x, y ∈ AR. Every complex semi-pre-
C∗-algebra with an involutive and conjugate-linear ∗-automorphism arises in this way.

Lemma 5. Let πR : AR → BR be a ∗-homomorphism between real semi-pre-C∗-alge-
bras (resp. ϕR : AR → R be a self-adjoint linear functional). Then, the complexification
πC : AC → BC (resp. ϕC : AC → C) is positive if and only if πR (resp. ϕR) is so.

Proof. We only prove that ϕC is positive if ϕR is so. The rest is trivial. Let b =
∑

i z
∗
i aizi ∈

(AC)+ be arbitrary, where ai ∈ (AR)+ and zi = xi + iyi. Then, b =
∑

i(x
∗
i aixi + y∗i aiyi) +

i
∑

i(x
∗
i aiyi−y∗i aixi). Since x∗i aiyi−y∗i aixi is skew-hermitian, one has ϕR(x∗i aiyi−y∗i aixi) =

0, and ϕC(b) = ϕR(
∑

i x
∗
i aixi + y∗i aiyi) ≥ 0. This shows ϕC is positive. �

We note that if HC denotes the complexification of a real Hilbert space HR, then
B(HR)C = B(HC). Thus every positive ∗-representation of a real semi-pre-C∗-algebra AR
on HR extends to a positive ∗-representation of its complexificationAC on HC. Conversely,
if π is a positive ∗-representation of AC on a complex Hilbert space HC, then its restriction
to AR is a positive ∗-representation on the realification of HC. The realification of a
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complex Hilbert space HC is the real Hilbert space HC equipped with the real inner
product 〈η, ξ〉R = <〈η, ξ〉. Therefore, we arrive at the conclusion that C∗u(AR)C = C∗u(AC).
We also see that (R[Γ])C = C[Γ], (AR ⊗ BR)C = AC ⊗ BC, (AR ∗ BR)C = AC ∗ BC, etc.

8. Proof of Theorem 1. We only prove the first assertion of Theorem 1. The proof of
the second is very similar. We will prove a stronger assertion that

‖ι(x)‖C∗u(A) = inf{R > 0 : R21− x∗x ∈ A+}.

The inequality ≤ trivially follows from the C∗-identity. For the converse, assume that the
right hand side is non-zero, and choose λ > 0 such that λ21− x∗x /∈ A+. By Corollary 4,
there is ϕ ∈ S(A) such that ϕ(λ21− x∗x) ≤ 0. Thus for the GNS representation πϕ, one
has

‖πϕ(x)‖ ≥ ‖πϕ(x)1̂‖ = ϕ(x∗x)1/2 ≥ λ.

It follows that ‖ι(x)‖ ≥ λ. �

9. Trace positive elements. Let A be a semi-pre-C∗-algebra. A state τ on A is called
a tracial state if τ(xy) = τ(yx) for all x, y ∈ A, or equivalently if τ is zero on the ∗-
subspace K = span{xy − yx : x, y ∈ A} spanned by commutators in A. We denote by
T (A) the set of tracial states on A (which may be empty). Associated with τ ∈ T (A) is a
finite von Neumann algebra (πτ (A)′′, τ), which is the von Neumann algebra generated by
πτ (A) ⊂ B(L2(A, τ)) with the faithful normal tracial state τ(a) = 〈a1̂, 1̂〉 that extends the
original τ . Recall that a finite von Neumann algebra is a pair (M, τ) of a von Neumann
algebra and a faithful normal tracial state τ on M . The following theorem is proved
in [KS] for the algebra in Example 3 and in [JP] for the free group algebras, but the
proof equally works in the general setting. We note that for some groups Γ, notably for
Γ = SL3(Z) ([Be2]), it is possible to describe all the tracial states on k[Γ] .

Theorem 6 ([KS]). Let A be a semi-pre-C∗-algebra, and a ∈ Ah. Then, the following
are equivalent.

(1) τ(a) ≥ 0 for all τ ∈ T (A).
(2) τ(π(a)) ≥ 0 for every finite von Neumann algebra (M, τ) and every positive ∗-homo-

morphism π : A →M .
(3) a ∈ arch(A+ +Kh), where Kh = K ∩ Ah = span{x∗x− xx∗ : x ∈ A}.

Proof. The equivalence (1) ⇔ (2) follows from the GNS construction. We only prove
(1) ⇒ (3), as the converse is trivial. Suppose a + ε1 /∈ A+ + Kh for some ε > 0.
Then, by Corollary 4, there is τ ∈ S(A) such that τ(K) = {0} (i.e., τ ∈ T (A)) and
τ(a) ≤ −ε < 0. �
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10. Connes Embedding Conjecture. The Connes Embedding Conjecture (CEC) as-
serts that any finite von Neumann algebra (M, τ) with separable predual is embeddable
into the ultrapower Rω of the hyperfinite II1-factor R (over k ∈ {C,R}). Here an em-
bedding means an injective ∗-homomorphism which preserves the tracial state. We note
that if τ is a tracial state on a semi-pre-C∗-algebra A and θ : A → N is a τ -preserving
∗-homomorphism into a finite von Neumann algebra (N, τ), then θ extends to a τ -pre-
serving ∗-isomorphism from πτ (A)′′ onto the von Neumann subalgebra generated by θ(A)
in N (which coincides with the ultraweak closure of θ(A)). Hence, (M, τ) satisfies CEC if
there is an ultraweakly dense ∗-subalgebra A ⊂ M which has a τ -preserving embedding
into Rω. In particular, CEC is equivalent to that for every countably generated semi-
pre-C∗-algebra A and τ ∈ T (A), there is a τ -preserving ∗-homomorphism from A into
Rω. We will see that this is equivalent to the tracial analogue of Positivstellensätze in
Corollary 2. We first state a few equivalent forms of CEC. We denote by tr the tracial
state 1

N
Tr on MN(k).

Theorem 7. For a finite von Neumann algebra (M, τ) with separable predual, the follow-
ing are equivalent.

(1) (M, τ) satisfies CEC, i.e., M ↪→ Rω.
(2) Let d ∈ N and x1, . . . , xd ∈M be hermitian contractions. Then, for every m ∈ N and

ε > 0, there are N ∈ N and hermitian contractions X1, . . . , Xd ∈MN(k) such that

|τ(xi1 · · ·xik)− tr(Xi1 · · ·Xik)| < ε

for all k ≤ m and ij ∈ {1, . . . , d}.
(3) Assume k = C (or replace M with its complexification in case k = R). Let d ∈ N

and u1, . . . , ud ∈M be unitary elements. Then, for every ε > 0, there are N ∈ N and
unitary matrices U1, . . . , Ud ∈MN(C) such that

|τ(u∗iuj)− tr(U∗i Uj)| < ε

for all i, j ∈ {1, . . . , d}.
In particular, CEC holds true if and only if every (M, τ) satisfies condition (2) and/or
(3).

The equivalence (1) ⇔ (2) is a rather routine consequence of the ultraproduct con-
struction. For the equivalence to (3), see Theorem 27. Note that the assumption k = C
in condition (3) is essential because the real analogue of it is actually true ([DJ]). Since
any finite von Neumann algebra M with separable predual is embeddable into a II1-factor
which is generated by two hermitian elements (namely (M ∗ R) ⊗̄ R), to prove CEC, it
is enough to verify the conjecture (2) for every (M, τ) and d = 2. We observe that a real
finite von Neumann algebra (MR, τR) is embeddable into Rω

R (i.e., it satisfies CEC) if and
only if its complexification (MC, τC) is embeddable into Rω

C. The “only if” direction is
trivial and the “if” direction follows from the real ∗-homomorphism MN(C) ↪→ M2N(R),
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a+ib 7→
[
a b
−b a

]
. A complex finite von Neumann algebra (M, τ) need not be a complexifica-

tion of a real von Neumann algebra, but M⊕Mop is (isomorphic to the complexification of
the realification of M). Therefore, M satisfies CEC if and only if its realification satisfies
it.

For a finite von Neumann algebra (M, τ) and d ∈ N, we denote by Hd(M) the set of
those f ∈ k〈x1, . . . , xd〉h such that τ(f(X1, . . . , Xd)) ≥ 0 for all hermitian contractions
X1, . . . , Xd ∈M . Further, let

Hd =
⋂
M

Hd(M) and Hfin
d =

⋂
N

Hd(MN(k)) = Hd(R).

Notice that Hd = arch(k〈x1, . . . , xd〉+ +Kh) (see Example 3 and Theorem 6).

Corollary 8 ([KS]). Let k ∈ {C,R}. Then one has the following.

• Let (M, τ) be a finite von Neumann algebra with separable predual. Then, M satisfies
CEC if and only if Hfin

d ⊂ Hd(M) for all d.
• CEC holds true if and only if Hfin

d = arch(k〈x1, . . . , xd〉+ +Kh) for all/some d ≥ 2.

Proof. It is easy to see that condition (2) in Theorem 7 impliesHfin
d ⊂ Hd(M). Conversely,

suppose condition (2) does not hold for some d ∈ N, x1, . . . , xd ∈ M , m ∈ N, and ε > 0.
We introduce the multi-index notation. For i = (i1, . . . , ik), ij ∈ {1, . . . , d} and k ≤ m,
we denote xi = xi1 · · ·xik . It may happen that i is the null string ∅ and x∅ = 1. Then,

C = closure{(tr(Xi))i : N ∈ N, X1, . . . , Xd ∈MN(k)h, ‖Xi‖ ≤ 1}
is a convex set (consider a direct sum of matrices). Hence by Theorem 3, there are λ ∈ R
and αi ∈ k such that

<
∑

i

αiτ(xi) < λ ≤ inf
γ∈C
<
∑

i

αiγi.

Replacing αi with (αi +α∗i∗)/2 (here i∗ is the reverse of i), we may omit < from the above
inequality. Further, arranging α∅, we may assume λ = 0. Thus f =

∑
i αixi belongs

to Hfin
d , but not to Hd(M). This completes the proof of the first half. The second half

follows from this and Theorem 6. �

An analogue to the above also holds for C[Fd].

Corollary 9 ([JP]). Let k = C. The following holds.

• Let (M, τ) be a finite von Neumann algebra with separable predual. Then, M satis-
fies CEC if and only if the following holds true: If d ∈ N and α ∈ Md(C)h satisfies
that tr(

∑
αi,jU

∗
i Uj) ≥ 0 for every N ∈ N and U1, . . . , Ud ∈ MN(C)u, then it satisfies

τ(
∑
αi,ju

∗
iuj) ≥ 0 for every unitary elements u1, . . . , ud ∈M .

• CEC holds true if and only if for every d ∈ N and α ∈Md(C)h the following holds true:
If tr(

∑
αi,jU

∗
i Uj) ≥ 0 for every N ∈ N and U1, . . . , Ud ∈ MN(C)u, then

∑
αi,js

∗
i sj ∈

arch(C[Fd]+ +Kh), where s1, . . . , sd are the free generators of Fd.
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11. Matrix algebras over semi-pre-C∗-algebras. We describe here how to make the
n×n matrix algebra Mn(A) over a semi-pre-C∗-algebra A into a semi-pre-C∗-algebra. We
note that x∗ = [x∗j,i]i,j for x = [xi,j]i,j ∈Mn(A). We often identify Mn(A) with Mn(k)⊗A.
There are two natural choices of the ∗-positive cone for Mn(A). The first and the official
one is

Mn(A)+ = ∗-positive cone generated by {diag(a1, . . . , an) : ai ∈ A+}

= {[
m∑
k=1

x∗k,iakxk,j]i,j : m ∈ N, ak ∈ A+, [xk,i]k,i ∈Mm,n(A)}.

The second one is larger:

Mn(A)′+ = {[ai,j] ∈Mn(A)h : ϕ(
∑
i,j

x∗i ai,jxj) ≥ 0 for all x1, . . . , xn ∈ A, ϕ ∈ S(A)}.

(One may notice that the first one is Mn(k)⊗maxA and the second is Mn(k)⊗minA.) In
case where A is a C∗-algebra, these cones coincide and are archimedean closed. In either
definition, one has C∗u(Mn(A)) = Mn(C∗u(A)), because every ∗-representation of Mn(A)
is of the form id ⊗ π : Mn(A) → Mn(B(H)) ∼= B(`n2 ⊗H). Therefore, by Theorem 1, we
arrive at the following conclusion.

Lemma 10. For every semi-pre-C∗-algebra A and every n, one has

C∗u(Mn(A)) = Mn(C∗u(A)) and arch(Mn(A)+) = Mn(A)′+.

12. Completely positive maps. Completely positive maps are essential tools in study
of positivity and tensor products. A linear map ϕ : A → B between semi-pre-C∗-algebras
is said to be completely positive (c.p.) if it is self-adjoint and id⊗ ϕ : Mn(A)→Mn(B) is
positive for every n. It is not too hard to see that states and positive ∗-homomorphisms
are c.p.

We take back the definition of the complexification AC of a real semi-pre-C∗-algebra
AR and redefine

(AC)+ = {x+ iy : x ∈ (AR)+, y = −y∗ ∈ AR such that [
x y
−y x ] ≥ 0}.

Since this coincides with the previous definition in case of C∗-algebras, they also coin-
cide for semi-pre-C∗-algebras modulo archimedean closures. The reason of this awkward
replacement is to assure the following lemma holds true.

Lemma 11. Let ϕR : AR → BR be a self-adjoint map between real semi-pre-C∗-algebras.
Then, its complexification ϕC : AC → BC is c.p. if and only if ϕR is so.

The GNS construction for states generalizes to the Stinespring Dilation Theorem for
c.p. maps.
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Theorem 12. Let A be a semi-pre-C∗-algebra and ϕ : A → B(H) be a c.p. map, then

there are a Hilbert space Ĥ, a positive ∗-representation π : A → B(Ĥ), and V ∈ B(H, Ĥ)
such that

ϕ(a) = V ∗π(a)V.

for a ∈ A. In particular, if ϕ is unital, then V is an isometry.

Proof. We introduce the semi-inner product on the algebraic tensor product A ⊗ H by
〈y ⊗ η, x⊗ ξ〉 = 〈ϕ(x∗y)η, ξ〉 (and extended by linearity). That

〈
∑
j

xj ⊗ ξj,
∑
i

xi ⊗ ξi〉 = 〈[ϕ(x∗ixj)]i,jξ, ξ〉 ≥ 0, where ξ = (ξ1, . . . , ξn)T ,

follows from the fact [x∗ixj]i,j ∈Mn(A)+. Now, A⊗H gives rise to a Hilbert space Ĥ and

V ∈ B(H, Ĥ), ξ 7→ 1 ⊗ ξ. The ∗-representation π : A → B(Ĥ), π(a)(x ⊗ ξ) = ax ⊗ ξ, is
positive and satisfies V ∗π(a)V = ϕ(a). �

Let Γ be a discrete group. We say an operator-valued function f : Γ → B(H) is of
positive type if [f(x−1y)]x,y∈E ∈ B(`2E) ⊗ B(H) is positive (and self-adjoint) for every
finite subset E ⊂ Γ. It is not too hard to see the following holds.

Corollary 13. For f : Γ→ B(H), the following are equivalent.

(1) f is of positive type.
(2) ϕf : k[Γ] 3 g 7→

∑
t g(t)f(t) ∈ B(H) is c.p.

(3) There are a unitary representation π of Γ on Ĥ and V ∈ B(H, Ĥ) such that f(t) =
V ∗π(t)V for t ∈ Γ.

We denote by Sn(A) the set of unital c.p. maps from A into Mn(k).

Theorem 14. Let Ai and Bi be semi-pre-C∗-algebras and ϕi : Ai → Bi be c.p. maps.
Then, ϕ1⊗ϕ2 : A1⊗A2 → B1⊗B2 is c.p. with respect to each of max-max and min-min.
Moreover, (A⊗min B)+ coincides with

{c ∈ (A⊗B)h : (ϕ⊗ ψ)(c) ≥ 0 for all m,n ∈ N, ϕ ∈ Sm(A), ψ ∈ Sn(B)}.

Proof. The verification of max-max case is routine (although a bit painful). The case for
min-min follows from Theorem 12. We omit the details. �

The u.c.p. (unital and c.p.) maps are incorporated into the free product as well.

Theorem 15 ([Bo]). Let Ai be semi-pre-C∗-algebras and A = A1 ∗ A2 be the unital free
product. Let ψi ∈ S(Ai) be fixed and A0

i = kerψi so that

A = span

(
k1 ∪

⋃
n

{x1 · · ·xn : xj ∈ A0
ij
, i1 6= i2, i2 6= i3, . . . , in−1 6= in}

)
.
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Let ϕi : Ai → B(H) be u.c.p. maps. Then, the free product map ϕ : A → B(H) defined by

ϕ(x1 · · · xn) = ϕi1(x1) · · ·ϕin(xn)

is a u.c.p. map. In particular, ϕi has a joint u.c.p. extension ϕ.

Proof. The proof of this theorem is too complicated to reproduce it here, but we prove
existence of a joint u.c.p. extension, which is essentially the only part that will be used in
this note. By Theorem 12, each u.c.p. map ϕi extends to a positive ∗-representation σi on
H ⊕Hi. By inflating Hi if necessary, one may assume that there is a positive ∗-represen-
tation σj,i of Aj on Hi for j 6= i. We rewrite σi by σi,i and consider the ∗-representations

πi =
⊕

j σi,j of Ai on Ĥ = H ⊕
⊕

j Hj. They extend to a positive ∗-representation π of

A such that PHπ(a)|H = ϕi(a) for each i and a ∈ Ai ⊂ A. �

Recall that a semi-operator system is a unital ∗-subspace S of a semi-pre-C∗-algebra
A. It is equipped with the matricial positive cone Mn(S)+ := Mn(S)h ∩Mn(A)+ for each
n ∈ N. Thus the notion of complete positivity carries over to maps between semi-operator
systems. We introduce a convenient tool about the one-to-one correspondence between
linear maps ϕ : S →Mn(k) and ϕ̃ : Mn(S)→ k, given by

ϕ̃([xi,j]) =
∑
i,j

ϕ(xi,j)i,j and ϕ(x) = [ϕ̃(ei,j ⊗ x)]i,j.

Lemma 16. For a semi-operator system S ⊂ A, one has the following.

• Under the above one-to-one correspondence, ϕ is c.p. if and only if ϕ̃ is self-adjoint and
positive.
• Let ψ : S → B(H) be a non-zero c.p. map. Then, for the support projection p of ψ(1),

one has ψ(x) = pψ(x)p for every x ∈ S, and there is a unique u.c.p. map ψ′ : S →
B(pH) such that ψ(x) = ψ(1)1/2ψ′(x)ψ(1)1/2. Moreover, for every x ∈ Mn(k)⊗ S one
has (id⊗ ψ)(x) ≥ 0 if and only if (id⊗ ψ′)(x) ≥ 0.

Proof. It is routine to see that ϕ is self-adjoint if and only if ϕ̃ is. Now, for ζ =
∑

i δi⊗δi ∈
`n2 ⊗ `n2 , one has ϕ̃(x) = 〈(id ⊗ ϕ)(x)ζ, ζ〉. This proves ϕ̃ is positive if id ⊗ ϕ : Mn(S) →
Mn(Mn(k)) is positive. The converse follows from the identity ϕ(x) = (id ⊗ ϕ̃)(

∑
ei,j ⊗

ei,j ⊗ x) and the fact that every self-adjoint positive linear functional is c.p.
For the second assertion, we first observe that for s, t ∈ B(H) one has [ s t

∗
t 1 ] ≥ 0 if

and only if t∗t ≤ s (see Lemma 3.1 in [Pa]). Let x ∈ S ⊂ A be an element such that
xx∗ ≤ R21. Then,[

R x∗

x R

]
=

1

R

[
R
x

] [
R x∗

]
+

1

R

[
0
1

]
(R2 − xx∗)

[
0 1

]
∈ (M2(k)⊗A)+.

It follows that
[
Rψ(1) ψ(x)∗

ψ(x) Rψ(1)

]
≥ 0. This implies that ψ(x)p = ψ(x) for the support projec-

tion p of ψ(1) and
‖(ψ(1) + ε1)−1/2ψ(x)(ψ(1) + ε1)−1/2‖ ≤ R
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for every ε > 0. We define ψ′ : S → B(pH) to be a point-ultraweak limit point of the
maps (ψ(1) + ε1)−1/2ψ( · )(ψ(1) + ε1)−1/2 as ε ↘ 0. (This actually converges in norm.)
This completes the proof. �

Theorem 17 (Arveson’s Extension Theorem). Let A be a semi-pre-C∗-algebra and S ⊂ A
be a semi-operator system. Then, every c.p. map ϕ : S → B(H) extends to a c.p. map
ϕ̄ : A → B(H).

Proof. We first deal with the case H = `n2 . In this case, by Lemma 16, the c.p. map
ϕ : S → Mn(k) corresponds to a positive self-adjoint linear functional ϕ̃ on Mn(S). By
Corollary 4, it extends to a positive self-adjoint linear functional on Mn(A). Using the
correspondence again, one obtains a c.p. extension ϕ̄ on A.

Now, let H be arbitrary. We denote by {Hi}i∈I the directed set of the finite-dimensional
subspaces of H, and by Θi : B(H) → B(Hi) the corresponding compression. From the
above, each Θi ◦ ϕ has a c.p. extension ϕ̄i : A → B(Hi). Since ‖ϕ̄i‖ ≤ ‖ϕ(1)‖ for all i,
one may find a limit point ϕ̄ of ϕ̄i in the point-ultraweak topology. It is not too hard to
verify that ϕ̄ is a c.p. extension of ϕ. �

Theorem 18 (Kadison–Choi Inequality and Choi’s Multiplicative Domain). Let A be a
semi-pre-C∗-algebra and ϕ : A → B(H) be a u.c.p. map. Then, for every x, y ∈ A, one
has ϕ(x∗x) ≥ ϕ(x)∗ϕ(x) and

‖ϕ(y∗x)− ϕ(y)∗ϕ(x)‖ ≤ ‖ϕ(y∗y)− ϕ(y)∗ϕ(y)‖1/2‖ϕ(x∗x)− ϕ(x)∗ϕ(x)‖1/2.

In particular,

md(ϕ) = {x ∈ A : ϕ(x∗x) = ϕ(x)∗ϕ(x) and ϕ(xx∗) = ϕ(x)ϕ(x)∗}

is a unital ∗-subalgebra of A and ϕ|md(ϕ) is a positive ∗-homomorphism.

Proof. This follows from the Stinespring Dilation Theorem. Since ϕ can be expressed as
ϕ(x) = V ∗π(x)V , one has

ϕ(x∗x)− ϕ(x)∗ϕ(x) = V ∗π(x)∗(1− V V ∗)π(x)V ≥ 0

and

ϕ(y∗x)− ϕ(y)∗ϕ(x) = ((1− V V ∗)1/2π(y)V )∗((1− V V ∗)1/2π(x)V ).

The rest is trivial. �

Theorem 19 (Pisier’s Linearization Trick). Let S ⊂ A be a semi-operator system, B be
a C∗-algebra, and ϕ : S → B be a u.c.p. map. Assume that

{x ∈ S : 1− x∗x ∈ arch(A+) and ϕ(x) ∈ Bu}

generates A as a ∗-algebra. Then, ϕ extends to a positive ∗-homomorphism from A into
B.
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Proof. Let B ⊂ B(H). By Theorem 17, ϕ extends to a u.c.p. map ϕ̄ : A → B(H). If x is
in the set described in the theorem, then by Theorem 18 one has

1 = ϕ̄(x)∗ϕ̄(x) ≤ ϕ̄(x∗x) ≤ 1,

which implies ϕ̄(x)∗ϕ̄(x) = ϕ̄(x∗x). Likewise for x∗, and one has x ∈ md(ϕ̄). Thus, ϕ̄ is
multiplicative on A and it maps into B. �

Corollary 20. Let S ⊂ A be a semi-operator system which contains enough unitary
elements of A to generate A as a ∗-algebra. Then, every ∗-homomorphism π from A into
a C∗-algebra B is positive provided that π|S is c.p. Moreover,

arch(A+) = arch({
∑
i,j

x∗i ai,jxj : n ∈ N, [ai,j]i,j ∈Mn(S)+, x1, . . . , xn ∈ A}).

Proof. The first assertion is immediate. For the second, observe that the right hand
side defines a ∗-positive cone on the ∗-algebra A, which gives rise to the same universal
C∗-algebra as that of the original A. �

13. Kirchberg’s Theorem on C∗F2 ⊗ B(`2). We will prove the following celebrated
theorem of Kirchberg. The proof takes a similar line as [Pi1, FP].

Theorem 21 ([Ki1]). Let Ai be C∗-algebras and A = A1∗A2 be their unital full free product
C∗-algebra. If Ai⊗max B(`2) = Ai⊗min B(`2) for each i, then A⊗max B(`2) = A⊗min B(`2).
In particular, one has

C∗Fd ⊗max B(H) = C∗Fd ⊗min B(H)

for every d and every Hilbert space H.

The proof requires a description of the operator system structure of A1 + A2 ⊂ A.

Lemma 22 ([Ka]). Let A = A1 ∗ A2 be a unital full free product and S = A1 +A2 ⊂ A
be the semi-operator system. Then, a ∈ S ⊗ B(`2) belongs to (A⊗min B(`2))+ if and only
if there are ai ∈ (Ai ⊗min B(`2))+ such that a = a1 + a2.

Proof. The “if” direction is trivial. For the other direction, we first deal with the case
a ∈ (S ⊗min B(`n2 ))+. Let us consider the cone

C = {a1 + a2 : ai ∈ (Ai ⊗min B(`n2 ))+}.
Since C is algebraically solid, if a /∈ arch(C), then there is a self-adjoint linear functional
ϕ : S ⊗ B(`n2 )→ k such that

ϕ(a) < 0 ≤ inf
c∈C

ϕ(c).

Then, ϕi = ϕ|Ai⊗minB(`n2 ) are self-adjoint positive linear functionals, and by Lemma 16
they correspond to c.p. maps ψi : Ai → B(`n2 ). Let p be the support projection of h =
ψ1(1) = ψ2(1). Then the maps ψ′i( · ) = h−1/2ψi( · )h−1/2|p`n2 are u.c.p. and extend to a

u.c.p. map ψ′ on A by Theorem 15. It follows that (h1/2 ⊗ 1)(ψ′ ⊗ id(a))(h1/2 ⊗ 1) ≥ 0.
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This implies ϕ(a) ≥ 0 in contradiction with the hypothesis. Thus, we have shown that
(S ⊗min B(`n2 ))+ ⊂ arch(C).

Now, let a ∈ (S ⊗min B(`2))+. By the previous result, for every n, there are ai(n) ∈
(Ai⊗min B(`n2 ))+ such that (id⊗Θn)(a+ 1/n) = a1(n) + a2(n), where Θn : B(`2)→ B(`n2 )
is the compression. For R > 0 such that R1 ≥ a, one has 0 ≤ ai(n) ≤ (R + 1)1 for all
n. Take unital finite-dimensional subspaces Ei ⊂ Ai such that a ∈ (E1 + E2) ⊗ B(`2).
Since A1 ∩ A2 = k1, one has ai(n) ∈ Ei ⊗ B(`n2 ). Therefore, one may find ultraweak
limit points ai of (ai(n))∞n=1 (jointly for i = 1, 2) in Ei ⊗ B(`2). It follows that ai ≥ 0 and
a = a1 + a2. �

Proof of Theorem 21. By Corollary 20, it suffices to show that the formal identity map
from A⊗min B(`2) into A⊗max B(`2) is c.p. on S ⊗ B(`2), where S = A1 +A2 ⊂ A. Since
Mn(k) ⊗ B(`2) ∼= B(`2), we only have to show that it is positive. But if a ∈ S ⊗ B(`2)
is positive, then a = a1 + a2 for some ai ∈ (Ai ⊗min B(`2))+ by the above lemma. By
assumption, one has ai ∈ arch(Ai ⊗max B(`2))+. Now, it is easy to see that a = a1 + a2 ∈
arch(A⊗max B(`2)). This completes the proof. �

14. The positive cone of the free group algebras. Schmüdgen has proved in 1980s
(unpublished, see [NT]) that k[Fd]+ is archimedean closed. It was generalized by McCul-
lough ([Mc]) and Bakonyi–Timotin ([BT]) to the operator-valued case. Here we give a
somewhat simpler proof of this result. Our proof employs a well-known matrix completion
trick, in conjunction with the geometry of a tree.

For notational simplicity, we fix a Hilbert space H throughout this section and denote
B = B(H). In particular, B = k when dimH = 1. We denote by B[Γ] the group algebra
of Γ with coefficients in B. So, we will view an element f ∈ B[Γ] as a function f : Γ→ B.
One has

B[Γ] ∼= B(H)⊗max
k[Γ] and B[Γ]+ = {

n∑
i=1

ξ∗i ∗ ξi : n ∈ N, ξi ∈ B[Γ]}.

We first characterize those elements which belong to B[Γ]+. We denote by ρ the right
regular representation of Γ on `2Γ: ρ(a)δt = δta−1 for a, t ∈ Γ; and for a finite subset
E ⊂ Γ, by ρE(a) the compression of ρ(a) to B(`2E). We identify B(`2E) with ME(k) and
let TE ⊂ME(k) be the operator system consisting of the “Toeplitz operators,”

TE = {ρE(g) : g ∈ k[Γ]}
= {X ∈ME(k) : ∃g ∈ k[Γ] such that X = [g(s−1t)]s,t∈E}.

Lemma 23. Let f ∈ B[Γ]h and E ⊂ Γ be a finite subset such that supp f ⊂ E−1E. Then,
f ∈ {

∑n
i=1 ξ

∗
i ∗ ξi : n ∈ N, ξi ∈ B[E]} if and only if the linear map ϕf : TE → B, given by

ϕf (ρE(a)) = f(a), is c.p. One may take n ≤ |E| in the above factorization of f , and if
dim B =∞ in addition, then one may take n = 1.
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Proof. If f =
∑

i ξ
∗
i ∗ ξi, then for X = [Xs,t]s,t = ρE(g) ∈ TE, one has

ϕf (X) =
∑
a

g(a)f(a) =
∑
i

∑
a,t

g(a)ξ∗i (at
−1)ξi(t) =

∑
i

∑
s,t

Xs,tξi(s)
∗ξi(t).

From the latter expression, it is not too hard to see ϕf is c.p.
Conversely, if ϕf is c.p., then it extends to a c.p. map, still denoted by ϕf , on ME(k)

by Theorem 17. It follows that b = [ϕf (es,t)]s,t∈E is positive in ME(B). Develop b1/2 as
[ξi(t)]i,t∈E. Then, one has

(
∑
i

ξ∗i ∗ ξi)(a) =
∑
i

∑
t

ξi(ta
−1)∗ξi(t) =

∑
t

bta−1,t = ϕf (ρE(a)) = f(a).

We note that if dim B = ∞, then there are isometries Si ∈ B with mutually orthogonal
ranges, and ξ =

∑
i Siξi ∈ B[E] satisfies f = ξ∗ ∗ ξ. �

We need the following well-known matrix completion trick.

Lemma 24. Let H0 ⊕H1 ⊕H2 be a direct sum of Hilbert spaces. Suppose A X ?�
X∗ B Y
?� Y ∗ C

 ∈ B(H0 ⊕H1 ⊕H2)

is a partially defined operator matrix such that its compressions on H0⊕H1 and H1⊕H2

are both positive. Then one can complete the unspecified block ?� so that the resultant
operator matrix is positive on H0 ⊕H1 ⊕H2.

Proof. We note that [ A X
X∗ B ] ≥ 0 if and only if X1 := A−1/2XB−1/2 is well-defined and

contractive (see Lemma 3.1 in [Pa]). Likewise for Y1 := B−1/2Y C−1/2. Now, since[
1 X1 X1Y1
X∗1 1 Y1

Y ∗1 X
∗
1 Y ∗1 1

]
=

[
1 0 0
X∗1 (1−X∗1X1)1/2 0

Y ∗1 X
∗
1 Y ∗1 (1−X∗1X1)1/2 (1−Y ∗1 Y1)1/2

] [
1 X1 X1Y1

0 (1−X∗1X1)1/2 (1−X∗1X1)1/2Y1

0 0 (1−Y ∗1 Y1)1/2

]
,

the operator matrix[
A X Z
X∗ B Y
Z∗ Y ∗ C

]
=

[
A1/2 0 0

0 B1/2 0
0 0 C1/2

] [
1 X1 X1Y1
X∗1 1 Y1

Y ∗1 X
∗
1 Y ∗1 1

] [
A1/2 0 0

0 B1/2 0
0 0 C1/2

]
is positive for Z = XB−1Y . �

Let s1, . . . , sd be the canonical generators of the free group Fd. A pair {s, t} in Fd is
adjacent in the Cayley graph of Fd if st−1 ∈ {s±1

1 , . . . , s±1
d }. The Cayley graph of Fd is

a simplicial tree. We say a subset E ⊂ Fd is grounded if it contains the unit 1 and is
connected in the Cayley graph. Thus, E is grounded if and only if t ∈ E and t = t′t′′

without cancelation imply t′′ ∈ E.

Lemma 25 (Proposition 4.4 in [BT]). Let g ∈ B[Fd]h and E ⊂ Fd be a finite grounded
subset. If (ρE ⊗ idB)(g) ≥ 0 in ME(B), then there is a positive type function g′ : Fd → B
such that g′ = g on E−1E.
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Proof. By inductive construction, it suffices to show that for every grounded subset E ′ ⊃
E such that |E ′ \ E| = 1, one can find g′ ∈ B[Fd]h such that g′ = g on E−1E and
(ρE′ ⊗ idB)(g

′) ≥ 0. Thus, let E ′ = E ∪ {t0} with t0 = sit
′′
0 for t′′0 ∈ E and one of the

generators si. (The case for t0 = s−1
i t′′0 is similar.) We claim that

{s ∈ E : s−1t0 ∈ E−1E} = {s ∈ E : s−1
i s ∈ E}.

Indeed, if s = sis
′′ for some s′′ ∈ E, then s−1t0 = (s′′)−1t′′0 ∈ E−1E. To prove the converse

inclusion, suppose s−1t0 ∈ E−1E. By groundedness, there is a non-trivial decomposition
t0 = pq without cancelation such that p−1s ∈ E. Note that the first letter of p is si. If the
reduced form of s starts by si, then s−1

i s ∈ E by groundedness. Otherwise, there is no
cancelation between p−1 and s, and hence p−1s ∈ E implies s−1

i s ∈ E by groundedness.
The claim is proved. We denote the above subset by E1 and set E0 = E \ E1.

Now we extend ρE(g) to a partially defined matrix X = [Xs,t]s,t∈E′ such that Xs,t =
g(s−1t) for (s, t) ∈ E ′ × E ′ with s−1t ∈ E−1E. The unspecified entries of X are those
for (s, t0) and (t0, s) with s ∈ E0. We apply Lemma 24 to H0 = `2E0, H1 = `2E1, and
H2 = `2{t0}. We note that the compression of X on H1 ⊕ H2 is positive, thanks to the
right equivariant map E1 ∪ {t0} 3 s 7→ s−1

i s ∈ E. Thus, one obtains a fully defined
positive matrix X. We observe that s−1t0 6= t−1

0 s′ for any s, s′ ∈ E0. Indeed, the shortest
right segments that does not belong to E is sit

′′
0 in the left hand side and s−1

i s′ in the
right hand side. It follows that the entry Xs,t of the positive matrix X ∈ME′(B) depends
only on s−1t and X is of the form (ρE′ ⊗ idB)(g

′). �

The following is slightly more precise than Theorem 7.1 in [BT] (and Theorem 0.1 in
[Mc]). It implies B(H)⊗max

k[Fd] = B(H)⊗min
k[Fd], and hence Theorem 21.

Theorem 26 ([BT]). Let B = B(H), f ∈ B[Fd]h, and E ⊂ Fd be a grounded subset such
that supp f ⊂ E−1E. Assume that (idB ⊗ π)(f) ≥ 0 for every finite-dimensional unitary
representation π of Fd (of dimension at most 2|E| dimH). Then, there are n ≤ |E| and
ξ1, . . . , ξn ∈ B[Fd] such that supp ξi ⊂ E and f =

∑n
i=1 ξ

∗
i ∗ ξi. If dim B =∞ in addition,

then one may take n = 1.

Proof. By Lemma 23 (we may assume E is finite), it suffices to show ϕf : TE → B(H) is
c.p. Let g : Fd → Mk(k) be such that (ρE ⊗ id)(g) ≥ 0. By Lemma 25, we may assume
that g is of positive type. Hence, by Corollary 13, there are a unitary representation σ on
Hσ and V ∈ B(`k2, Hσ) such that g(a) = V ∗σ(a)V . One has to show that

(ϕf ⊗ id)((ρE ⊗ id)(g)) =
∑

a∈E−1E

f(a)⊗ g(a) = (1⊗ V )∗((idB ⊗ σ)(f))(1⊗ V )

is positive. We will follow Choi’s proof of RFD for C∗Fd. Suppose the contrary that
(idB ⊗ σ)(f) is not positive. Then, there is a vector ζ in the algebraic tensor product
H ⊗ Hσ such that 〈(idB ⊗ σ)(f)ζ, ζ〉 < 0. We may find a finite-dimensional subspace
H0 ⊂ Hσ of dimension at most dimH such that ζ ∈ H ⊗H0. Let H1 = spanσ(E)H0 and
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write Xi = PH1σ(si)|H1 ∈ B(H1) for the generators s1, . . . , sd ∈ Fd. We define the unitary
representation π of Fd by assigning to each si a unitary element

π(si) =

[
Xi (1−XiX

∗
i )1/2

(1−X∗iXi)
1/2 −X∗i

]
∈M2(B(H1))u.

It follows that (1⊗ π)(t)(ζ ⊕ 0) = (1⊗ σ)(t)ζ ⊕ 0 for every t ∈ E, and 〈(idB ⊗ π)(f)(ζ ⊕
0), ζ ⊕ 0〉 = 〈(idB ⊗ σ)(f)ζ, ζ〉 < 0, in contradiction with the assumption. �

Rudin ([Ru]) has proved existence of f ∈ arch(k[Z2]+) such that supp f ⊂ E−1E with
E = [0, N ]2 but f cannot be expressed as

∑
i ξ
∗
i ∗ ξi for any ξi ∈ k[E]. This implies that

the matrix completion problem of the following type has a negative answer in general:
Given Toeplitz matrices Ak = A∗−k ∈Mn(k), |k| ≤ m−1, whose Toeplitz operator matrix
[Ai−j]

m
i,j=1 ∈ Mm(Mn(k)) is positive, can one find a Toeplitz matrix Am = A∗−m ∈ Mn(k)

so that [Ai−j]
m+1
i,j=1 ∈ Mm+1(Mn(k)) is still positive? We note that nonetheless k[Z2]+ is

archimedean closed ([Sd]).

15. Kirchberg’s Conjecture. In his seminal paper [Ki1], Kirchberg has shown that the
Connes Embedding Conjecture (see Section 10) is equivalent to several other important
conjectures in operator algebra theory, one of which is Kirchberg’s Conjecture (KC) that

C∗Fd ⊗max C∗Fd = C∗Fd ⊗min C∗Fd
holds for some/all d ≥ 2. In this section, we assume the scalar field is complex, k = C,
and give the proof of the equivalence. The proofs of this section are analytically involved,
not so self-contained, and probably off the scope of this note, but we include them because
some results seem to be new or at least not well documented in the literature. Consult
[BO] for technical terms in the proofs which are not explained in this note.

Recall that the opposite algebra of an algebra A is the algebra

Aop = {aop : a ∈ A}
which has the same linear and ∗-positive structures as A, but has opposite multiplication
aopbop = (ba)op. It is ∗-isomorphic to the complex conjugate Ā of A by aop ↔ ā∗. We
note that C[Γ]op ∼= C[Γ] via f ↔ f̌ , where f̌(s) = f(s−1).

Theorem 27 ([Ki1]). Let A be a C∗-algebra with a tracial state τ , and u1, u2, . . . be a dense
sequence in the unitary group Au of A. Let (M, τ) be a finite von Neumann algebra and
suppose that there is a sequence v1, v2, . . . of unitary elements in M such that τ(u∗iuj) =
τ(v∗i vj) for all i, j. Then, there is a projection p ∈M such that πτ (A)′′ is embeddable into
pMp ⊕ (p⊥Mp⊥)op. In particular, if M moreover satisfies p⊥Mp⊥ ∼= (p⊥Mp⊥)op (e.g.,
M = Rω), then πτ (A)′′ ↪→M .

Proof. We reproduce Kirchberg’s proof ([Ki1]) here. The map ui 7→ vi extends to a linear
isometry ϕ from L2(A, τ) into L2(M, τ). Since the set of unitary elements is closed in
L2(M, τ), the map ϕ sends unitary elements to unitary elements by density and continuity.
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By the Russo–Dye theorem, ϕ is a contraction from A into M . Thus the unital map θ
defined by θ(a) = ϕ(1)∗ϕ(a) is a positive contraction from A into M , which sends unitary
elements to unitary elements and preserves the tracial state. By a multiplicative domain
argument (Corollary 2.6 in [Oz1]), the map θ is a Jordan morphism. Thus, there is a
central projection p in θ(A)′′ such that pθ (resp. p⊥θ) is a ∗-homomorphism (resp. an
opposite ∗-homomorphism). �

Let τ be a tracial state on a semi-pre-C∗-algebra A. Then, besides the GNS represen-
tation πτ of A on L2(A, τ), there is a representation πop

τ of Aop on L2(A, τ), given by

πop
τ (bop)x̂ = x̂b. Since τ is tracial, one has

〈πop
τ (bop)x̂, x̂〉 = τ(x∗xb) = 〈πτ (b)x̂∗, x̂∗〉 ≥ 0

if bop ≥ 0, which means that πop
τ is a positive ∗-representation on L2(A, τ).

Since πτ (A) and πop
τ (Aop) commute, one obtains a positive ∗-representation

πτ × πop
τ : A⊗Aop → B(L2(A, τ)), (πτ × πop

τ )(a⊗ bop)x̂ = âxb.

In particular, ∑
ai ⊗ bop

i 7→ 〈(πτ × πop
τ )(

∑
ai ⊗ bop

i )1̂, 1̂〉 = τ(
∑

aibi)

is a state on A⊗max Aop.
To prove the equivalence between CEC and KC, Kirchberg ([Ki1]) has shown that all

von Neumann algebras are QWEP if it is the case for finite von Neumann algebras. We
take a different route and prove the following alternative.

Theorem 28. There is a tracial state τ on C∗Fd such that πτ × πop
τ is faithful on the

C∗-algebra C∗Fd ⊗max C∗Fd. This means that if τ(
∑

i aixbix
∗) ≥ 0 for every x ∈ C[Fd]

and τ ∈ T (C[Fd]), then
∑

i ai ⊗ b̌i ∈ arch(C[Fd × Fd]+).

Proof. First, take a faithful ∗-representation π × π′ of C∗Fd ⊗max (C∗Fd)op on H. By
inflating it if necessary, one may find a von Neumann algebra M in its standard form (see
Section IX.1 in [Ta]) such that π(C∗Fd) ⊂ M and π′((C∗Fd)op) ⊂ M ′ ∼= Mop. Further,
by replacing π with π ⊕ (π′)op : C∗Fd → M ⊕M ⊂ M2(M), and M with M2(M), one
may assume π′ = πop. There is an R-action on M such that the crossed product von
Neumann algebra M o R is semi-finite (Theorem XII.1.1 in [Ta]). We think M o R acts
on H ⊗ L2(R) by a ⊗ 1 for a ∈ M and ut ⊗ λt for t ∈ R, where ut is the implementing
unitary group. Hence C∗Fd ↪→ M o R is given by π̃(a) = π(a) ⊗ 1. Then under the
identification of H ⊗ L2(R) with L2(R, H), the embedding π̃op : (C∗Fd)op ↪→ (M o R)′ is
given by (π̃op(bop)ξ)(t) = utπ

op(bop)u∗t ξ(t). Since π × πop is weakly contained in π̃ × π̃op,
one may assume from the beginning that M is a semi-finite von Neumann algebra with a
faithful normal tracial weight Tr, and the ∗-representation π× πop of C∗Fd⊗max (C∗Fd)op

on L2(M,Tr) is faithful. Since vectors with finite supports are dense in L2(M,Tr), one
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can use Choi’s trick (see the proof of Theorem 26) and find a countable family of ∗-repre-
sentations σk from C∗Fd into finite von Neumann algebras (Mk, τk) such that

⊕
σk × σop

k

is faithful. By considering τ =
∑

2−kτk ∈ T (C∗Fd), we are done. �

We denote by F∞ = 〈s1, s2, . . .〉 the free group on countably many generators. We
identify the elements si with the corresponding unitary elements in C∗F∞.

Theorem 29. Let A be a C∗-algebra having a tracial state τ and a dense sequence
u1, u2, . . . of unitary elements in A. Let σ : C∗F∞ → A, σ(si) = ui be the correspond-
ing ∗-homomorphism. Then, the finite von Neumann algebra πτ (A)′′ satisfies CEC if and
only if the linear functional defined by

si ⊗ sj 7→ τ(uiu
∗
j) on span{si ⊗ sj} ⊂ C∗F∞ ⊗min C∗F∞

is contractive.

In the operator space terminology, span{s1, s2, . . .} is denoted by `1, and the above
theorem in particular says that KC holds true if the formal identity `1⊗min`1 ↪→ C∗F∞⊗max

C∗F∞ is contractive. It is known that this map is bounded (by KCG < 1.41). In case this
map is moreover completely contractive, the theorem easily follows from Pisier’s trick.
See Section 12 in [Pi2] for more information.

Proof. We first prove the ‘if’ part. For notational simplicity, denote C = C∗F∞ and let
it act on a Hilbert space H with infinite multiplicity. We note that C is ∗-isomorphic to
its complex conjugate C̄ acting on the conjugate Hilbert space H̄ by s̄, s ∈ F∞. We use
the standard identification of the Hilbert space H ⊗ H̄ with the space S2(H) of Hilbert–
Schmidt class operators on H. Then, a ⊗ b̄ ∈ C ⊗ C̄ acts on S2(H) by (a ⊗ b̄)x = axb∗.
By considering the complete isometries si 7→ s−1

1 si, one may assume that s1 = 1 and
F∞ = 〈s2, s3, . . .〉 in the above formula. Then, since every unital contraction is positive
on a C∗-algebra, the linear functional si⊗ s̄j 7→ τ(uiu

∗
j) extends to a state f on C⊗min C̄.

Let n ∈ N be given and ε = 1/n. Then, there is x ∈ S2(H) of norm 1 such that

|f(si ⊗ s̄j)− Tr(sixs
∗
jx
∗)| < ε2/8

for i, j ≤ n. Since ‖six − xsi‖2
2 = 2(1 − <Tr(sixs

∗
ix
∗)) < (ε/2)2, denoting h = x∗x, one

has

|τ(uiu
∗
j)− Tr(hsis

∗
j)| < ε and ‖sihs∗i − h‖1 < ε

for i, j ≤ n. Here ‖ · ‖1 denotes the trace norm. By approximation, one may assume that h
is of finite-rank and has rational eigenvalues. Then, Lemma 6.2.5 in [BO] implies that there
is a u.c.p. map ϕn from C into the hyperfinite II1-factor R such that τ(ϕn(a)) = Tr(ha)
for a ∈ C and |1− τ(ϕn(si)ϕn(si)

∗)| ≤ 2ε1/2 for i ≤ n. See also Lemma 6.2.6 in [BO]. It
follows that, for each i, the sequence (ϕn(si))

∞
n=1 gives rise to a unitary element vi in Rω

such that

τ(uiu
∗
j) = τ(viv

∗
j )
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for all i, j. By Theorem 27, πτ (A)′′ ↪→ Rω.
For the converse implication, let πτ (A)′′ ↪→ Rω and (ui(n))∞n=1 ∈

∏
R be liftings of

ui in Rω. Then, for the corresponding ∗-homomorphism σn : C → R, si 7→ ui(n), the
∗-homomorphism σn× σop

n from C ⊗Cop to B(L2(R, τ)) is continuous with respect to the
minimal tensor product. Hence the map

si ⊗ sj 7→ lim
n
〈(σn × σop

n )(si ⊗ sj)1̂, 1̂〉 = lim
n
τ(ui(n)uj(n)∗) = τ(uiu

∗
j)

is contractive with respect to the minimal tensor norm. �

Corollary 30 ([Ki1]). CEC is equivalent to KC that C∗Fd ⊗max C∗Fd = C∗Fd ⊗min C∗Fd
holds for some/all d ≥ 2.

Proof. Since the free groups Fd’s are embedded into each other (for d ≥ 2), KC does
not depends on d ≥ 2. By Theorem 28, there is an embedding π of C∗Fd into a finite
von Neumann algebra M with separable predual (which may be assumed to be a factor
by considering a free product) such that π × πop is faithful on C∗Fd ⊗max C∗Fd. If M
is embeddable into Rω, then one can lift the ∗-representation π into Rω to (πn)∞n=1 into∏
R and sees that

⊕
πn×πop

n is faithful. Since R is hyperfinite, πn×πop
n factors through

C∗Fd ⊗min C∗Fd and KC follows. The converse implication follows from Theorem 29. �

We remark that the free group Fd in KC can be replaced with any other single group
which contains F2 and whose full group C∗-algebra has the so-called local lifting property.
In particular, KC is equivalent to the same statement but Fd is replaced with a “nontrivial”
free product of amenable groups. See [BO, Ki1, Oz1] for the proof of these facts and more
information.

16. Quasi-diagonality. In this section, we prove a weaker version of Kirchberg’s Con-
jecture. We still assume k = C. Since C∗Fd is RFD, so is the minimal tensor product
C∗Fd ⊗min C∗Fd. On the other hand, since any finite-dimensional ∗-representation of the
maximal tensor product factors through the minimal tensor product, KC is equivalent to
the assertion that C∗(Fd × Fd) (which is canonically isomorphic to C∗Fd ⊗max C∗Fd) is
RFD. By Positivstellensätze (Corollary 2), one obtains the following.

Corollary 31. KC is equivalent to the following statement. If f ∈ k[Fd × Fd]h is such
that π(f) ≥ 0 for all finite(-dimensional) unitary representations π of Fd × Fd, then
f ∈ arch(k[Fd × Fd]+).

While residual finite-dimensionality of C∗(Fd × Fd) (Kirchberg’s Conjecture) remains
open, one can prove that it satisfies the following weaker property.

Definition. A C∗-algebra A is said to be quasi-diagonal if there is a net of u.c.p. maps
ϕn : A→Mk(n)(C) such that

‖ϕn(xy)− ϕn(x)ϕn(y)‖ → 0
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for every x, y ∈ A, and

{x ∈ A : ϕn(x) ≥ 0 for all n} = A+.

Theorem 32 ([BO]). The C∗-algebra C∗(Fd × Fd) is quasi-diagonal.

The proof requires homotopy theory for C∗-algebras. It is a celebrated theorem of
Voiculescu that quasi-diagonality is a homotopy invariant. See Chapter 7 in [BO] for
the proof of it and more information on quasi-diagonality. Recall that two ∗-homomor-
phisms π0, π1 from A to B are homotopic, denoted by π0 ∼h π1, if they are connected
by a pointwise continuous path (πt)t∈[0,1] of ∗-homomorphisms; and C∗-algebras A and
B are homotopic if there are ∗-homomorphisms α : A → B and β : B → A such that
β ◦ α ∼h idA and α ◦ β ∼h idB. We say A is homotopically contained in B if there are
a C∗-algebra B1 which is homotopic to B, a ∗-homomorphism α : A → B1, and a u.c.p.
map β : B1 → A∗∗ such that β ◦ α = ιA, the canonical embedding of A into A∗∗. We note
that if there are ∗-homomorphisms α : A → B and β : B → A∗∗ such that β ◦ α ∼h ιA,
then A is homotopically contained in B. Indeed, if γt is a homotopy from ιA to β ◦ α,
then γ ⊕ α gives rise to an embedding of A into the mapping cylinder

Zβ = {(f, b) ∈ C([0, 1], A∗∗)⊕B : f(1) = β(b)},

which is homotopic to B.

Proof of Theorem 32. This follows from Voiculescu’s theorem, once we observe that the
property being homotopically contained in the trivial C∗-algebra C1 (or finite-dimensional
C∗-algebras, see [Oz2]) is preserved by unital full free products and tensor products. Note
that C∗Z ∼= C(T) ⊂ C([0, 1]) has this property, to begin with. �

It is unclear for which group Γ, the full group C∗-algebra C∗Γ is quasi-diagonal (or
homotopically contained in C1—this is not the case when C∗Γ has nontrivial projec-
tions, e.g., when Γ has torsion or Kazhdan’s property (T)). A well-known conjecture of
Rosenberg (see [C+]) asserts that all amenable groups should have quasi-diagonal C∗Γ.
On the other extreme, any infinite simple Kazhdan’s property (T) group gives rise to a
counterexample ([Ki2]). The case for SL3(Z) is unclear (cf. [Be1, Be2]).

17. Operator systems. We will prove the Choi–Effros theorem giving the abstract char-
acterization of semi-operator systems. Recall that a (semi-)operator system is a unital
∗-subspace S of a (semi-pre-)C∗-algebra A, equipped with the matricial positive cone
Mn(S)+ := Mn(S) ∩Mn(A)+ for each n ∈ N. Here, we do not assume it norm-closed.
We generally think that the specific embedding S ⊂ A is not a part of the opera-
tor system structure of S, but only the matricial positive cones (Mn(S)+)∞n=1 are. A
map ϕ : S → T between operator systems is said to be completely positive (c.p.) if
id ⊗ ϕ : Mn(S) → Mn(T ) is positive for all n. Thus S and T are completely order iso-
morphic if there is a unital c.p. (u.c.p.) linear isomorphism ϕ : S → T such that ϕ−1 is
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also c.p. It is not too hard to see that a semi-operator system (S, (Mn(S)+)∞n=1) satisfies
the following axiom:

(i) R≥01 ∈Mn(S)+ and λa+ b ∈Mn(S)+ for every a, b ∈Mn(S)+ and λ ∈ R≥0;
(ii) x∗ax ∈Mn(S)+ for every m,n ∈ N, a ∈Mm(S)+ and x ∈Mm,n(k);

(iii) For every n and every h ∈Mn(S)h, there is R > 0 such that h ≤ R1.
If S is an operator system, then it moreover satisfies the following:
(iv) Mn(S)+ ∩ (−Mn(S)+) = {0} and Mn(S)+ is archimedean closed;
(v) I(S) := {x ∈ S : [ 0 x∗

x 0 ] ∈ arch(M2(S)+)} = {0}.
We recall the ground assumption that the unit is always written as 1, and so is the unit
matrix in Mn(k). The definition of x∗ax is the obvious one:

x∗ax = [
∑
k,l

x∗k,iak,lxl,j]i,j = [
∑
k,l

x∗k,ixl,jak,l]i,j for x = [xk,i]k,i and a = [ak,l]k,l.

An abstract (semi-)operator system is a system (S, (Mn(S)+)∞n=1) satisfying the above
axiom. The condition (v) follows from other conditions in case k = C. Given an abstract
semi-operator system S, we introduce the corresponding semi-pre-C∗-algebra A(S) as the
universal unital ∗-algebra generated by S, equipped with the ∗-positive cone

A(S)+ = {x∗ax : n ∈ N, a ∈Mn(S)+, x ∈Mn,1(A(S))}.
To see that the Combes axiom is satisfied, let x ∈ S be given arbitrary. Then, there is
R > 0 such that

[
R1 −x
−x∗ R1

]
∈M2(S)+. It follows that

0 ≤ 1

R

[
x∗ R1

] [ R1 −x
−x∗ R1

] [
x
R1

]
= R21− x∗x.

This implies that S ⊂ A(S)bdd and hence the Combes axiom follows. The universal C∗-
algebra C∗u(A(S)) of A(S) is generated by ι(S) and has the following universal property:
Every u.c.p. map S into a C∗-algebra B extends to a ∗-homomorphism on C∗u(A(S)).
We call C∗u(A(S)) the universal C∗-algebra of the semi-operator system S and denote it
simply by C∗u(S).

Theorem 33 ([CE]). Let S be a semi-operator system. Then, one has

ker(ι : S → C∗u(S)) = I(S)

and
arch(Mn(S)+) = Mn(S)h ∩ ι−1(Mn(C∗u(S))+)

for every n. In particular, an abstract operator system is completely order isomorphic to
a concrete operator system.

Proof. By definition, one has Mn(S)+ ⊂ Mn(C∗u(S))+. Also, it is not difficult to see
I(S) ⊂ ker ι. For the converse inclusions, it suffices to show that for every a ∈ Mn(S)h \
arch(Mn(S)+), there is a positive ∗-representation π on C∗u(S) such that (id⊗ π)(a) 6≥ 0.
(This in particular shows that ker ι ⊂ I(S).) For this, it is enough to find a u.c.p.



26 NARUTAKA OZAWA

map ψ : S → B(H) such that (id ⊗ ψ)(a) 6≥ 0. Since Mn(S)+ is algebraically solid in
Mn(S)h, one may find a state ϕ̃ on Mn(S) such that ϕ̃(a) < 0. Let ϕ : S → Mn(k) be
the corresponding c.p. map to ϕ̃ (see Lemma 16). Then, ϕ(1) ∈ Mn(k) is a self-adjoint
positive element and for the support projection p of ϕ(1), one has ϕ(x) = pϕ(x)p for all

x ∈ S (because
[
Rϕ(1) ϕ(x)∗

ϕ(x) Rϕ(1)

]
≥ 0 for some R > 0). It follows that the map ψ defined by

ψ(x) = ϕ(1)−1/2ϕ(x)ϕ(1)−1/2|p`n2 is a u.c.p. map from S into B(p`n2 ) such that ψ(a) 6≥ 0.
This completes the proof. �

The proof above is short and classical, but it would be nicer if there is another proof
which relies more directly on the definition of A(S)+. There is another very interesting
C∗-algebra associated with an operator system S, called the C∗-envelope C∗e(S) of S (see
Chapter 15 in [Pa]), but the explicit description of the corresponding semi-pre-C∗-algebra
structure on A(S) is unclear.

18. Operator system duality and tensor products. An important corollary to The-
orem 33 is the operator system duality. Let S be a semi-operator system. We denote by
Sd the linear dual of S, and identify Mn(Sd) with the space of the linear maps from S to
Mn(k) (cf. Lemma 16) to introduce the corresponding matricial positive cones on it. Thus
for f = [fi,j]i,j ∈ Mn(Sd), one has f ∗ = [f ∗j,i]i,j (recall that f ∗(x) = f(x∗)∗), and f ≥ 0 in

Mn(Sd) if and only if x 7→ [fi,j(x)] ∈Mn(k) is c.p. Then, the system (Sd, (Mn(Sd)+)∞n=1)
satisfies all the axioms of operator systems in Section 17, except the ones involving the
unit 1. We also observe by Theorem 33 (and Theorem 14) that a ∈ Mm(S)h belongs to
arch(Mm(S)+) if and only if a is c.p. as a linear map from Sd to Mm(k). It follows that
S ↪→ Sdd is a complete order isomorphic embedding modulo archimedean closure. When
S is a finite-dimensional operator system, then one can pick any faithful state p on S, and
make (Sd, (Mn(Sd)+)∞n=1) an abstract operator system with the unit p. (So, the operator
system structure of Sd depends on the choice of the unit p, and one has to choose the
canonical one if exists. For example, the unit of Sdd = (Sd)d has to be the unit 1 of S.)
Summarizing the above discussion, we reach to the following corollary.

Corollary 34 ([CE]). Let S be a finite-dimensional operator system. Then, its dual Sd is
an (abstract) operator system. Moreover, the natural isomorphism S = Sdd is a complete
order isomorphism.

Let S and T be (semi-)operator systems, and S ⊗ T be their tensor product. There
are two (in fact more) canonical operator system structures on S ⊗ T ([K+, FP]). The
first one is the minimal tensor product S ⊗min T , defined by

Mn(S ⊗min T )+ = Mn(S ⊗ T ) ∩ (id⊗ ιS ⊗ ιT )−1(Mn(C∗u(S)⊗min C∗u(T ))+).

We observe from Theorem 14 that an element c ∈ Mn(S ⊗ T )h is positive if and only if
(id ⊗ ϕ ⊗ ψ)(c) ∈ Mnkl(k)+ for all k, l ∈ N and c.p. maps ϕ : S → Mk(k) and ψ : T →
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Ml(k). The second one is the maximal operator system tensor product S ⊗max T , defined
by

Mn(S ⊗max T )+ = arch({x∗(s⊗ t)x : x ∈Mkl,n(k), s ∈Mk(S)+, t ∈Ml(T )+}),

where x∗(s ⊗ t)x = [
∑

p,p′,q,q′ x
∗
(p,q),i(sp,p′ ⊗ tq,q′)x(p′,q′),j]i,j ∈ Mn(S ⊗ T ). We note that

for S1 ⊂ S2 and T1 ⊂ T2, the natural embedding S1 ⊗ T1 ↪→ S2 ⊗ T2 is a complete order
isomorphic embedding with respect to minimal tensor products, but need not be so with
respect to the maximal tensor products. It is not too hard to see that for any operator
systems S and T , both minimal and maximal tensor product satisfy the axiom of operator
systems, and that the formal identity map from S ⊗max T to S ⊗min T is c.p. These two
tensor products are dual to each other in the following sense.

Theorem 35 ([FP]). Let S and T be finite-dimensional operator systems. Then the
natural isomorphism

(S ⊗min T )d = Sd ⊗max T d

is a complete order isomorphism.

Proof. First, we observe that if p and q are faithful states, then p ⊗ q is faithful on
S ⊗min T . We will prove this for general operator systems. Let (p ⊗ q)(c) = 0 for some
c ∈ (S ⊗min T )+. Then, the faithfulness of p implies (id× q)(c) = 0 in S. Thus, for every
c.p. map ϕ : S →Mm(k), one has (id⊗ q)((ϕ⊗ id)(c)) = ϕ((id× q)(c)) = 0. Since id⊗ q
is also faithful on Mm(T ), this implies (ϕ⊗ id)(c) = 0, and c = 0.

By replacing S and T with their duals, it suffices to show that the natural map Sd⊗min

T d → (S ⊗max T )d is a complete order isomorphism. For complete positivity, one has to

show for any f ∈Mn(Sd⊗min T d)+, the corresponding map f̃ : S ⊗max T →Mn(k) is c.p.
But this is true, since for every m, k, l and x ∈ Mkl,m(k), s ∈ Mk(S)+, and t ∈ Ml(T )+,
one has

f̃(x∗(s⊗ t)x) = x∗〈f, s⊗ t〉x ∈Mmn(k)+,

thanks to the completely order isomorphic embeddings S ⊂ Sdd and T ⊂ T dd. It remains
to show that if c : (S ⊗max T )d → Mn(k) is c.p., then it is c.p. on Sd ⊗min T d. But by
definition, c is identified with an element in Mn((S ⊗max T )dd)+ = Mn(S ⊗max T )+ and
c+ ε1 = x∗(s⊗ t)x for some x, s, t. Hence, for every f ∈Mm(Sd ⊗min T d)+, one has

(id⊗ (c+ ε1))(f) = x∗〈s⊗ t, f〉x ∈Mnm(k)+.

Since ε > 0 was arbitrary, one has (id⊗ c)(f) ∈Mnm(k)+. This completes the proof. �

19. Quantum correlation matrices and Tsirelson’s Problem. In this section, we
take k = C. In quantum information theory, a measurement of a state is carried out by
so-called POVMs (positive operator valued measures). For simplicity of the presentation,
we only consider PVMs (projection valued measures). A PVM with m outputs is an
m-tuple (Pi)

m
i=1 of orthogonal projections on a Hilbert space H such that

∑
Pi = 1. For
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each n ∈ N, the convex sets of quantum correlation matrices of two separated systems of
d PVMs with m-outputs are defined by

Qnc = {
[
V ∗P

(k)
i Q

(l)
j V

]
k,l
i,j

:

H a Hilbert space, V : `n2 → H an isometry

(P
(k)
i )mi=1, k = 1, . . . , d, PVMs on H,

(Q
(l)
j )mj=1, l = 1, . . . , d, PVMs on H,

[P
(k)
i , Q

(l)
j ] = 0 for all i, j and k, l

}

(here [A,B] = AB −BA is the commutator) and

Qns = closure{
[
V ∗(P

(k)
i ⊗Q

(l)
j )V

]
k,l
i,j

:

H,K Hilbert spaces,
V : `n2 → H ⊗K an isometry,

(P
(k)
i )mi=1, k = 1, . . . , d, PVMs on H,

(Q
(l)
j )mj=1, l = 1, . . . , d, PVMs on K

}.

The sets Qnc and Qns are closed convex subsets of Mmd(Mn(C)+) such that Qns ⊂ Qnc .
We simply write Qc and Qs when n = 1. Whether Qc = Qs for every m and d is the
well-known Tsirelson Problem. We refer the reader to [Fr, J+, Ts] for the background
and the literature on this problem. (The “real” problem may be that which of Qc and Qs
should we take as the definition of quantum correlation matrices? See [Fr, Oz2].) Since
a commuting system on a finite-dimensional Hilbert space splits as a tensor product if
irreducible, one also has

Qns = closure{
[
V ∗P

(k)
i Q

(l)
j V

]
k,l
i,j

:

dimH <∞, V : `n2 → H an isometry

(P
(k)
i )mi=1, k = 1, . . . , d, PVMs on H,

(Q
(l)
j )mj=1, l = 1, . . . , d, PVMs on H,

[P
(k)
i , Q

(l)
j ] = 0 for all i, j and k, l

},

which looks more similar to Qnc . As observed in [Fr, J+], Tsirelson’s Problem is a problem
about the semi-pre-C∗-algebra

Fdm = `m∞ ∗ · · · ∗ `m∞,
the d-fold unital free product of `m∞ (see Example 5). This algebra is also ∗-isomorphic to
the group algebra C[Γ] of Γ = Z∗dm , the d-fold free product of the finite cyclic group Zm.

We denote by (pi)
m
i=1 the standard basis of minimal projections in `m∞, and by (p

(k)
i )mi=1

the k-th copy of it in the free product Fdm. We also write p
(k)
i for the elements p

(k)
i ⊗ 1 in

Fdm ⊗ Fdm and q
(l)
j for 1⊗ p(l)

j . Now, it is not too hard to see that

Qnc = {
[
ϕ(p

(k)
i q

(l)
j )
]
k,l
i,j

: ϕ ∈ Sn(Fdm ⊗max Fdm)}

and

Qns = {
[
ϕ(p

(k)
i q

(l)
j )
]
k,l
i,j

: ϕ ∈ Sn(Fdm ⊗min Fdm)}.
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Here we recall that Sn(A) denotes the set of u.c.p. maps from A into Mn(C). When
(m, d) = (2, 2), the group Z∗22 is isomorphic to the infinite dihedral group D∞ and the
universal representation 〈[ 0 1

1 0 ] , [ 0 z
z∗ 0 ]〉 ⊂ M2(C(T)) gives rise to an embedding C∗D∞ ⊂

M2(C(T)). In particular, Γ is amenable and Qnc = Qns in this case. Otherwise, Z∗dm is a
“nontrivial” free product group and contains a copy of F2. It is proved in [Fr, J+] that the
matricial version of Tsirelson’s Problem (conjectures (2) and (3) in the following theorem)
is equivalent to CEC and KC. Here we prove that the original Tsirelson Problem is also
equivalent to them.

Theorem 36 (cf. [Fr, J+]). The following conjectures are equivalent.

(1) The Connes Embedding Conjecture holds true.
(2) One has Qnc = Qns for all m, d, n ∈ N.
(3) There are m, d ≥ 2 with (m, d) 6= (2, 2) such that Qnc = Qns for all n.
(4) One has Qc = Qs for all m, d ∈ N.

Proof. The implication (1) ⇒ (2) follows from the fact that KC is equivalent to that
Fdm ⊗max Fdm = Fdm ⊗min Fdm (see Section 15). That (2)⇒ (3) & (4) is obvious. Now, if (3)
holds true, then the operator system structures on

span{p(k)
i q

(l)
j : i, j, k, l} = (`m∞ + · · ·+ `m∞)⊗ (`m∞ + · · ·+ `m∞) ⊂ Fdm ⊗ Fdm

induced from max and min tensor products coincide by Corollary 34. This implies KC
by Corollary 20. This proves (3) ⇒ (1). Finally, it remains to show (4) ⇒ (1). Let a
finite von Neumann algebra (M, τ) and a sequence u1, u2, . . . of unitary elements be given.
By spectral theorem, for every m, there are unitary elements ui(m) of order m such that

‖ui − ui(m)‖ ≤ π/m. Recall that Fdm
∼= C[Z∗dm ] via

∑m
i=1 ω

i
mp

(k)
i ↔ sk, where ωm is an

n-th primitive root of unity and sk is the generator of the k-th copy of Zm in Z∗dm . Then,
condition (4) for m, d implies that the map

si ⊗ sj 7→ τ(ui(m)uj(m)∗) = 〈πτ (ui(m))πop
τ ((uj(m)∗)op)1̂, 1̂〉

is contractive on span{si ⊗ sj : i, j ≤ d} ⊂ C∗Z∗dm ⊗min C∗Z∗dm . It is also contractive on
C∗Fd ⊗min C∗Fd through the natural surjection Fd → Z∗dm . Taking limit in m and d, one
verifies that the condition in Theorem 29 holds. It follows that (M, τ) satisfies CEC.
(Playing around with the fact that every element in a II1-factor is a linear combination of
projections with control on the number of terms and coefficients ([FH]), one can weaken
condition (4) further to the extent that Qc = Qs for a fixed m ≥ 2 and all d ∈ N.) �

20. Quantum correlation matrices and semidefinite program. We continue the
study of Tsirelson’s Problem whether Qc = Qs. We will see that Qs ⊂ Qc are approx-
imated from above and from below by rather explicit semi-algebraic sets. Recall that a
subset of RN is said to be semi-algebraic if it can be defined by finitely many polynomial
equations and inequalities. It is very likely that Qc and Qs themselves are not semi-
algebraic (cf. Problem 2.10 in [Ts]), except the case (m, d) = (2, 2) where Qc = Qs is
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semi-algebraic (since the irreducible representations of Z∗22 are at most two dimensional).
For the description of Qc, it is probably neater to use the isomorphism `m∞

∼= C[Zm], given
by the Fourier transform pi ↔ 1

m

∑m
v=1 ω

−iv
m sv, where ωm is an n-th primitive root of unity

and s is the generator of Zm. Now, Fdm ⊗max Fdm is identified with C[Z∗dm ×Z∗dm ]. We write

sk and tl for the generator of Z(k)
m ×{1} and {1}×Z(l)

m in Z∗dm ×Z∗dm . By Corollary 13, there
is a one-to-one correspondence between a positive type function f on Z∗dm×Z∗dm and a state
ϕf on C[Z∗dm×Z∗dm ], given by ϕf (g) =

∑
t f(t)g(t). Let En be an increasing and exhausting

sequence of finite subsets of Z∗dm ×Z∗dm . We say a function f : E−1
n En → C is positive type

on En if [f(s−1t)]s,t∈En is positive semidefinite in MEn(C). Then by compactness, one has

Qc =
⋂
n

{
[
ϕf (p

(k)
i q

(l)
j )
]
k,l
i,j

: f positive type on En}

=
⋂
n

{

[
1

m2

m∑
v,w=1

ω−iv−jwm f(svkt
w
l )

]
k,l
i,j

: f positive type on En}.

See [Fr] for more information. Next, we deal with Qs. Although the description

Qs = closure

⋃
n

{
[
〈(P (k)

i ⊗Q
(l)
j )ξ, ξ〉

]
k,l
i,j

:

ξ ∈ `n2 ⊗ `n2 a unit vector,

(P
(k)
i )mi=1 PVMs on `n2 ,

(Q
(l)
j )mj=1 PVMs on `n2

}


is already quite good, we will do some calculations around operator system tensor prod-
ucts. See [F+] (and also [FP, Ka, K+]) for more information on this subject. Let

Sm,d = span{p(k)
i : i = 1, . . . ,m, k = 1, . . . , d} = `m∞ + · · ·+ `m∞ ⊂ Fdm

be the finite-dimensional operator system. Then, Qs coincides with the space of states

on Sm,d ⊗min Sm,d, evaluated at the “basis” {p(k)
i ⊗ q

(l)
j }. By Lemma 22, the operator

system structure of Sm,d is defined as follows: a ∈ Mn(Sm,d) is positive if and only if
there are a1, . . . , ad ∈ Mn(`m∞)+ such that a = a1 + · · · + am. This implies that a map
ϕ : Sm,d → Mn(C) is c.p. if and only if the restriction of ϕ to each summand `m∞ is c.p.
Meanwhile, a map ψ : `m∞ →Mn(C) is c.p. if and only if ψ(pi) ≥ 0 for every i = 1, . . . ,m.
It follows that the dual operator system Sd

m,d of Sm,d is naturally identified with

Sd
m,d = {(f1, . . . , fd) ∈ `m∞ ⊕ · · · ⊕ `m∞ :

∑
i

fk(i) =
∑
j

fl(j)} ⊂ `dm∞ .

By Theorem 35, one has (Sm,d⊗minSm,d)d = Sd
m,d⊗maxSd

m,d. Hence, if c ∈ (Sm,d⊗minSm,d)d

is strictly positive, i.e. c ≥ ε1 for some ε > 0, then it has a representation x∗(s⊗ t)x for
some x ∈ Mvw,1(C), s ∈ Mv(Sd

m,d)+, and t ∈ Mw(Sd
m,d)+. Viewing x as a vector ξ in

`v2 ⊗ `w2 , one has

x∗(s⊗ t)x = 〈(s⊗ t)ξ, ξ〉 ∈ Sd
m,d ⊗ Sd

m,d.
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Evaluating it at the basis {p(k)
i ⊗ q

(l)
j }, one obtains

x∗(s⊗ t)x =
[
〈(s(k)

i ⊗ t
(l)
j )ξ, ξ〉

]
k,l
i,j

,

where s
(k)
i ∈ Mv(C)+ and t

(l)
j ∈ Mw(C)+ satisfy

∑
i s

(k)
i = a (independent of k) and∑

j t
(l)
j = b (independent of l). Replacing ξ with (a1/2 ⊗ b1/2)ξ, one may assume that

a = 1 and b = 1. By dilating them, one may further assume that (s
(k)
i )mi=1 and (t

(l)
j )mj=1

are PVMs. In this way, we come back to the original definition of Qs. We note that we
have proved that one can realize a “generic” element [γk,li,j ] ∈ Qs by a finite-dimensional

system, namely if it is faithful on Sm,d ⊗min Sm,d. It seems unlikely that this is also the

case for all [γk,li,j ] ∈ Qs.
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