<table>
<thead>
<tr>
<th>Title</th>
<th>Mechanism of tyrosine D oxidation in Photosystem II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Saito, Keisuke; Rutherford, A William; Ishikita, Hiroshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Proceedings of the National Academy of Sciences of the United States of America (2013)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2013-04-18</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/173375</td>
</tr>
<tr>
<td>Rights</td>
<td>©2013 by the National Academy of Sciences</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Mechanism of tyrosine D oxidation in Photosystem II

Keisuke Saito, A. William Rutherford, and Hiroshi Ishikita

The heart of the Photosystem II (PSII) reaction center consists of the D1 and D2 subunits. These form a quasi-symmetrical complex that contains cofactors arranged to span the transmembrane protein in two branches. From the luminal side to the stromal side of the complex, the following cofactors are present: an overlapping pair of chlorophyll a (Chla) molecules (PD1/PD2), two monomeric Chla molecules (ChlB1/ChlB2), two pheophytins, and two quinone molecules (the most recent crystal structure is described in ref. 1). Excitation of Chla leads to charge separation on the D1 branch and formation of the cationic [PD1/PD2]+ state (reviewed in refs. 2, 3). Extending the symmetry to the luminal side, there are two redox-active tyrosine residues (4) (reviewed in refs. 2, 3). We go on to investigate the potential role of D2-Arg180 and a chain of waters reported in the crystal structure that may be involved in an exit/inlet channel to/from the luminal surface.

Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved March 20, 2013 (received for review January 14, 2013)

Using quantum mechanics/molecular mechanics calculations and the 1.9-Å crystal structure of Photosystem II (Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Nature 473(7345):55–60), we investigated the H-bonding environment of the redox-active tyrosine D (TyrD) and obtained insights that help explain its slow redox kinetics and the stability of Tyr+D. The water molecule distal to TyrD, located ~4 Å away from the phenolic O of TyrD, corresponds to the presence of the tyrosyl radical state. The water molecule proximal to TyrD, in H-bonding distance to the phenolic O of TyrD, corresponds to the presence of the unoxidized tyrosine. The H+ released on oxidation of TyrD is transferred to the proximal water, which shifts to the distal position, triggering a concerted proton transfer pathway involving D2-Arg180 and a series of waters, through which the proton reaches the aqueous phase at D2-His61. The water movement linked to the ejection of the proton from the hydrophobic environment near TyrD makes oxidation slow and quasi-reversible, explaining the great stability of the Tyr+. A symmetry-related proton pathway associated with tyrosine Z is pointed out, and this is associated with one of the Cl− sites. This may represent a proton pathway functional in the water oxidation cycle.

—

It is of note that the distance from the phenolic O of TyrD to the nearest N of D2-His189 (O_{TyrD}⋯N_{His189}) was identical (2.78 Å), irrespective of whether the water was in the distal or proximal position. This explains why the original PSI structure possesses two distinct positions of a single water molecule but only a single position for TyrD, D2-His189, and the other residues involved in the same H-bond network.

Stability of H$_2$O at the Distal and Proximal Sites. We investigated the potential energy profiles of H$_2$O between the phenolic O of TyrD and guanidinium N atom of D2-Arg180. We confirmed that distal and proximal water sites are energetically the most stabilized positions for TyrD-D* and TyrD-OH, respectively (Fig. 4). H$_2$O can be stabilized by two H-bonds at the proximal site in the [H$_2$O$_{prox}$⋯H-TyrD-O⋯H$_2$N$_{His61}$] state, where TyrD-OH donates an H-bond to the water, whereas the backbone carbonyl group of D2-Phe169 accepts a H-bond from water (Fig. 3, Left). Thus, the energy profiles of H$_2$O located between TyrD and D2-Arg180 provide the following findings: (i) H$_2$O can be located at the proximal position only when TyrD-OH is present; it should be noted, however, that in the presence of TyrD-OH, a minor fraction of the H$_2$O may also be located at the distal site due to the presence of an energy barrier between the two positions (Fig. 4); (ii) on formation of TyrD-D*, H$_2$O is energetically less favorable at the proximal position; and (iii) thus, if H$_2$O is located initially at the proximal position, it will move to the distal position when TyrD undergoes oxidation (Fig. 4).

Proton Transfer Pathway from TyrD. The predicted displacement of the water on TyrD oxidation (Fig. 4) represents a functional link between TyrD and D2-Arg180 that is mediated by a single mobile water molecule acting as a proton carrier. Examination of the crystal structure (1) shows that an H-bond network is present beyond D2-Arg180, extending out to D2-His61 near the luminal bulk surface via a series of water molecules (Fig. 5). Indeed, QM/MM electrostatic calculations indicated that the protonation states of D2-Arg180 and D2-His61 were likely to be linked (25). Here, QM/MM calculations based on the more recent crystal structure (1) show that the proton released from TyrD was transferred via the mobile water and D2-Arg180 all the way to D2-His61 through a concerted single-step proton transfer process (Fig. 6). The proton did not go back to the TyrD/D2-His61 moiety but went through D2-Arg180 in an energetically favorable process irrespective of the presence of positively charged D2-Arg180. Clearly, there was no energy barrier for the proton transfer at D2-Arg180 (discussed below). As soon as the proton approached an -NH$_2$ group of D2-Arg180, the NH-bond stretched toward the next water molecule, W480. Synchronizing the bond stretch, an OH bond of W480 also stretched toward W373. Similar bond stretching occurred at W373 and W783. The proton was finally stabilized at D2-His61. Although the H-bond network terminates at W354 in the 1.9-Å crystal structure (1), the proton relay may continue further, releasing the proton into bulk water via W354. Overall, the calculation showed that the proton was transferred to D2-His61 along a proton transfer path involving several OH (and NH) bond stretches toward acceptor moieties, without explicitly forming H$_2$O$^+$.

![Fig. 1. H-bond network around TyrD (Left) and TyrZ (Right). Red and green spheres indicate water O and Cl atoms, respectively.](image-url)
TyrD-OH rather than TyrD-OH indicates the presence of a water H-bonded to the phenolic O atom of TyrD, corresponds to the presence of the oxidized radical, TyrD-O^* and (ii) the presence of water at the proximal site, which is within H-bonding distance to the phenolic O of TyrD, corresponds to the presence of the unoxidized TyrD-OH (Fig. 3 and Table 1). This result is consistent with FTIR proximal site, which is within H-bonding distance to the phenolic O atom of TyrD-OH rather than TyrD-O^*.

This assignment of the water positions to specific TyrD redox states is a clear indication that the water acts as the proton acceptor on TyrD oxidation and that the water movement is involved in this reaction. To move from the proximal site to the distal site, a water molecule must reorient at D2-Phe169 (Fig. 3); this was manifest in the energy curve in Fig. 4 as a discontinuity when the water is ~3.9 Å away from TyrD, the point at which the TyrD-OH...OH2O bond breaks, although remaining H-bonded to the backbone carbonyl of D2-Phe169 (Fig. 3).

On the basis of the FTIR data, Hienerwadel et al. (20) proposed the presence of a proton carrier other than D2-His189 playing a role in modifying the properties of TyrD. The proximal/distal position change in response to the TyrD-OH/TyrD-O^* redox transition observed in the present study (Fig. 3) probably represents the proposed proton carrier, tuning the TyrD polarity and acting as the proton acceptor on TyrD oxidation.

Discussion

Movement of a Water Molecule on Redox Change of TyrD. The present study indicates that in the 1.9-Å crystal structure (1), (i) the presence of water at the distal site, ~4 Å away from the phenolic O atom of TyrD, corresponds to the presence of the oxidized radical, TyrD-O^* and (ii) the presence of water at the proximal site, which is within H-bonding distance to the phenolic O of TyrD, corresponds to the presence of the unoxidized TyrD-OH (Fig. 3 and Table 1). This result is consistent with FTIR studies by Takahashi et al. (21) indicating the presence of a water molecule that interacts directly with the phenolic O atom of TyrD-OH rather than TyrD-O^*.

This assignment of the water positions to specific TyrD redox states is a clear indication that the water acts as the proton acceptor on TyrD oxidation and that the water movement is involved in this reaction. To move from the proximal site to the distal site, a water molecule must reorient at D2-Phe169 (Fig. 3); this was manifest in the energy curve in Fig. 4 as a discontinuity when the water is ~3.9 Å away from TyrD, the point at which the TyrD-OH...OH2O bond breaks, although remaining H-bonded to the backbone carbonyl of D2-Phe169 (Fig. 3).

On the basis of the FTIR data, Hienerwadel et al. (20) proposed the presence of a proton carrier other than D2-His189 playing a role in modifying the properties of TyrD. The proximal/distal position change in response to the TyrD-OH/TyrD-O^* redox transition observed in the present study (Fig. 3) probably represents the proposed proton carrier, tuning the TyrD polarity and acting as the proton acceptor on TyrD oxidation.

Differences in the H-Bond Geometries for TyrZ and TyrD. The 1.9-Å crystal structure (1), the H-bond from TyrZ-OH to D1-His190 (O_TyrZ−ND1-His190) is unusually short, 2.46 Å. QM/MM calculations have reproduced the O_TyrZ−ND1-His190 distance (2.47 Å) (26). Remarkably, the potential-energy profile indicated that this H-bond is a barrierless, single-well (ionic) H-bond, an unusually short H-bond that can be formed only when the pK_a difference between donor and acceptor is nearly zero (27–30) (Fig. S1). The results indicated that the cluster of waters near TyrZ was responsible for tuning the crucial pK_a values (26).

In contrast, the corresponding H-bond between TyrD and D2-His189 is of standard length: 2.74 Å (for TyrD-OH and TyrD-O^*). The potential-energy profiles for the O_TyrD−ND2-His189 H-bond (Fig. 2, Left and Right) resemble those of standard, asymmetrical, double-well H-bonds (Fig. S1). The energy minimum is located at the D2-His189 moiety, suggesting that the pK_a of the N site of D2-His189 is high comparable to that of TyrD. There are two main factors that are likely responsible for this difference. First, there is no corresponding water cluster near TyrD-OH; instead, a single water (H2O prox) is present acting as an H-bond acceptor from TyrD-OH. Second, D2-His189 acts as an H-bond donor to the TyrD-OH (rather than the other way around in D1, where D1-His190 acts as an H-bond acceptor from the TyrZ-OH). This occurs because there is an arginine (D2-Arg294) rather than an asparagine (D1-Asn298) in the distal H-bond partner for the D2-His189. The H-bond from the positively charged Arg prevents protonation at the N6 site of the D2-His189, leading to its proximal N site being protonated and thus unable to act as an H-bond acceptor from TyrD-OH (25).

Energetics of the Proton Transfer Pathway Proceeding from TyrD. A concerted single-step proton transfer occurring over ~13 Å between TyrD and D2-His61 (Fig. 6) requires (i) a well-arranged H-bond network (e.g., with appropriate donor-acceptor distances for all donor-acceptor pairs; Figs. 5 and 6) and (ii) a sufficient driving force. For a proton moving along the pathway, the energy transition observed in the present study (Fig. 3) probably represents the proposed proton carrier, tuning the TyrD polarity and acting as the proton acceptor on TyrD oxidation.
The driving force of the proton transfer toward the bulk surface appears to disfavor protons returning to TyrD-O\(^{-}\), thus stabilizing the radical.

There are two key factors that facilitate proton transfer, even with the (positively charged) D2-Arg180 in the proton transfer pathway. First, TyrD is located in a hydrophobic environment with less chance of solvation for a charged species. The absence of a cluster of water molecules near TyrD seems to be associated directly or indirectly with the presence of several phenylalanines: D2-Phe168, D2-Phe184, D2-Phe185, D2-Phe188, CP47-Phe362, and CP47-Phe363 near TyrD, which block much of the space occupied by the water cluster (and also by the Mn\(_4\)CaO\(_5\) cluster) at the TyrZ site. Thus, the presence of H\(_2\)O\(^+\) near TyrD would be energetically unstable due to the lack of solvation relative to the region near the protein bulk surface. Second, D2-Arg180 forms a salt-bridge with D2-Asp333. The proton accepter for the distal water is thus not a simple arginine base but a neutralized ion pair [D2-Arg180/D2-Asp333\(^-\)]. In addition, to maintain its charge neutrality, the ion pair releases its own proton as soon as it is approached by another proton.

As far as we are aware, involvement of D2-His61 in the proton transfer path from TyrD has not been reported. The electrostatic link between D2-Arg180 and D2-His61, as previously suggested in electrostatic calculations, will likely be functionally relevant (25). Remarkably, the H-bond donor acceptor distances of W783 near D1-His61 are very short in the 1.9-Å crystal structure (1), namely, \(d_{\text{H-bond}}\) = 2.51 Å and \(d_{\text{H-bond}}\) = 2.58 Å (Fig. 5). In QM/MM calculations, these distances were 2.55 Å and 2.53 Å in the presence of protonated D2-His61 (i.e., after proton transfer), distances that are close to the original geometry of the crystal structure, whereas longer values were obtained (2.69 Å and 2.71 Å, respectively) in the presence of deprotonated D2-His61 (i.e., before proton transfer). Because a standard (asymmetrical double-well) H-bond possesses 0–0 distances of \ (∼\) 2.8 Å (31, 32), the very short H-bond distances between W783 and His61 may be an indication of a proton being on D2-His61 or possibly shared with W783, which would thus be functioning as part of the proton transfer pathway from TyrD.

Implications from the “Old” Proton Transfer Pathway in D2. On the D1 side, the 1.9-Å structure showed a number of ionizable residues and water molecules near Mn\(_4\)CaO\(_5\). With so many possibilities, it is difficult to identify unambiguously the actual components of the proton transfer pathways involved in water oxidation. Umena et al. (1) proposed that the proton transfer pathways for proton-coupled electron transfer involving TyrZ and D1-His190 (33) may proceed from D1-Asn298 via several water molecules and residues, including CP43-Ala411, D1-Asn322, and PsbV-Tyr137, toward the luminal surface. Considering the presence of the redox-active tyrosines TyrZ/TyrD in symmetrical positions on the D1/D2 heterodimer subunits, it has been suggested that an ancestral homodimer was able to oxidize tyrosines rapidly on both sides of the reaction center (e.g., in a D1/D1 homodimer PSI) (34, 35). This led to the suggestion that in an ancestral homodimer, there was once an active Mn cluster in the cavity adjacent to TyrD (34, 35). It seems possible then that the D2-Arg180-mediated proton pathway (Figs. 5 and 6) may represent a vestigial proton transfer pathway that once functioned in water oxidation. From this evolutionary point of view, we looked for a corresponding pathway in D1 as a way of defining a particular pathway among the numerous ionizable residues and water molecules near TyrZ.

A pathway leading from TyrZ can indeed be distinguished. It involves [TyrZ, D1-His190] → [W3, W5, W6, W7, the backbone C = O of D1-Asp170 (a ligand of Ca and Mn4)] → [W2, a ligand of Mn4] → [W446, Cl-1, D1-Asn181] → [W442] → [D1-Asp61] (Fig. 8). This corresponds to the TyrD proton pathway defined here, which involves [TyrD, D2-His189] → [H\(_2\)O\(_{\text{dist}}\), the backbone C = O of D2-Phe169] → [D2-Arg180, D2-Asp333] → [W480] → [W373] → [W783] → [D2-His61].

The distal water close to TyrD forms an H-bond with the backbone carbonyl group of D2-Phe169, as does W5 near TyrZ, with the backbone carbonyl group of D1-Asp170 in this case (Figs. 1 and 8). Thus, the distal water of TyrD corresponds geometrically to W5 near TyrZ. W5 is linked with the phenolic O atom of TyrZ via W3 and W7 (36). W3 and W7 are well ordered, because W3 is ligated to the Ca atom of Mn\(_4\)CaO\(_5\) and W7 is H-bonded to D1-Glu189, a ligand of the Mn1 atom of Mn\(_4\)CaO\(_5\). D1-Asp61 has been proposed to be located at the entrance of the possible proton transfer pathway (e.g., ref. 37). Mutations of D1-Asp61 affected the properties of Mn\(_4\)CaO\(_5\) (38) and O\(_2\) release (39). As described, D2-Arg180 not only provides the binding moiety of the distal water for TyrD-O\(^{-}\) (Fig. 3) but serves as a proton carrier (Figs. 6 and 7). This may be associated with the fact that in PSI from Synechocystis Pasteur Culture Collection (PCC) 6803, mutations of D2-Arg180 resulted in a loss and/or serious modifications of the EPR signal from TyrD and perturbations in the PSI photochemistry (24). Intriguingly, its counterpart, D1-Asn181, provides the binding moiety of a chloride ion, Cl-1 (1), thus forming part of a possible exit pathway of a proton released from Mn\(_4\)CaO\(_5\) (37, 40). The presence of Cl-1 may facilitate transient formation of H\(_2\)O\(^+\) and proton transfer on the TyrZ side of PSI2. Because Cl\(^{-}\) is required to progress through the S2 to S3 transition (41, 42) and the S3 to S0 transition (43), the deduced pathway proceeding from TyrZ may be active specifically for the S2 to S3 or S3 to S0 transition.
Understanding Why TyrD Radical Formation Is Slow and Why It Is Stable. Two of the key features that differentiate TyrD from TyrZ are its oxidation rate, which is five orders of magnitude slower than that of TyrZ, and its reduction rate, which is at least six orders of magnitude slower than that of TyrZ (7, 12, 13). The insights gained from the present study help to understand these differences in structural and mechanistic terms. The rapid oxidation rate of TyrZ is related to the short H-bond in the TyrZ-O···H-N-H-N2-H···O=C-Asn motif (here ↔ represents the H-bond direction from the donor to the acceptor) with its short H-bond is absent, and, significantly, the H-bonding direction is reversed because of the presence of the D2-Arg294, which gives rise to the H2Oprox···H-TyrD-O···H-N2-H···Arg motif. In this case, the crucial TyrD-OH proton is donated to the proximal water rather than to D2-His189. There are three features of our results that would contribute to TyrD having a slow oxidation rate: (i) the H-bond from TyrD to the proximal water is clearly not barrier-less; (ii) not all oxidized TyrD moieties will have the proximal water bound at a given time; and (iii) the deprotonation is associated with the water moving from proximal to distal positions, resulting in an additional reorganizational energy associated with the TyrD redox chemistry (Fig. 4).

The mechanistic model for TyrD oxidation proposed here may provide insights to help understand the remarkable speed-up in the rate of TyrD oxidation at pH values higher than 7.6 (11, 16, 17). This increase in reactivity is associated with the water moving from proximal to distal and, alternatively, only the H atoms are QM/MM optimized, whereas the heavy atom positions are fixed to those in the original 1.9-Å structure (≠).

Computational Methods

Coordinates and Atomic Partial Charges. The atomic coordinates of PSI were taken from the X-ray structure of the PSII monomer unit designated monomer A of the PSII complexes from Thermosynechococcus vulcanus at a resolution of 1.9 Å (Protein Data Bank ID code 3ARQ). The proton-exchanging reaction was generated and energetically optimized with CHARMM (45), whereas the positions of all nonhydrogen atoms were fixed, and all titratable groups were kept in their standard protonation states. For the QM/MM calculations, we added additional counter-ions to neutralize the entire system. Atomic partial charges of the amino acids were adopted from the all-atom CHARMM22 (46) parameter set. The atomic charges of Chl, pheophytin a, and quinones were taken from previous studies on PSI (47). We considered the Mn4CaO4 cluster as the (O4)− (OSH)2− model (26) in the SI state.

QM/MM Calculations. We used the QSite (48) program code as utilized in previous studies (26). Owing to the large system size of PSI, we considered residues and cofactors in only subunits D1, D2, CP47, and CP43 as the protein environment. We used the restricted density functional theory (DFT) method for describing the closed-shell electronic structure and the unrestricted DFT method for the open-shell electronic structure with the B3LYP functional and LACVP+++ basis sets. The geometries were refined by constrained QM/MM optimization (Dataset S1). Specifically, the coordinates of the heavy atoms in the surrounding MM region were fixed to the original X-ray coordinates, whereas those of the H atoms in the MM region were optimized using the OPLS2005 force field. All the atomic coordinates in the QM region were fully relaxed (i.e., not constrained) in the QM calculation. To analyze the effects of the H-bond pattern near the TyrD moiety, the QM region was defined [TyrD (D2-His61, TyrD, D2-Arg180, D2-His189, D2-Arg294, CP47-Glu364], and water molecules that are within H-bond distance of these residues, namely, HOH-chain D1 (distal and proximal positions, designated H2Oprox and H2Odist, −8256, −8359, −8541, −8544, −8550, −8566, and −8606), whereas other protein units and all cofactors were approximated by the MM force field. To analyze a possible pathway of the proton released from TyrD to D2-His61, the QM region was defined [D2-His61, TyrD, D2-Arg180, D2-His189, D2-Arg294, D2-Asp333, and water molecules that are within H-bond distance of these residues, namely, HOH-chain D1 (distal and proximal, H2Oprox and H2Odist)] as fixed. To analyze the potential energy profile of the QM/MM geometry obtained as follows. First, we prepared for the QM/MM optimized geometry without constraints, and we took the resulting geometry as the initial geometry. The H atom was then moved from the H-bond donor atom (e.g., Nacceptor) to the acceptor atom (e.g., Oacceptor) by 0.05 Å, after which the geometry was optimized by constraining the N donor−H and O acceptor−distances, and the energy of the resulting geometry was calculated. This procedure was repeated until the H atom reached the O acceptor atom. To analyze the energy profile of the H2O position between the phenolic O atom of TyrD and the guanidinium N atom of D2-Arg180, D2-Arg180 was also included in the QM region. The O acceptor atom was moved from O acceptor to the guanidinium N atom of D2-Arg180 (Nacceptor) by 0.05 Å, after which the energy was optimized by constraining the O acceptor−O acceptor and O acceptor−N acceptor distances, and the energy of the resulting geometry was calculated. This procedure was repeated until the O acceptor atom reached the D2-Arg180 moiety. To analyze the energy profile of a possible proton transfer pathway from TyrD toward the luminal bulk surface, three O-H bond distances of H2O were constrained to avoid the proton being transferred to the D2-His61 moiety during the calculations.

Fig. 7. Energy profiles obtained for a proton translocation from H2Odist to D2-His61. The entire QM regions, including all groups in the proton transfer pathway (Figs. 5 and 6), are fully QM/MM optimized (≠). Significantly, only the H atoms are QM/MM optimized, whereas the heavy atom positions are fixed to those in the original 1.9-Å structure (≠).
ACKNOWLEDGMENTS. We thank James Murray, Jeremy Smith, and Alain Bousac for useful discussion. This research was supported by the Japan Science and Technology Agency Precursory Research for Embryonic Science and Technology program (K.S. and H.I.); Grant-in-Aid 22740276 for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan (to K.S.); the Special Coordination Fund for Promoting Science and Technology of the MEKT (H.I.); the Takeda Science Foundation (H.I.); and a Grant for Basic Science Research Projects from The Suntomito Foundation (to H.I.). A.W.R. is a recipient of the Wolfson Merit Award of the Royal Society.

Supporting Information

Saito et al. 10.1073/pnas.1300817110

SI Text

Tyrosine D at High pH. At pH values higher than pH 7.6, tyrosine D (TyrD; D2-Tyr160) becomes extremely rapid as an electron donor (1), outcompeting tyrosine Z (TyrZ; D1-Tyr161) in the Mn-depleted system and becoming easily oxidizable at 4 K and below (i.e., with no energy barriers) (2, 3). In many ways then, TyrD becomes more TyrZ-like at higher pH. How do these observations fit with the model presented here for TyrD function at pH 6.5? Without a specific crystallographic model of Photosystem II (PSII) at higher pH, modeling, calculations, and conclusions will inevitably be less reliable. Nevertheless, it is worth investigating if the model for the redox mechanism of TyrD proposed in this paper can provide insights for understanding the remarkable change in the properties of TyrD at higher pH.

Here, we have pointed out the key structural features that determine the slow TyrD kinetics, whereas those responsible for the fast TyrZ kinetics were discussed earlier (2). For TyrZ, there is a short, activation-less H-bond from TyrZ to D1-His190. This forms part of the H-bonding chain running from two water molecules near the MnCa cluster via TyrZ toward the aqueous medium: (HOH)→TyrZ-OH→N→His-N→H→O=Asn. The waters play a role in tuning the H-bond (2). On oxidation, the phenol proton of TyrZ is rapidly transferred to D1-His190, and this is probably the start of a proton transfer chain (1). For TyrD, an Arg (D2-Arg294), rather than an Asn (D1-Asn298), acts as the H-bond partner to D2-His189 on the side distal to the TyrD. This results in a change in the H-bond direction of the system, the absence of the activation-less Tyr-His H-bond, and the presence of water acting as an H-bond acceptor from TyrD. The fact that the water molecule is isolated and must move on protonation makes oxidation of TyrD slow. At high pH, the increased rate of electron transfer and the activation-less oxidation of TyrD at cryogenic temperatures suggest the occurrence of a situation similar to that seen for TyrZ (i.e., reversal of the direction of the H-bond chain and the appearance of a short, activation-less H-bond associated with deprotonation of the tyrosine on oxidation). These are the features we looked for in our modeling.

Taking the H-bonding model at pH 6.5 as described and the crystal structure at pH 6.5 as a starting state, the simplest approach was to investigate the influence of deprotonation in the extended H-bonding network around TyrD. The most obvious candidate for deprotonation is [H2O→H-TyrD-O→HN=His-Nδ+] where the key protons are indicated in bold face (Table S1), resulting in the formation of the [TyrD-OH→N=His-Nδ+] state (Table S1). Here, the TyrD no longer provides an H-bond to water; instead, it donates an H-bond to His, which represents a reversal of the H-bond direction. Remarkably, the calculated distance between phenolic O of TyrD and the nearest N of D2-His189 (Oyrd-D2His189) was 2.5 Å (Table S1), which is significantly shorter with respect to 2.7 Å at pH 6.5 in the PSI crystal structure (4). The energy curve for the H-bond between TyrD and D2-His189 in this state resembles that of a barrier-less, single-well H-bond (Fig. S2, blue curve), similar to that previously observed for the H-bond between TyrZ and D1-His190 (5). This state may be best expressed as having a symmetrical H bond, [TyrD-O→H-Nδ+, His-Nδ+]. This shorter H-bond between TyrD and D2-His189 may represent the situation observed by Hienerwadel et al. (6) at high pH. It is also consistent with the much faster TyrD oxidation rate and the ability to undergo oxidation at liquid helium temperature at pH values above pH 7.6 (2). Because the H-atom remains delocalized between TyrD and D2-His189 in the barrier-less potential well of the [TyrD-O→H-Nδ+, His-Nδ+] state, this model does not contradict the conclusion from FTIR that TyrD-OH remains protonated above pH 7.5 (3).

This simple model (deprotonation of [H2O→H-TyrD-O→HN=His-Nδ+]) seems to result in a state that is consistent with the redox properties of TyrD seen at high pH. Without further experimental support, however, this model is somewhat tentative. It is, of course, possible to extend this model further, considering a somewhat unorthodox role for D2-Arg294 as a proton acceptor and then determining how this affects its potential ion-pair partner, CP47-Glu364, and so on down the putative proton chain. It is also possible to investigate alternative, less structurally conservative models, such as a small conformation change in which D2-Arg294 is replaced by D2-Asn292 (which is only 4 Å away), making a TyrZ-like H-bonding motif. These models are more speculative, however, and should await more experimental results. At present, we can conclude that the mechanistic model for TyrD at pH 6.5 presented in the main text needs only very minor and conservative changes (e.g., those calculated in Fig. S2) to obtain a situation that explains the fast kinetics seen for TyrD seen above pH 7.5.

Given that the kinetics of electron transfer from TyrZ in the functional system can be nearly an order of magnitude faster than the fastest TyrD kinetics, it may be that the short TyrZ H-bond in intact PSII is better tuned than that in TyrD at high pH, and that may be due to an influence of the water cluster in TyrZ (2). However, the fact that nearly all the centers are able to undergo oxidation at 4 K with the high-pH–treated TyrD (2, 3), whereas only a small fraction can do this with TyrZ even in the best conditions (7, 8), indicates that the H-bond, TyrD-OH→N=His, is more homogeneous than that of its TyrZ counterpart. This may be attributed to the dynamics of the bonding of the water cluster to TyrZ.

TyrD in the Sr-Substituted PSII. In the Sr-substituted PSII crystal structure, in the region of TyrD, proximal H2O (H2Oprox) was absent but distal H2O (H2Odist) was present in all centers (9). The most straightforward interpretation is that the sample had seen enough light before freezing to oxidize the TyrD, forming TyrD+ in all centers. If this is the case, the absence of H2Oprox would not be associated with the substitution of Ca with Sr in the MnCa cluster but would, instead, be related to the specific illumination history of the sample before freezing. Similarly the observation that in the native PSII, the proportion of centers having H2Odist is larger than that with H2Oprox (4) would be an indication that this sample saw less light or longer dark adaptation before freezing, which, again, is a property specific to the pretreatment of the sample.

Fig. S1. Overview of potential-energy profiles: standard H bonds (asymmetrical double-well), typically with an O_{donor}−O_{acceptor} distance $>\sim2.6$ Å (Left), and single-well (ionic) H-bonds, typically with an O_{donor}−O_{acceptor} distance of $<\sim2.5$ Å (Right). The corresponding O–N distances are generally greater than O–O distances. ΔpK_a (thick vertical arrow) indicates the pK_a difference between H-bond donor and acceptor moieties.

Fig. S2. Potential-energy profiles along the proton transfer coordinate for an H-bond donor-acceptor pair, TyrD and D2-His189. The $[\text{TyrD-O} \cdots \text{H-TyrD-O$_{\text{prox}}$} \cdots \text{HN$_{\text{ne}}$-His-N$_{\text{δ/C138}}$}]^{-}$ state, which represents the deprotonated form of the $[\text{TyrD-O} \cdots \text{H-TyrD-O$_{\text{prox}}$} \cdots \text{HN$_{\text{ne}}$-His-N$_{\text{δ/C138}}$}]^{0}$ state observed at high pH is shown (blue cross curve). The $([\text{TyrD-O} \cdots \text{H-TyrD-O$_{\text{prox}}$} \cdots \text{HN$_{\text{ne}}$-His-N$_{\text{δ/C138}}$}]^{-})$ (black triangle curve, at low pH) and $([\text{TyrD-O*-HN$_{\text{ne}}$-His-N$_{\text{δ/C138}}$}]^{0} \leftrightarrow [\text{TyrD-O*-HN$_{\text{ne}}$-His-N$_{\text{δ/C138}}$}]^{-})$ (red circle curve, at low pH) states are also shown (Fig. 2).
Table S1. H-bond distances for TyrD in QM/MM optimized geometries in the PSII protein environment (measured in angstroms)

<table>
<thead>
<tr>
<th>Redox/protonation state</th>
<th>O_{TyrD}-N_{His}</th>
<th>O_{TyrD}-H</th>
<th>H-N_{His}</th>
<th>O_{TyrD}-O_{H2O}</th>
<th>N_{His}-N_{Arg}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original (1.9-Å structure)</td>
<td>2.74</td>
<td>—</td>
<td>—</td>
<td>Distal, 4.30; proximal, 2.73</td>
<td>2.81</td>
</tr>
<tr>
<td>High pH (Fig. S2, blue curve)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[TyrD-O$\cdot\cdot\cdot$H$\cdot\cdot\cdot$N$\cdot\cdot\cdot$Ne-His-N$_{δ1}$]$^-$ (1)</td>
<td>2.56</td>
<td>1.07</td>
<td>1.49</td>
<td>4.20</td>
<td>2.80</td>
</tr>
<tr>
<td>[TyrD-O$\cdot\cdot\cdot$H$\cdot\cdot\cdot$N$\cdot\cdot\cdot$Ne-His-N$_{δ1}$]$^-$ (2)</td>
<td>2.53</td>
<td>1.38</td>
<td>1.15</td>
<td>4.24</td>
<td>2.84</td>
</tr>
</tbody>
</table>

Arg, D2-Arg294; His, D2-His189; O$_{TyrD}$, phenolic O of TyrD; —, not applicable.

Other Supporting Information Files

Dataset S1 (PDB)