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Abstract 

A series of 1-methyl-3-polyfluoroalkylimidazolium fluorohydrogenate salts (C3F3MIm(FH)1.7F, 

C4F5MIm(FH)1.7F, C6F9MIm(FH)1.8F, C8F13MIm(FH)2.0F, and C10F17MIm(FH)2.0F; the subscript 

numbers denote the number of carbon and fluorine atoms in the side-chain, respectively, with which 

the two carbon atoms from the root of the side-chain are not fluorinated) were synthesized and their 

physicochemical properties, including decomposition temperature, phase transition temperature, 

density, viscosity, ionic conductivity, and electrochemical stability, were measured. The three salts 

with relatively short side-chain have melting points below room temperature; C3F3MIm(FH)1.7F (Tm: 

274 K), C4F5MIm(FH)1.7F (Tg: 186 K), and C6F9MIm(FH)1.8F (Tm: 276 K). The other salts, 

C8F13MIm(FH)2.0F and C10F17MIm(FH)2.0F, are in the crystal phase at room temperature. The 

obtained salts are miscible with water and hydrophobic fluorohydrogenate ionic liquids were not 

obtained in the present series. Introduction of fluorine atoms results in the increase in the density 

and viscosity, decrease in the ionic conductivity, and decrease in electrochemical stability against 

reduction. The liquid crystal phase was observed for C8F13MIm(FH)2.0F and C10F17MIm(FH)2.0F 

according to polarized optical microscopy and X-ray diffraction analysis.  

  



1. Introduction 

Ionic liquids (ILs) are liquid composed of only organic and/or inorganic ions without 

containing neutral species. In particular, ILs with melting points below room temperature are called 

room temperature ionic liquids (RTILs) [1–4]. The report about the first air-stable IL, 

1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4), triggered many researchers to find new 

ILs with a wide variety of properties by the combination of various cations and anions [5]. The 

unique properties often found for ILs are extremely low vapor pressure, non-flammability, good 

thermal and electrochemical stability, wide liquid phase temperature range, high polarity, and 

catalytic properties. The ILs can be utilized as stable electrolytes in batteries, capacitors, fuel cells, 

dye-sensitized solar cells, and electrolytic bath, and as clean solvent and catalyst for various organic 

reactions, enzyme reactions, phase separations, and extractions [6–10]. 

Fluoroanions, such as BF4
–
, PF6

–
, CF3SO3

–
, (CF3SO2)2N

–
, and (FSO2)2N

–
, are frequently used 

as counteranions in ILs [4]. Fluorohydrogenate anion ((FH)nF
–
) is one of them and gives highly 

conductive and low viscous ILs called fluorohydrogenate ILs (FHILs) in combination of various 

cations (1-alkyl-3-methylimidazolium, N-alkylpyridinium, N-alkyl-N-methylpyrrolidinium, 

N-alkyl-N-methylpiperidinium, tetraalkylphosphonium, and trialkylsulfonium) [11–16]. For 

example, 1-ethyl-3-methylimidazolium fluorohydrogenate (EMIm(FH)2.3F) is nonvolatile, 

nonflammable, stable in the air, and inert against borosilicate glass in spite of the anions containing 

a HF unit, and possesses a high ionic conductivity of 100 mS cm
–1

 and low viscosity of 4.9 cP at 

298 K, as well as a low melting temperature of 208 K [11,12]. Fluorohydrogenate anions are 

oligomeric complex ions, where several HF units are bound as ligands to the central fluorine atom. 

The HF unit is rapidly exchanging between (FH)2F
–
 and (FH)3F

–
 according to NMR study and 

behaves like a solvent molecule with a certain dipole moment to weaken the cation–anion 

interaction [17,18]. Hence, the effective radii of the anionic species actually migrating in FHILs 

become small by the exchange of ligand HF between the anions. The low viscosity and high ionic 



conductivity of FHILs lead to the applications as electrolytes in electrochemical capacitors, fuel 

cells, and dye-sensitized solar cell [19–21].  

Ionic liquids based on polyfluoroalkylated cations have been studied as hydrophobic ILs with 

some interesting properties; inertness to organic solvents and oxidizing agents, resistance to 

corrosive acids and bases, and resistance to extremes of temperature and pressure [22–27]. These 

ILs were mainly applied as reaction solvents for organic reactions and separations as well as 

catalysis due to their unique properties [22], whereas there are little reports about the usage as 

electrolytes for electrochemical devices. In this study, fluorohydrogenate salts based on 

polyfluoroalkylated imidazolium cations are synthesized and characterized, and the effects of the 

polyfluoroalkyl side-chain on the physicochemical properties of fluorohydrogenate salts are 

discussed.  

 

2. Results and discussion 

2.1 Synthesis and general properties 

The numbers of fluorine atoms in the side-chain of 1-methyl-3-polyfluoroalkylimidazolium 

cations (C(x+2)F(2x+1)MIm
+
, x is the number of carbon atoms with fluorine atoms) in this study are 3 

(C3F3MIm
+
: 1-methyl-3-(3,3,3-trifluoropropyl)imidazolium), 5 (C4F5MIm

+
: 

1-methyl-3-(3,3,4,4,4-pentafluorobutyl)imidazolium), 9 (C6F9MIm
+
: 

1-methyl-3-(3,3,4,4,5,5,6,6,6-nonafluorohexyl)imidazolium), 13 (C8F13MIm
+
: 

1-methyl-3-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)imidazolium), and 17 (C10F17MIm
+
: 

1-methyl-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)imidazolium), with which 

the two carbon atoms from the root of the side-chain are not fluorinated as shown in Fig. 1. All the 

C(x+2)F(2x+1)MIm(FH)nF salts were prepared by reaction of the corresponding iodide and excess 

anhydrous HF. In order to compare the effects of fluorine atoms, 1-methyl-3-propylimidazolium 

fluorohydrogenate (C3MIm(FH)1.7F) was synthesized and characterized, where C3F3MIm(FH)1.7F 



and C3MIm(FH)1.7F have the same number of carbon atoms and there is only the difference 

between terminal methyl group and trifluoromethyl group in the side-chain. At room temperature, 

C3F3MIm(FH)1.7F, C4F5MIm(FH)1.7F, and C6F9MIm(FH)1.8F are liquid, while C8F13MIm(FH)2.0F and 

C10F17MIm(FH)2.0F are powdery solid. The (FH)nF
–
 anions were identified by infrared (IR) 

spectroscopy (Fig. S1). Two solid salts have the vacuum-stable HF content of 2.0 

(C8F13MIm(FH)2.0F and C10F17MIm(FH)2.0F), suggesting the formation of the one to one crystal 

phase of the cations and (FH)2F
–
, while the other three RTILs have the lower HF content 

(C3F3MIm(FH)1.7F, C4F5MIm(FH)1.7F, and C6F9MIm(FH)1.8F). Previous reports show that the 

vacuum-stable HF content in FHILs based on imidazolium, pyridinium, pyrrolidinium, and 

piperidinium cations with short side-chains is 2.3 and those with long side-chains are below 2.3 

[13,14,28,29]. This trend was not adapted to the present FHILs based on polyfluoroalkylated 

cations. Long side-chain or polyfluoroalkylated side-chain give strong van der Waals interactions 

between the side-chains, which may affect the cation-anion interactions and lower the 

vacuum-stable HF content. Fluorine containing materials often enhance hydrophobicity due to their 

low polarity. In the present study, all the C(x+2)F(2x+1)MIm(FH)nF salts give a biphasic system at first 

when contacted with water. However, they slowly dissolved into water and form a single phase after 

a while although the whole fluorine weight in formula weight in cation is over 50%. 

Fluorohydrogenate anions are highly polar and form strong interactions with water, resulting in the 

strong hydrophilicity that overcomes the hydrophobicity of C(x+2)F(2x+1)MIm
+
. The massive 

introduction of fluorine atom together with extension of the side-chain in this study was not 

sufficient to give hydrophobicity of FHILs. On the other hand, the mixture of water and 

C(x+2)F(2x+1)MIm(FH)nF made bubbles when vigorously agitated because the cations with separated 

polar and non-polar regions show an interfacial activity. 

 

2.2 Thermal properties 



Thermogravimetric (TG) curves of C(x+2)F(2x+1)MIm(FH)nF and C3MIm(FH)1.7F are shown in 

Fig. 2. Thermal decomposition temperatures based on the onset of large weight loss for 

C(x+2)F(2x+1)MIm(FH)nF and C3MIm(FH)1.7F are around 460 and 530 K, respectively. Gradual weight 

loss below the decomposition temperature is caused by HF dissociation from (FH)nF
–
. The 

introduction of polyfluoroalkyl side-chain in the cation lowers the thermal stability of the FHIL. 

Pyrolysis of imidazolium halides occurs by an SN2 reaction, where the halide ion attacks α-carbon 

and alkylimidazole leaves [30]. Steric effects of side-chain in the imidazolium cation are weaker for 

short side-chain than long side-chain, resulting in the preferential break of C–N bond between 

nitrogen in imidazolium and α-carbon in short side-chain, and resulting in the formation of 

imidazole with the long side-chain as a leaving group [30]. In addition, the SN2 reaction rate for 

pyrolysis is high in the case of the leaving group with low Lewis basicity. In the present cases, the 

main leaving group in pyrolysis of C3F3MIm(FH)1.7F and C3MIm(FH)1.7F is thought to be 

1-(3,3,3-trifluoropropyl)imidazole and 1-propylimidazole, respectively. Because the polyfluoroalkyl 

side-chain withdraws the electron from the aromatic ring through ethylene group and lowers the 

Lewis basicity of 1-(3,3,3-trifluoropropyl)imidazole compared to that of 1-propylimidazole, thermal 

decomposition of C3F3MIm(FH)1.7F would be accelerated compared to that of C3MIm(FH)1.7F. In 

the cases of the cations with longer polyfluorinated side-chains, the clear difference of 

decomposition behavior was not observed because fluorine atoms distant from the aromatic ring do 

not effectively withdraw the electrons from the ring. 

Differential scanning calorimetric (DSC) curves of C(x+2)F(2x+1)MIm(FH)nF and 

C3MIm(FH)1.7F are shown in Fig. 3. Two RTILs, C3F3MIm(FH)1.7F and C6F9MIm(FH)1.8F, have 

large endothermic peaks corresponding to melting. The C4F5MIm(FH)1.7F salt exhibits only a glass 

transition. In the DSC curve of C8F13MIm(FH)2.0F, large endothermic and small endothermic peaks 

are observed at 326 and 382 K, respectively. As described below, the former peak shows a phase 

transition from the crystal phase to liquid crystal phase (melting) and the latter peak shows a phase 



transition from liquid crystal phase to isotropic liquid phase (clearing). In the DSC curve of 

C10F17MIm(FH)2.0F, a large endothermic peak (melting) is observed at 349 K, whereas the peak 

corresponding to clearing is not observed because the clearing temperature is higher than its 

decomposition temperature. 

 

2.3 Physicochemical properties 

Physicochemical properties of C(x+2)F(2x+1)MIm(FH)nF and C3MIm(FH)1.7F are summarized in 

Table 1. Introduction of fluorine atoms increases density as observed in the comparison between 

C3F3MIm(FH)1.7F (1.35 g cm
–3

) and C3MIm(FH)1.7F (1.12 g cm
–3

). The large density of 

C3F3MIm(FH)1.7F originates from the large difference in atomic weight and the small difference in 

size between fluorine and hydrogen atoms [31–33], where the difference of the formula weight is 

large (232 for C3F3MIm(FH)1.7F and 178 for C3MIm(FH)1.7F, respectively) and the difference of 

molar volume, calculated by FW/ρ, is small (172 cm
3
 mol

–1
 for C3F3MIm(FH)1.7F and 159 cm

3
 

mol
–1

 for C3MIm(FH)1.7F, respectively). The increasing number of fluorine atoms increases the ratio 

of the whole fluorine weight to the formula weight of the cation, 31.8% for C3F3MIm
+
, 41.5% for 

C4F5MIm
+
, and 52.0% for C6F9MIm

+
, respectively, which reflects the increase in density. 

The C3F3MIm(FH)1.7F (28 cP at 298 K) salt exhibits a higher viscosity than C3MIm(FH)1.7F 

(13 cP at 298 K). Fluorous interaction between adjacent cations is a possible reason for this 

phenomenon [34]. An electrostatic interaction between the negatively charged fluorine atoms in the 

polyfluoroalkyl group and the positively charged nitrogen and hydrogen atoms in the imidazolium 

ring might enhance the intermolecular interaction, resulting in the higher viscosity. Extension of 

polyfluoroalkyl side-chain leads to higher viscosities (87 cP for C4F5MIm(FH)1.7F and 169 cP for 

C6F9MIm(FH)1.8F) because the fluorous interaction between polyfluoroalkyl side-chains increases 

[34]. Figure 4 shows Arrhenius plots of viscosity and ionic conductivity for the present RTILs and 

Table 2 lists activation energies obtained from these plots. The ionic conductivity decreases with 



increase in the viscosity for any salts. Both activation energies increase with introducing a larger 

number of fluorine atoms. A similar tendency and relatively small discrepancy between the 

activation energies of viscosity and ionic conductivity suggest that high ionic conductivity is 

explained by low viscosity without introducing some special conduction mechanism such as ion 

hopping.  

Linear sweep voltammograms of C3F3MIm(FH)1.7F and C3MIm(FH)1.7F are shown in Fig. 5. 

The electrochemical stability of C3MIm(FH)1.7F is similar to C3MIm(FH)2.3F in spite of the 

different HF content. The anodic limit of C3MIm(FH)1.7F is considered to be oxidation of 

imidazolium cations, including fluorination by fluorohydrogenate anions, about 1 V vs. Fc
+
/Fc [28]. 

For C3F3MIm(FH)1.7F in Fig. 5, the first oxidation at about 1 V vs. Fc
+
/Fc is similar to the case for 

C3MIm(FH)1.7F and an improvement of electrochemical stability to oxidation by introducing 

fluorine atoms was not observed. The smaller current of the first oxidation and the following 

smaller current below the second oxidation at around 2 V vs. Fc
+
/Fc indicates that the oxidation 

product of C3F3MIm(FH)1.7F restricts further oxidation more than that of C3MIm(FH)1.7F. The 

higher onset potential of the second oxidation for C3F3MIm(FH)1.7F shows that C3F3MIm(FH)1.7F 

has a higher stability to further oxidation than C3MIm(FH)1.7F. On the other hand, electrochemical 

stability of C3F3MIm(FH)1.7F against reduction is poorer than that of C3MIm(FH)1.7F because the 

high electrophilicity of polyfluoroalkyl side-chains raise the acidity of the imidazolium ring. 

 

2.4 Liquid crystalline behavior 

Figure 6 shows polarized optical microscopic (POM) textures of C8F13MIm(FH)2.0F and 

C10F17MIm(FH)2.0F at 373 K. The former was obtained by cooling the isotropic liquid to obtain 

liquid crystal, whereas the latter was obtained by heating the crystal because C10F17MIm(FH)2.0F 

decomposes without clearing. A fan-like texture spontaneously formed in both the cases. The POM 

image suggests that the liquid crystal has a smectic structure as observed in other imidazolium ionic 



liquid crystals [29].  

Figures 7 and S2 show the X-ray diffraction (XRD) patterns of the crystal and liquid crystal 

phases for C8F13MIm(FH)2.0F in the low-angle and wide-angle ranges, respectively. In the crystal 

phase, the diffraction peaks are observed over a wide range of angle, whereas those in the liquid 

crystal are observed only in the low-angle region. The sharp peaks observed in the low-angle region 

for both the crystal (e.g., 2.75° at 293 K) and liquid crystal (e.g., 3.07° at 333 K) phases indicate 

formation of layered structures. The shaper peaks in the crystal phase than those in the liquid crystal 

phase result from the more highly ordered structure of the cations in the crystal phases. Similar 

phenomenon was observed in 1-dodecyl-3-methylimidazolium fluorohydrogenate 

(C12MIm(FH)2.0F) salts [29]. The two more peaks are observed in the lower angle region than that 

for the sharp peak found for the crystal phase and may result from the in-plane ordering the layer. 

The weak peak around 6.3° observed in the liquid crystal phase corresponds to the 002 diffraction 

of the smectic phase. The effect of introducing fluorine atoms on the formation of the liquid crystal 

is confirmed by comparing C8F13MIm(FH)2.0F and 1-methyl-3-octylimidazolium fluorohydrogenate 

(C8MIm(FH)2.0F), between which the difference is the existence of fluorine atoms [29]. The 

C8MIm(FH)2.0F salts does not form the liquid crystal phase, whereas C8F13MIm(FH)2.0F does due to 

the strong fluorous interaction between two side-chains. The POM image of C10F17MIm(FH)2.0F 

indicates the phase found above 349 K is the liquid crystal phase, whereas the confirmation of 

liquid crystal by XRD at such high temperatures was technically difficult. 

The layer spacings (d) for crystals and liquid crystals of C8F13MIm(FH)2.0F are shown in Fig. 

8. Figure 9 shows a schematic illustration of the crystal–liquid crystal phase transition of 

C8F13MIm(FH)2.0F. The layer spacing of the liquid crystal in C8F13MIm(FH)2.0F is smaller than that 

of the crystal, which contradicts the general trend for previously known analogues with 

non-fluoroalkyl side-chains [29,35,36]. The size of C8F13MIm
+
 along the long axis (from the carbon 

in the methyl group to the fluorine at the end of the polyfluoroalkyl group) is roughly estimated to 



be 15 Å according to previous crystallographic works, assuming the polyfluoroalkyl side-chain 

adopts all-trans conformation [37,38]. The layer spacing in the C8F13MIm(FH)2.0F crystal (32.1 Å at 

293 K) is much larger than that of C12MIm(FH)2.0F crystal even with a longer side-chain (26.6 Å for 

at 283 K) [29], and nearly twice larger than the C8F13MIm
+
 size along the long axis, which suggests 

that interdigitation does not occur in the bilayer structure of the crystal and that the layer spacing 

can become much smaller by deeply interdigitating the polyfluoroalkyl side-chains each other when 

the polyfluoroalkyl side-chains become more fluid by melting.  

 

3. Conclusions 

New fluorohydrogenate salts based on C(x+2)F(2x+1)MIm(FH)nF were synthesized and 

characterized. These salts are miscible with water. Three RTILs were obtained; C3F3MIm(FH)1.7F 

(Tm: 274 K) C4F5MIm(FH)1.7F (Tg: 186 K), and C6F9MIm(FH)1.8F (Tm: 276 K), whereas the other 

salts, C8F13MIm(FH)2.0F and C10F17MIm(FH)2.0F, were in the crystal phase at room temperature. The 

introduction of fluorine atoms resulted in the increase in the density and viscosity, decrease in the 

ionic conductivity, and lower electrochemical stability to reduction. The liquid crystal phase was 

observed in C8F13MIm(FH)2.0F and C10F17MIm(FH)2.0F. Introducing fluorine atoms promotes the 

formation of the liquid crystal phase, whereas the interdigitation of polyfluoroalkyl side-chains does 

not occur in the crystal phase. 

 

4. Experimental 

4.1 General experimental procedure 

Volatile materials were handled using a vacuum line constructed of SUS316 stainless–steel 

and tetrafluoroethylene–perfluroalkylvinylether copolymer (PFA). Nonvolatile materials were 

handled in a glove box under a dry Ar atmosphere. According to the previous report [23], the 

starting iodides C(x+2)F(2x+1)MImI were prepared by reactions of 1-methylimidazole (Aldrich, 99%) 



and nearly equimolar quantities of the corresponding polyfluoroalkyl iodides, 3,3,3-trifluoropropyl 

iodide (Wako Pure Chemical Industries, 97%), 3,3,4,4,4-pentafluorobutyl iodide (Fluka, >99%), 

3,3,4,4,5,5,6,6,6-nonafluorohexyl iodide (Tokyo Chemical Industry Co., 99.5%), 

3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl iodide (Aldrich, 96%), and 

3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl iodide (Aldrich, 96%), at 353 K for two 

days. Purification of C3F3MImI was performed by washing with ethyl acetate (Wako Pure Chemical 

Industries, water content < 50 ppm) several times and recrystallization from the acetonitrile (Wako 

Pure Chemical Industries, water content < 50 ppm) solution by adding ethyl acetate. Purification of 

C4F5MImI, C6F9MImI, and C8F13MImI was performed by washing with ethyl acetate several times, 

chromatography using the activated alumina column with acetone (Wako Pure Chemical Industries, 

99.5%), and recrystallization from the acetone solution by adding diethyl ether (Wako Pure 

Chemical Industries, 99.5%). Purification of C10F17MImI was performed by washing with ethyl 

acetate several times, chromatography using the activated alumina column with acetone, and 

recrystallization from the acetone solution by adding ethyl acetate. Finally the purified iodides were 

dried under vacuum at 353 K. See supporting information for the results of elemental analysis of 

C(x+2)F(2x+1)MImI. Anhydrous HF (Daikin Industries) was dried over K2NiF6 prior to use. 

 

4.2 Synthesis of C(x+2)F(2x+1)MIm(FH)nF and C3MIm(FH)1.7F 

The starting iodides, C(x+2)F(2x+1)MImI, were weighed in a PFA reactor under a dry Ar 

atmosphere and a large excess of anhydrous HF was distilled on that at 77 K through the vacuum 

line. The mixture reacted on warming up to room temperature and the volatile gases were roughly 

eliminated by evacuation through a chemical and cold trap using a rotary pump. Elimination of the 

volatile gases and addition of fresh HF were repeated for effective elimination of iodide in the form 

of hydrogen iodide from the salt. The HF content of fluorohydrogenate salts were determined by 

titration using aq. 0.1029 M NaOH and weight change before and after the reaction with HF. 



C3MIm(FH)1.7F; IR (AgCl):  = 2340 (m), 1985 (m), 1807 (s), 1045 (w) cm
–1

, C3F3MIm(FH)1.7F; IR 

(AgCl):  = 2337 (m), 1983 (m), 1807 (s), 1021 (w) cm
–1

, C4F5MIm(FH)1.7F; IR (AgCl):  = 2350 

(m), 1981 (m), 1811 (s), 1022 (w) cm
–1

, C6F9MIm(FH)1.8F; IR (AgCl):  = 2350 (m), 1979 (m), 

1811 (s), 1036 (w) cm
–1

, C8F13MIm(FH)2.0F; IR (AgCl):  = 2340 (m), 1977 (m), 1813 (s), 1042 (w) 

cm
–1

, and C10F17MIm(FH)2.0F; IR (AgCl):  = 2350 (m), 1981 (m), 1815 (s), 1042 (w) cm
–1

 

[(FH)2F
–
, see Fig. S1 for their IR spectra].  

 

4.3 Analytical methods 

Infrared spectra of solid and liquid samples were obtained by FTS-165 (BIO-RAD 

Laboratories). The samples were sandwiched between a pair of AgCl crystal windows in an airtight 

cell made of stainless steel. The TG analysis was performed under a dry Ar gas flow using 

Shimadzu DTG-60H at the scanning rate of 10 K min
–1

. The sample was placed in a Ni open cell. 

The DSC analyses were performed under a dry Ar gas flow using Shimadzu DSC-60 at the scanning 

rate of 5 K min
–1

. The sample was placed in a sealed cell made of stainless steel. Viscosity was 

measured by a cone and plate rheometer, LVDV-II+PRO (Brookfield Engineering Laboratories, 

Inc.), using the spindle of CPE-40. The samples were enclosed in the apparatus under a dry argon 

atmosphere in a glove bag. Density was measured under a dry argon atmosphere at room 

temperature by weighing the samples in a hand-made PFA vessel of which the volume was 

calibrated by distilled water and ethanol. Ionic conductivity was measured by an AC impedance 

technique using a calibrated cell with a pair of platinum disk electrodes with the aid of VSP 

(Bio-Logic) electrochemical measurement system. The ionic conductivity data were measured after 

the sample was held at the target temperature for at least 1 hr. The steadiness of the ionic 

conductivity value was confirmed by plotting it against time during this period. Electrochemical 

stability was investigated by linear sweep voltammetry under a dry Ar atmosphere with the aid of 

VSP electrochemical measurement system. Vitreous carbon electrodes were used as the working 



and counter electrodes. A silver wire immersed in EMImBF4 containing 0.05 M AgBF4 was used for 

the reference electrode which was partitioned from the electrolyte with a porous PTFE filter 

(POREX, 7 μm pore). Polarized optical microscopy was carried out using a VHX digital 

microscope (Keyence) under cross-polarized light at ×100 magnification. The sample was placed in 

a transparent cell made of sapphire and covered with a piece of glass substrate. The temperature 

was controlled by TS1500 hot stage unit (Japan High Tech). X-ray diffraction was performed using 

a Rigaku Ultima IV diffractometer (Cu Kα, λ = 1.542 Å). The output power was set as 40 kV–40 

mA. The data were recorded in the 2θ range of 2–30° (scanning rate of 1° per minute) with a step of 

0.01°. 
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Table 1 Physicochemical properties of the present fluorohydrogenate salts. 

 Fw Tm / K Tc / K ρ / g cm
–3

 η / cP σ / mS cm
–1

 

C3MIm(FH)1.7F 178 152 (Tg) n.o. 1.12   13 31 

C3F3MIm(FH)1.7F 232 274 n.o. 1.35   28 13 

C4F5MIm(FH)1.7F 282 186 (Tg) n.o. 1.43   87    5.6 

C6F9MIm(FH)1.8F 384 276 n.o. 1.53  169    2.4 

C8F13MIm(FH)2.0F 488 326 382 –  –  – 

C10F17MIm(FH)2.0F 588 349 dec. –  –  – 

Fw: formula weight, Tm: melting point, Tg: glass transition temperature, Tc: clearing temperature, ρ: 

density at 298 K, η: viscosity at 298 K, σ: conductivity at 298 K, n.o.: not observed.. 

  



Table 2 Activation energies calculated from the Arrhenius plots of viscosities and ionic 

conductivities for the present RTILs. 

 
Activation energy of 

viscosity / kJ mol
–1

 

Activation energy of 

conductivity / kJ mol
–1

 

C3MIm(FH)1.7F 20.0 17.4 

C3F3MIm(FH)1.7F 27.4 21.2 

C4F5MIm(FH)1.7F 32.9 28.2 

C6F9MIm(FH)1.8F 38.8 30.1 

 

 

  



 

 

Fig. 1 Structures of C(x+2)F(2x+1)MIm
+
 (x = 1,2,4,6,8), FHF

–
, and (FH)2F

–
. 

  



 

 

Fig. 2 Thermogravimetric curves of C3MIm(FH)1.7F (×), C3F3MIm(FH)1.7F (○), C4F5MIm(FH)1.7F 

(□), C6F9MIm(FH)1.8F (◇), C8F13MIm(FH)2.0F (△), and C10F17MIm(FH)2.0F (▽). 

  



 

 

 
Fig. 3 Differential scanning calorimetric curves of (a) C3MIm(FH)1.7F, (b) C3F3MIm(FH)1.7F, (c) 

C4F5MIm(FH)1.7F, (d) C6F9MIm(FH)1.8F, (e) C8F13MIm(FH)2.0F, and (f) C10F17MIm(FH)2.0F. 

  



 

 

Fig. 4 Arrhenius plots of (A) viscosity and (B) ionic conductivity for C3MIm(FH)1.7F (×), 

C3F3MIm(FH)1.7F (○), C4F5MIm(FH)1.7F (□), and C6F9MIm(FH)1.8F (◇). 

 

  



 

 
Fig. 5 Linear sweep voltammograms of a vitreous carbon electrode in (a) C3MIm(FH)1.7F, (b) 

C3F3MIm(FH)1.7F. Scan rate: 10 mV s
–1

. 

  



 

 
Fig. 6 Polarized optical microscopic textures of (a) C8F13MIm(FH)2.0F at 373 K on cooling from 

isotropic liquid phase and C10F17MIm(FH)2.0F at 373 K on heating from crystal phase. 

  



 

 

Fig. 7 X-ray diffraction patterns in the low-angle region for C8F13MIm(FH)2.0F in the crystal phase 

(273–323 K) and the liquid crystal phase (333–353 K). 

  



 

 

Fig. 8 Layer spacing of C8F13MIm(FH)2.0F in the crystal phase and liquid crystal phase at different 

temperatures. 

 

  



 

 

Fig. 9 Schematic illustration of the crystal–liquid crystal phase transition of C8F13MIm(FH)2.0F. 
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