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Abstract. In a model of asset markets with transaction costs, we find a suf-

ficient condition for an increase in transaction costs to increase buying prices,

decrease selling prices, decrease the trading volume, and make all active in-

vestors worse off. The sufficient condition is met by all CARA utility functions.

As for CRRA utility functions, it is met if and only if CRRA coefficients are

less than or equal to one. We show that whenever some investor has a CRRA

coefficient greater than one, an increase in transaction costs may well decrease

buying prices and make buyers better off.
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1. Introduction

In asset markets, the transaction cost is defined as the difference between the

price that the buyer must pay to obtain an asset and the price that the seller can

receive by giving up the asset. It can represent physical or technological costs,

brokerage fees, and tax.

While the transaction cost is an impediment to straightforward applications of

benchmark results in finance, such as the characterization of optimal portfolios

and the pricing of derivative assets, these results have been extended to markets

with transaction costs. To name just two notable examples, Constantinides (1986)

and Davis and Norman (1990) considered the optimal consumption-investment
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problem of Merton (1973) when the decision maker incurs transaction costs; and

Bensaid et al (1992) considered derivative asset pricing when replicating them

requires transaction costs. These results are often stated in comparison with the

benchmark results. For example, while Merton’s rule of the optimal plan stipulates

that, in the case of one risky and one riskless asset, the ratio between the amounts

invested in the two assets should be kept constant throughout, Davis and Norman

(1990) showed that with transaction costs, the ratio should stay within a wedge,

rather than at a constant. In the binomial model of Cox, Ross, and Rubinstein

(1979) but with transaction costs, Bensaid et al (1992) showed that it may be

cheaper to form a portfolio whose payoff dominates that of a derivative asset than

to form a portfolio whose payoff perfectly replicates that of the derivative asset,

and the optimal trading strategy admits “no-rebalancing intervals” of the number

of stocks held.

Although these undertakings are ambitious and important, they have a common

drawback. It is that in their models, the asset prices are exogenously specified.

While this drawback does not appear to be serious when one is confined to the

portfolio choice problem or the derivative asset pricing, it does in fact limit the ap-

plicability of the results when one would like to see the consequences of transaction

costs from an equilibrium perspective. For example, the introduction of a trans-

action cost induces investors to shift from the Merton rule to the Davis-Norman

rule. In the language of equilibrium theory, this means that the investors change

the supply of and the demand for assets. The asset prices, exclusive of transac-

tion costs, would then need to be changed to sustain equilibrium, but these price

changes cannot be analyzed in the above-mentioned literature because the asset

prices are fixed throughout the analysis. In particular, it is not possible to pre-

dict trading volumes or welfare consequences that fully incorporate the investors’

reactions to transaction costs in the framework of the above literature.

In this paper, we take up a general equilibrium model of asset markets in which

multiple agents (investors) trade assets incurring, for each unit of assets they trade,

transaction costs that are proportional to asset prices. We do not take asset prices

as exogenously given. Rather, we take the agents’ expected utility functions and

initial risks as the primitive data. Then, we determine the equilibrium asset prices

for each level of proportional transaction costs, and investigate how they depend on

the levels of proportional transaction costs. We are interested in whether, as in the

case of fixed asset prices, an increase in transaction costs increases the buying price

(the asset price plus the transaction cost), decreases the selling price (the asset

price minus the proportional transaction cost), and decrease the trading volume;
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and whether the economic cost of transaction costs (the welfare loss arising from

the discrepancy between buying and selling prices) is borne by all actively trading

agents.

All our results are concerned with the case of a single consumption period

(just as in the classical portfolio choice problem), one risk-free bond, and one

risky asset. We assume, without loss of generality, that the transaction costs are

incurred on the transactions of the risky asset. First, in Theorem 1, we classify

the two “half aggregate” demand functions, one for the buy side and the other

for the sell side, according to the signs of their slopes at equilibrium, and show

that a small (infinitesimal) increase in proportional transaction costs increases

the buying price and decreases the selling price if and only if the two signs are

equal. In particular, this theorem is applicable if the two half aggregate demand

functions are both downward-sloping around equiilibrium.1 Next, in Theorem 2,

we impose a more stringent condition that each individual agent’s demand function

is downward-sloping globally and show that an increase in proportional transaction

costs of arbitrary size increases the buying price, and decreases the selling price,

the trading volume, and all actively trading agents’ welfare. Theorem 2 builds

on Theorem 1, but its proof involves additional intricate arguments to deal with

non-differentiability of demand functions, which inevitably arises in the presence

of proportional transaction costs.

The assumptions of Theorems 1 and 2 are given in terms of the agents’ de-

mand functions. Our third result, Proposition 1 and Theorem 3, gives a sufficient

condition, in terms of their Arrow-Pratt measures of absolute risk aversion, for

the assumption of Theorem 2 to be met. This condition is satisfied not only by

all utility functions exhibiting constant absolute risk aversion (CARA), but also

by the utility functions having the coefficient of constant relative risk aversion

(CRRA) not exceeding one, and some utility functions that do not even exhibit

hyperbolic absolute risk aversion (HARA). Theorem 3, therefore, implies that an

increase in transaction costs increases the buying price, decreases the selling price,

and decreases the trading volume, even in markets where agents having CARA,

CRRA, HARA, and non-HARA utility functions coexist. This is in sharp contrast

with Vayanos (1998), who assumed all agents are assumed to have CARA util-

ity functions. We prove this result by drawing much on the analysis in expected

utility theory, without deriving closed-form solutions for the equilibrium prices.

1In the partial equilibrium analysis, the half aggregate demand function of the buyers is called
the demand function, and the the half aggregate demand function of the sellers, multiplied
by −1, is called the supply function. This case is, thus, nothing but the standard textbook
case, where the demand function is downward-sloping and the supply function is upward-sloping
around equilibrium.
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Our last result, Proposition 2, shows that the upper bound of the CRRA coef-

ficient equal to one for the applicability of Theorem 3 is in fact tight. Specifically,

for any two agents who exhibit CRRA and one of whom has a CRRA coefficient

greater than one, there is a distribution of initial risk for the two consumers such

that the buying price is lower and the trading volume is higher under a positive

but sufficiently small transaction costs than under the zero transaction cost. The

crux of this result lies in the way the initial risks are distributed: the agent having

a CRRA coefficient greater than one turns out to be the seller of the risky asset.

Then his demand function may well be upward-sloping and Theorem 1 implies

that both of the buying and selling prices go down.

It is a conventional wisdom that an increase in transaction costs increases the

buying price, decreases the selling price, and decreases the trading volume, and

hence the economic cost of transaction costs is borne by both buyers and sellers.

The lesson from Proposition 2 is that it may well be contradicted by a careful

equilibrium consideration. It also poses a cautious note on Tobin tax, which Tobin

(1978) proposed to levy on currency transactions in order to curb speculative

ones, reduce exchange rate volatility, establish the autonomy of monetary policy,

and raise the tax revenue. The proponents of Tobin tax, such as Tobin (1978),

Stiglitz (1989), Summers and Summers (1989), Eichengreen, Tobin, and Wyplosz

(1995), and Krugman (2009), seem to presume that it necessarily increases the

buying price, decrease the trading volume, and load the tax burden on all active

traders.2 Yet, Proposition 2 shows that the buying price can go down and the

trading volume can go up, and the tax burden can be borne only by the seller,

who is as risk averse as the buyer and, as such, should not be the target of

Tobin tax. Moreover, this seemingly pathological phenomenon can arise in the

simplest possible model: there are a single consumption period; two states of the

world; an Arrow security and a riskless bond; and two fully rational agents having

identical information, identical beliefs, and possibly identical CRRA coefficients.

Our results should, thus, be contrasted with those of Dow and Rahi (2000), who

also showed that the introduction of Tobin tax may make some (and, even, all)

traders better off, because the driving force behind their result is that traders

having CARA utility functions are asymmetrically informed and Tobin tax may

reduce the informativeness of the equilibrium asset prices. The common drawback

of our and their models is that asset price volatilities, excessive or not, cannot

2The opponents of Tobin tax tend to oppose to it for such reasons as the reduction of liquidity
and the possibility of tax evasion. McCulloch and Pacillo (2011), Matheson (2011), and Anthony,
Bijlsma, Elbourne, Lever, and Zwart (2012) surveyed the literature on the feasibility and revenue
forecasts of Tobin tax, and its impact on trading volumes, price volatility, and economic welfare.
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be discussed because transactions take place just once. Buss, Uppal and Vikov

(2011) investigated a model in which transactions take place more than once and

the agents’ utility functions are recursive ones of Epstein and Zin (1989), including

standard time-additive CRRA utility functions. Their analysis is mostly numerical

and the pathological phenomenon does not emerge3 in their example of one bond,

one stock, and two consumers with time-additive CRRA utility functions, though

both coefficients are greater than one.

The rest of this paper is organized as follows. In Section 2, we give the model

of this paper and preliminary results. In Section 3, we present the first two main

results, Theorems 1 and 2, on the impact of an increase in proportional transac-

tion costs on asset prices. The sufficient condition of Theorem 2 is implied by a

condition presented in stated in Proposition 1 and Theorem 3 of Section 4 in terms

of the Arrow-Pratt measure of absolute risk aversion. In Proposition of Section

5, we give a class of examples of CRRA utility functions in which an increase in

proportional transaction costs decreases the buying price and increases the trading

volume. In Section 6, we summarize our results and suggest directions of future

research. All proofs are gathered in the Appendix.

2. Model and preliminary Results

The risk is represented by a standard probability space (Ω,F , P ).

There are I agents i = 1, 2, . . . , I, each characterized by a utility function ui

defined on some open interval (di, di), where di ∈ {−∞} ∪ R, di ∈ {+∞} ∪ R,

and di < di, and an initial risk Ai, a random variable defined on Ω. Assume that

ui is twice continuously differentiable and satisfies u′
i(xi) > 0 > u′′

i (xi) for every

xi ∈ (di, di), and the so-called Inada condition, that is, u′
i(xi) ↑ ∞ as xi ↓ di, and

u′
i(xi) ↓ 0 as xi ↑ di.

Two types of assets, a risky asset and a riskless bond, are traded. The future

dividend (value) of the risky asset is denoted by a random variable S defined on

Ω. We assume S is not constant, that is, essinf S < esssupS. We allow S to be

correlated with the Ai. The future dividend of the riskless bond is equal to 1.

The relative price of the risky asset with respect to the riskless bond, to be

determined at equilibrium, is denoted by π. The non-standard aspect of this

model is that agents must incur transaction costs to trade the risky asset, in an

exogenously specified proportion c, lying between 0 and 1, to the prices π. To be

precise, denote by yi the number of the risky asset traded by agent i. Of course,

3That is, the buying price of the stock with respect to the bond, when the latter incurs no
transaction cost, goes up, and the selling price and the trading volume go down.
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if yi > 0, then agent i buys the risky asset, whereas if yi < 0, then he sells it. If

π > 0 and if yi ̸= 0, then agent i must pay the transaction cost c|yi|π > 0.

The maximization problem of agent i can, therefore, be formulated as

(2.1) max
yi

E [ui (Ai + yiS − (yi + c|yi|)π)] .

Whenever there is a unique solution to this problem, we denote it by fi(c, π).

Remark 1. Although we have just formulated the transaction costs as if they

were imposed on the risky asset, our formulation can, in fact, accommodates the

case where the transaction costs are imposed also on the riskless bond. To see this

point, suppose now that the prices of the riskless bond and the risky asset are π0

and π1, and the proportional transaction costs of the riskless bond and the risky

asset are c0 and c1. Then the total cost necessary to form a portfolio (y0i , yi) of the

riskless bond and the risky asset is equal to (y0i + c0|y0i |) π0 + (yi + c1|yi|)π1. The

budget constraint stipulates that this value must not exceed zero. Now define

c =
c0 + c1

1 + c0c1
and π =

1 + c0c1

1− (c0)2
π1

π0
.

A straightforward calculation shows that the budget constraint is equivalent to

requiring that y0i + (1 + c sgn (yi))πyi ≤ 0. Thus, even if the transaction costs are

imposed on the riskless bond, we can assume without loss of generality that the

riskfree bond requires no transaction costs and its price is equal to one.

We say that a price π for the risky asset is an equilibrium price under the

proportional transaction cost c if
∑

i fi(c, π) = 0. The consumption that agent

i receives at equilibrium is Ai + fi(c, π)S − (fi(c, π) + c|fi(c, π)|)π. The sum of

these over all agents i is equal to
∑I

i=1 Ai − cπ
∑I

i=1 |fi(c, π)|. That is, by trading

assets, the agents give up cπ
∑I

i=1 |fi(c, π)| units of the riskfree discount bond in

the aggregate. In this paper, we assume that the transaction costs are taken away

from the model (to be paid as tax to the government or as commissions to the

intermediary that are not modeled here).4

In the rest of this section, we explore some useful properties of the demand

functions fi. Define a functions gi and hi by

gi(yi; c, π) =E [(S − (1 + c)π)u′
i(Ai + yi(S − (1 + c)π))] ,(2.2)

hi(yi; c, π) =E [(S − (1− c)π)u′
i(Ai + yi(S − (1− c)π))] .(2.3)

4If an agent were a recipient of government subsidies or a shareholder of the intermediary, and

thus got back part of cπ
∑I

i=1 |fi(c, π)|, then the objective function of the maximization problem
(2.1) should include the transfer that agent i receives from the government or the intermediary.
Although the equilibrium price would in general be different from those analyzed here, it would
be the same if all agents have CARA utility functions.
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Then, yi is a solution to the utility maximization problem (2.1) if and only if

(2.4)


gi(yi; c, π) = 0, if yi > 0,

hi(yi; c, π) = 0, if yi < 0,

gi(0; c, π) ≤ 0 ≤ hi(0; c, π), if yi = 0.

Remark 2. Suppose that fi(c, π) is well defined (exists). If it is strictly positive,

then
1

1 + c
essinf S < π <

1

1 + c
esssupS.

If it is strictly negative, then

1

1− c
essinf S < π <

1

1− c
esssupS.

If it is zero, then
1

1 + c
essinf S < π <

1

1− c
esssupS.

If c = 0, then each of these three restrictions can be rewritten as essinf S <

π < esssupS. In the subsequent analysis, we assume that fi(0, π) is well defined

(exists) whenever essinf S < π < esssupS. Since, then,

E [(S − π)u′
i(Ai + fi(0, π)(S − π))] = 0

by (2.2), (2.3), and (2.4), P ({ω ∈ Ω : S(ω) > π}) > 0 and P ({ω ∈ Ω : S(ω) <

π}) > 0.

Note that gi and hi are continuously differentiable and

g′i(yi; c, π) = E
[
(S − (1 + c)π)2u′′

i (Ai + yi(S − (1 + c)π))
]
< 0,(2.5)

h′
i(yi; c, π) = E

[
(S − (1− c)π)2u′′

i (Ai + yi(S − (1− c)π))
]
< 0.(2.6)

Thus gi(yi; c, π) and hi(yi; c, π) are strictly decreasing function of y. Consulting

(2.2) and (2.3), we know that if fi(c, π) > 0, then gi(0; c, π) > 0; if fi(c, π) < 0,

then hi(0; c, π) < 0; and if fi(c, π) = 0, then gi(0; c, π) ≤ 0 ≤ hi(0; c, π). Since

(2.7) gi(0; c, π)− hi(0; c, π) = −2cπ E [u′
i(Ai)] ≤ 0,

the converse also holds:

Lemma 1. If gi(0; c, π) > 0, then fi(c, π) > 0 and gi(fi(c, π); c, π) = 0. If

hi(0; c, π) < 0, then fi(c, π) < 0 and hi(fi(c, π); c, π) = 0. Otherwise, fi(c, π) = 0.

The solution fi(c, π) to the maximization problem (2.1) is unique in all three cases.

The following lemma establishes the continuity and continuous differentiability

of the demand functions fi.

Lemma 2. (1) The function fi is continuous.
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(2) The (partial) function fi(0, ·) is continuously differentiable and

(2.8)
∂fi
∂π

(0, π) =
E[u′

i(Pi) + fi(0, π)(S − π)u′′
i (Pi)]

E[(S − π)2u′′
i (Pi)]

,

where Pi = Ai + fi(0, π)(S − π).

(3) For every (c, π), if fi(c, π) > 0 or fi(0, (1 + c)π) > 0, then fi(c, π) =

fi(0, (1 + c)π). Moreover, fi is continuously differentiable at (c, π) and

∂fi
∂c

(c, π) = π
∂fi
∂π

(0, (1 + c)π) and
∂fi
∂π

(c, π) = (1 + c)
∂fi
∂π

(0, (1 + c)π).

(4) For every (c, π), if fi(c, π) < 0 or fi(0, (1 − c)π) < 0, then fi(c, π) =

fi(0, (1− c)π). Moreover, fi is continuously differentiable at (c, π) and

∂fi
∂c

(c, π) = −π
∂fi
∂π

(0, (1 + c)π) and
∂fi
∂π

(c, π) = (1− c)
∂fi
∂π

(0, (1− c)π).

(5) For every (c, π), if gi(0; c, π) < 0 < hi(0; c, π), then fi is continuously

differentiable at (c, π) and

∂fi
∂c

(c, π) =
∂fi
∂π

(c, π) = 0.

Part (1) of this lemma guarantees that fi is continuous on the entire domain, but

part (5) guarantees, when fi(c, π) = 0, that it is continuously differentiable only

on the set of those (c, π) on which gi(0; c, π) < 0 < hi(0; c, π). If gi(0; c, π) = 0 or

hi(0; c, π) = 0, then a small change in (c, π) will induce agent i to remain inactive,

while another small change will induce him to trade the risky asset. At such (c, π),

fi is, in general, not differentiable. It is this non-differentiability that calls for an

intricate proof for Theorem 2.

3. Impact of transaction costs

In this section, we assess the impact of increasing the proportional transaction

cost c on the equilibrium price π for the risky asset. Specifically, we first provide

a taxonomy on the impact of a small (infinitesimal) increase in the proportional

transaction cost c on the buying price, the selling price, the trading volume, and

the agents’ welfare. We then find a condition on the individual agents’ demand

functions for an increase in the proportional transaction cost to always increase

the buying price and decrease the selling price, the trading volume, and all agents’

welfare.

To start, we say that an equilibrium price π∗ of the risky asset under the pro-

portional transaction cost c∗ ∈ [0, 1) is normal if fi(c
∗, π∗) ̸= 0 or gi(0; c

∗, π∗) <

0 < hi(0; c
∗, π∗) for every i. Since gi and hi are continuous, this definition implies

that every agent who does not trade at a normal equilibrium price π∗ under the
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proportional transaction cost c∗ remains not to trade even when c∗ and π∗ are

slightly changed. By Lemma 2, if π∗ is a normal equilibrium price under c∗, then

fi is continuously differentiable at (c∗, π∗) for every i.

Since we compare equilibrium prices under different proportional transaction

costs, and since there may be multiple equilibrium prices under a proportional

transaction cost, we need to be explicit about which equilibrium prices to compare.

By an equilibrium price function around (c∗, π∗), we mean a function e defined on

some open interval V of c∗ in [0, 1) and taking values in some open interval W of

π∗ in R++ such that for every (c, π) ∈ V × W , π is an equilibrium price under

c if and only if π = e(c). The existence of an equilibrium price function around

(c∗, π∗) means that there is a locally unique equilibrium price π near π∗ under a

proportional transaction cost c whenever c is close to c∗.

Theorem 1. Let π∗ > 0 be a normal equilibrium price of the risky asset under

the proportional transaction cost c∗ ∈ [0, 1). Write B = {i : fi(c
∗, π∗) > 0},

S = {i : fi(c∗, π∗) < 0}, and

DB =
∑
i∈B

∂fi
∂π

(c∗, π∗),

DS =
∑
i∈S

∂fi
∂π

(c∗, π∗).

Suppose that DB ̸= 0, DS ̸= 0, and DB +DS ̸= 0. Then there is a continuously

differentiable equilibrium price function e around (c∗, π∗). Write

QB =
d

dc
((1 + c)e(c))

∣∣∣∣
c=c∗

,

QS =
d

dc
((1− c)e(c))

∣∣∣∣
c=c∗

,

Ui =
d

dc
E [ui (Ai + fi(c, e(c))S − (fi(c, e(c)) + c|fi(c, e(c))|)e(c))]

∣∣∣∣
c=c∗

,

T =
d

dc

(∑
i∈B

fi(c, e(c))

)∣∣∣∣∣
c=c∗

.

Then, depending on the signs of DB, DS , and DB +DS , we obtain the signs for

QB, QS , Ui, and T as in Table 1.

The common characteristic of these sign patterns is that sgn (DBDS )+sgn (QBQS ) =

1. That is, the buying price goes up and the selling price goes down if and only if

the two “half aggregate” demand functions,
∑

i∈B fi(c
∗, ·) and

∑
i∈S fi(c

∗, ·), are
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DB DS DB +DS QB QS Ui (i ∈ B) Ui (i ∈ S ) T

−1 −1 −1 +1 −1 −1 −1 −1
+1 +1 +1 +1 −1 −1 −1 +1
−1 +1 −1 −1 −1 +1 −1 +1
−1 +1 +1 +1 +1 −1 +1 −1
+1 −1 −1 +1 +1 −1 +1 +1
+1 −1 +1 −1 −1 +1 −1 −1

Table 1. Sign patterns of changes in buying prices, selling prices, utility
levels, and trading volumes

both downward-sloping or both upward-sloping at equilibrium. Of particular inter-

est among these six combinations are the cases where sgnDB = sgn (DB +DS ) =

−1, that is, the “half aggregate” demand function of the buyers and the aggregate

demand function of all agents are downward-sloping. The reason is that while it is

common to assume that the agents’ utility functions exhibit constant or decreasing

absolute risk aversion, the aggregate demand for the buyers is downward-sloping

whenever it is the case;5 and if the aggregate demand function
∑

i∈B∪S fi(c
∗, ·)

is upward-sloping, there must be other asset market equilibria for which the sign

patterns for QB, QS , Ui, and T are different. The first and third rows of Table

1 correspond to these cases. The first row is the textbook case, for which the

conventional wisdom is valid. The third row is the case we deal with in Section 5

and for which it is invalid.

The most common way to apply Theorem 1 is to show that ∂fi(c, π)/∂π < 0 for

every (c, π) and for every i. In such a case, we can derive the following, stronger

result. We say that an equilibrium price π under the proportional transaction cost

c is trivial if fi(c, π) = 0 for every i.

Theorem 2. Suppose that S ≥ 0 almost surely and that

(3.9)
∂fi
∂π

(0, π) < 0

for every i and every π ∈ (essinf S, esssupS).

(1) For every c ∈ [0, 1), either there exists a nonempty and compact interval of

trivial equilibrium prices (which may be a singleton), or there is a unique

equilibrium, which is not trivial, under the proportional transaction cost c.

(2) Let c1 and c2 be proportional transaction costs with c1 ≤ c2. If there is

no nontrivial equilibrium under the proportional transaction cost c1, then

there is no nontrivial equilibrium under the proportional transaction cost

c2.

5This is proved in Kijima and Tamura (2012).
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(3) Let V be the set of all proportional transaction costs under which there is

a nontrivial equilibrium. For every c ∈ V , let e(c) be a (unique) nontrivial

equilibrium price. Then e(c) is a continuous function of c on V , (1+c)e(c)

is a continuous and strictly increasing function of c on V , and (1− c)e(c)

is a continuous and strictly decreasing function of c on V .

(4) Let c1 and c2 be proportional transaction costs with c1 ≤ c2. Let i ∈
{1, . . . , I}. If fi(c1, e(c1)) = 0, then fi(c2, e(c2)) = 0. Moreover, |fi(c, e(c))|
and

E [ui (Ai + fi(c, e(c))S − (fi(c, e(c)) + c|fi(c, e(c))|)e(c))]

are strictly decreasing function of c on {c ∈ V : fi(c, e(c)) ̸= 0}.

By (3) and (4) of Lemma 2, inequality (3.9) implies that DB < 0 and DS < 0

in Theorem 1, and the first row of Table 1 is applicable whenever π∗ is a nor-

mal equilibrium asset price. Parts (1) and (2) of Theorem 2 that either there

are trivial equilibria or there is a unique nontrivial equilibrium, and the latter

case applies if and only if the proportional transaction cost is below some thresh-

old. Thus, the set V defined in part (3) is an (possibly empty) interval, and

is nonempty if and only if 0 ∈ V . Part (3) shows that the (unique) nontrivial

equilibrium price depends continuously on proportional transaction costs, and the

buying price increases and the selling price decreases as the proportional trans-

action cost increases. Part (4) shows that each agent’s trading volume decreases

strictly to zero, after which it never exceeds zero. Note that the domain V of the

equilibrium price function e, obtained in part (3), may contain proportional trans-

action costs under which equilibrium prices are not normal. For such proportional

transaction costs, while Theorem 1 is not applicable, Theorem 2 guarantees that

the equilibrium asset price depend continuously on proportional transaction costs

on the interval of proportional transaction costs under which there is a (unique)

nontrivial equilibrium.

Although e(c) is not well defined for those c which have trivial equilibria,

|fi(c, π)| is of course well defined and equal to zero for any such c as long as

π is a (trivial) equilibrium price of c. By part (4), the trading volume function

t : [0, 1) → R+ defined by

t(c) =


I∑

i=1

|fi(c, e(c))| if c ∈ V,

0 if c ̸∈ V,

is strictly decreasing and continuous on V . In fact, t is continuous on the entire

[0, 1). To show this, it suffices to show that for every i, |fi(c, e(c))| → 0 as
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c ↑ supV , but if there were an i for whom |fi(c, e(c))| ̸→ 0, then, based on a

method similar to the proof of the right-continuity of e in part (3) above, we can

show that there would exist a c > supV such that c ∈ V , a contradiction.

4. Monotonicity of asset demand

In this section, we provide a sufficient condition for an agent’s demand for

the risky asset to decrease as the asset price increases. When this condition is

satisfied by every agent, the inequality (3.9) holds. Hence it is also sufficient for

the conclusion of Theorem 2 to hold.

Recall that the utility function ui is defined on an open interval (di, di) and

di ∈ {−∞}∪R. Denote the absolute risk aversion by Ri(x) = −u′′
i (x)/u

′
i(x). The

sufficient condition contains the following condition on ui.

Assumption 1. There exists an αi ≥ 0 such that

(4.10) αi ≤ Ri(xi) ≤ αi +
1

xi − di

for every xi ∈ (di, di), where, by convention, 1/(xi − di) = 0 whenever di = −∞.

This assumption is met by a number of utility functions that are commonly

used in finance and economics. First, any utility function that ui exhibits constant

absolute risk aversion (CARA) satisfies this assumption, because αi can be to be

equal to its CARA coefficient. Second, when di = 0 and αi = 0, this assumption is

met if and only if the Arrow-Pratt measure of relative risk aversion never exceeds

one. As explained in Example 17.F.2 of Mas-Colell, Whinston, and Green (1995),

this condition is sufficient for the gross substitute sign pattern of the excess demand

function for commodities. But the conclusion of Proposition 1 is not the same,

because it is on (excess) demand for a risky asset with arbitrary payoffs, not

for commodities. Third, the assumption is satisfied when ui exhibits hyperbolic

absolute risk aversion (HARA) with its coefficient for the hyperbolic term not

exceeding one, and it may be met by a utility function ui that does not exhibit

HARA. One such example is given when di = 0, di = ∞, and Ri(xi) = 1 + 1/xi.

Proposition 1. If ui satisfies Assumption 1 and Ai ≥ di almost surely, then

∂fi(0, π)/∂π < 0 for every π ∈ (essinf S, esssupS).

This proposition shows that all the conclusions of Theorems 1 and 2 hold if

all agents satisfies Assumption 1 and Ai > di almost surely. The special case for

CARA utility functions was proved by Kijima and Tanaka (2012).
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The following theorem on the impact of proportional transaction costs on as-

set prices, trading volumes, and expected utility levels follows immediately from

Proposition 1.

Theorem 3. Suppose that for every i, ui satisfies Assumption 1 and Ai ≥ di
almost surely.

(1) Either there exists a nonempty and compact interval of trivial equilibrium

prices (which may be a singleton), or there is a unique equilibrium, which

is not trivial.

(2) Let c1 and c2 be proportional transaction costs with c1 ≤ c2. If there is

no nontrivial equilibrium under the proportional transaction cost c1, then

there is no nontrivial equilibrium under the proportional transaction cost

c2.

(3) Let V be the set of all proportional transaction costs under which there is

a nontrivial equilibrium. For every c ∈ V , let e(c) be a (unique) nontrivial

equilibrium price. Then e(c) is a continuous function of c on V , (1+c)e(c)

is a continuous and strictly increasing function of c on V , and (1− c)e(c)

is a continuous and strictly decreasing function of c on V .

(4) Let c1 and c2 be proportional transaction costs with c1 ≤ c2. Let i ∈
{1, . . . , I}. If fi(c1, e(c1)) = 0, then fi(c2, e(c2)) = 0. Moreover, |fi(c, e(c))|
and

E [ui (Ai + fi(c, e(c))S − (fi(c, e(c)) + c|fi(c, e(c))|)e(c))]

are strictly decreasing function of c on {c ∈ V : fi(c, e(c)) ̸= 0}.

5. CRRA utilities with decreased buying prices

Proposition 1 and Theorem 3 do not allow any agent to have a CRRA coefficient

greater than one. In this section, we give a class of examples in which an agent

has a CRRA coefficient greater than, but possibly arbitrarily close to, one and

the buying price decreases as the proportional transaction cost goes up from zero.

In these examples, therefore, the buyer is better off at equilibrium with positive

(but small) proportional transaction costs than without transaction costs, and the

burden of transaction costs is borne solely by the seller. They also show that the

upper bound of CRRA, which is equal to one, in Proposition 1 and Theorem 3 is

tight.

In this section, we specialize in the following setting. Let Ω = {1, 2} and

F = {∅, {1}, {2}, {1, 2}}. Let P be the probability measure defined on F that

satisfies P ({1}) = P ({2}) = 1/2. Asset 1 is a so-called Arrow security for state
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1, of which the time-1 value S satisfies S(1) = 1 and S(2) = 0. There are two

agents i = 1, 2. Agent i has a CRRA coefficient equal to γi. This means that

u′
i(x) = x−γi for every x > 0.

Proposition 2. Suppose that γ1 > 1. For each i = 1, 2 and each ai > 0, there

exists an a3−i > 0 such that if A1(1) = a1, A1(2) = 0, A2(1) = 0, and A2(2) = a2,

then there are an equilibrium asset price π∗ under zero transaction costs and a

continuously differentiable equilibrium price function e around (0, π∗) such that

d

dc
((1 + c)e(c))

∣∣∣∣
c=0

< 0,(5.11)

d

dc
|fi(c, e(c))|

∣∣∣∣
c=0

> 0 for each i,(5.12)

d

dc
E (u2 (A2 + f2(c, e(c))S − f2(c, e(c))(1 + c)e(c)))

∣∣∣∣
c=0

> 0.(5.13)

The crucial aspect of the assumption for this proposition is that agent 1 has a

CRRA coefficient greater than one and is the seller of the Arrow security. This

means that if the selling price were decreased, then, depending on the values a1 and

a2 of initial risks, agent 1 may decrease his demand for the Arrow security.6 With

the notation of Theorem 1, DS > 0 and the third row of Table 1 is applicable.

The consequence is, therefore, that the buying price is decreased, and the trading

volume and the buyer’s welfare are increased.

The proposition shows that the conventional wisdom, that an increase in trans-

action costs makes all agent worse off, can be easily invalidated in a two-state,

two-agent model as long as there is an agent who is the sole supplier of a risky

asset and has a CRRA coefficient greater than one. The proof, to be given in

the Appendix, shows that the equilibrium under the zero transaction cost is nor-

mal. By the implicit function theorem, therefore, for every distribution (A′
1, A

′
2)

of initial risks sufficiently close to (A1, A2) in the proposition, an increase in the

proportional transaction cost decreases the buying price. In other words, the con-

ventional wisdom is robustly invalidated with respect to perturbations in initial

risks.

More can be said of the equilibria in Proposition 2 if γ1 = γ2 > 1, that is, the

two agents have the same CRRA coefficient. First, the equilibria are the unique

ones when the proportional transaction cost is zero or very low. This implies

that there is no equilibrium at which an increase in transaction costs increases

the buying price and decreasing the selling price. Indeed, if γ1 = γ2, then, under

zero transaction cost, the aggregate demand function of the two agents coincides

6In other words, agent 1 may increase his supply of the Arrow security.
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with the demand function of the (representative) agent having the same CRRA

coefficient and an initial risk A1 + A2. Hence there is a unique equilibrium when

the transaction cost is zero. Moreover, by the implicit function theorem, there is

a unique equilibrium under a proportional transaction cost c > 0 whenever c is

sufficiently close to 0.

Second, if γ1 = γ2, we can also show, as we do in the appendix, that an in-

crease in transaction costs decreases the buying price whenever a2/a1 is sufficiently

close to zero. This condition means that the contingent commodity is much more

abundant in the first state than in the second, and clarifies when an increase in

transaction costs decreases the buying price.

Table 2 gathers some numerical examples of the rate of change in the price

for the risky asset for various configurations of the CRRA coefficients, which are

common for the two agents, and the ratio of the endowments of the contingent

commodity in the two states. In the table, the first column lists the common

coefficients γ of CRRA for the two agents, the second column lists the ratios

a2/a1 of the endowments for the contingent commodities in the two states, the

third column lists the equilibrium prices for the risky asset, with the riskless bond

being the numeraire, when there is no transaction cost, and the fourth column

lists the first-order approximations of rates of changes in the buying prices, which

are mathematically defined as

1

π∗
d

dc
((1 + c)e(c))

∣∣∣∣
c=0

.

This value is equal to one if a2/a1 = 1, because, then, the two agents are endowed

with equal amounts of the contingent commodities, and an small increase in the

proportional transaction cost does not change the asset price and increases the

buying price by the same rate as the proportional transaction cost. By (A.21) in

the Appendix,
1

π∗
d

dc
((1 + c)e(c))

∣∣∣∣
c=0

→ 0

as a2/a1 → 0. For each fixed value γ > 1 of CRRA coefficients, therefore, we are

interested in the value of a2/a1 at which the rate of change in the buying price

is equal to zero, and the value that minimizes (that is, since the rates we are

interested in are negative, maximize the absolute value of) the rate of change in

the buying price.

The results are listed in the first three groups of the table. In the first group,

the common CRRA coefficient is equal to 1.10, which is close to one, the threshold

below which Theorem 3 is applicable. The range of the values of a2/a1 for which
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the proportional transaction cost decreases the buying price is accordingly narrow:

the endowment in the second state must be less than 5.5% of the endowment in

the first state. The impact on the buying price is also small: a 1% transaction cost

decreases the buying price by 0.068% at most. In the second group, we set the

common CRRA coefficient at 2.50. This is the value that Lucas (1994) suggested,

in the context of the equity premium of Mehra and Prescott (1985), as an upper

bound of CRRA coefficients that are judged as reasonable. The result is that

the endowment ratio a2/a1 may exceed a half only by a small amount in order

for the proportional transaction cost to decrease the buying price. The common

CRRA coefficient in the third group is equal to 10.00, which is the upper bound of

the CRRA coefficients used by Mehra and Prescott (1985).7 Then the maximum

endowment ratio is approximately equal to 0.8740, which means that in order for

the proportional transaction cost to decrease the buying price, the endowment

in the bad state must be less than 87.4% of the endowment in the good state.

The impact is maximal when the endowment ratio is equal to 0.770, where a 1%

transaction cost decreases the buying price by almost 0.2%.

In the last group, the value of the endowment ratio a2/a1 is fixed at 0.9317.

The value was choen to match the mean and standard deviation of the annual

consumption growth rates in the data set used by Mehra and Prescott (1985). In

the data set, the mean is 0.018 and the standard deviation is 0.036. With the

equal probability 1/2 for the two states, the endowment ratio a2/a1 is given by

a2
a1

=
1 + 0.018− 0.036

1 + 0.018 + 0.036
=

0.982

1.054
≈ 0.9317.

By varying the common CRRA coefficients, we see that the threshold, above

which an increase in the proportional transaction cost decreases the buying price

and makes the buyer better off, is approximately equal to 18.57. This is somewhat

disappointing, because it is much higher than ten. Yet, it might be possible that

if a kind of asymmetric information in Dow and Rahi (2000) is introduced into the

model, where the buyer is better informed, then an increase in the proportional

transaction cost makes the buyer better off even with lower CRRA coefficients.

Remark 3. Although the economy of Proposition 2 consists of just two agents,

it can be easily modified to consists of many consumers. In fact, if the economy

comprises two groups B and S , each agent in B has a CRRA coefficient γ1 ≥ 1

and an initial risk Ai with Ai(1) > 0 = Ai(2), each agent in S has a CRRA

coefficient γ2 and an initial risk Ai with Ai(1) = 0 < Ai(2), and
∑

i∈B Ai(1) and

7Mehra and Prescott (1985) and Kocherlakota (1996) gave references that estimate agents’
CRRA coefficients.
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CRRA Endowment Ratio Equilibrium Price Change in the buying price

1.10 1.0000 0.50000 1.00000
1.10 0.0541 0.03884 −0.00006
1.10 0.0034 0.00192 −0.06809

2.50 1.0000 0.50000 1.00000
2.50 0.5215 0.16416 0.00007
2.50 0.2936 0.04462 −0.18864

10.00 1.0000 0.50000 1.00000
10.00 0.8740 0.20640 0.00003
10.00 0.7770 0.07425 −0.19919

10.00 0.9317 0.33014 0.37531
18.57 0.9317 0.21183 0.00008
30.00 0.9317 0.10691 −0.18906

Table 2. Rates of changes in the buying price

∑
i∈S Ai(1) satisfy the condition that a1 and a2 satisfy in the proposition, then

the conclusion of the proposition holds for this economy. This is because the

aggregate demand function of B coincides with the demand function of the (half

representative) agent having a CRRA coefficient γ1 and an initial risk
∑

i∈B Ai,

and the aggregate demand function of S coincides with the demand function of

the (half representative) agent having a CRRA coefficient γ2 and an initial risk∑
i∈B Ai; and the proposition is applicable to this reduced two-agent economy.

However, the conclusion of the proposition would not hold if there were agents

i with a CRRA coefficient γ1 and an initial risk Ai with Ai(1) = 0 < Ai(2), or

agents i with a CRRA coefficient γ2 and an initial risk Ai with Ai(1) > 0 = Ai(2).

In such an economy, the first row of Table 1 in Theorem 1 may be applicable and

the selling price may decrease as the proportional transaction cost increases.

6. Conclusion

In this paper, we investigated how an increase in transaction costs affects the

equilibrium asset prices and allocations. We found sufficient conditions for an

increase in transaction costs to increase the buying price and decrease the selling

price, the trading volume, and all active investors’ welfare. The sufficient condi-

tion is met by a general class of utility functions, which contains all CARA and

even some non-HARA utility functions. As for CRRA utility functions, the class

contains all utility functions with CRRA coefficients less than or equal to one,

but does not contain any utility function with CRRA coefficient greater than one.

By constructing examples, we also showed that whenever there is an agent with
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a CRRA coefficient greater than one, an increase in transaction costs may well

decrease buying prices and make buyers better off.

In the setup of this paper, there are only one consumption period and only

one risky asset. It is admittedly very restrictive. We should extend our analysis

to the case of multiple (discrete or continuous) trading periods and multiple risky

assets, such as an underlying asset and a derivative asset written on it. Developing

an algorithm to obtain equilibrium asset prices is also needed, especially in the

case of multiple risky assets, to give a practical value to our analysis. Finally,

although the level of transaction costs are exogenously specified in our model, it

would be interesting to accommodate intermediaries who seek to maximize their

own objective functions by choosing a level of transaction costs.

Appendix A. Proofs

Proof of Lemma 2. By inequalities (2.5) and (2.6) and gi(y; 0, π) = hi(y; 0, π),

we can apply the implicit function theorem to prove part (2). Parts (3) and (4)

follow easily from part (2). As for part (5), if gi(0; c, π) < 0 < hi(0; c, π), then

fi(c, π) = 0 by Proposition 1 and, since gi and hi are continuously differentiable,

gi(0; c
′, π′) < 0 < hi(0; c

′, π′) if (c′, π′) is sufficiently close to (c, π). Again by

Proposition 1, fi(c
′, π′) = 0. Hence fi is constant around (c, π) and part (5)

follows.

Now that parts (2) through (5) have been proven, it remains to prove that fi

is continuous at (c, π) where c > 0 and gi(0; c, π) = 0 or hi(0; c, π) = 0. Sup-

pose that cπ > 0, gi(0; c, π) = 0, ((cn, πn))n is a sequence that converges to

(c, π), but (fi(cn, πn))n does not converges to zero. Since hi(0; c, π) > 0 by (2.7),

hi(0; cn, πn) > 0, and, by Proposition 1, fi(0; cn, πn) ≥ 0, for every sufficiently

large n. Thus, by taking a subsequence if necessary, we can assume that there is

a δ > 0 such that fi(cn, πn) > δ for every n. Since gi (fi(cn, πn); cn, πn) = 0 and gi

is strictly decreasing, gi(δ; cn, πn) > 0. Since gi(δ; cn, πn) → gi(δ; c, π) as n → ∞,

gi(δ; c, π) ≥ 0. On the other hand, by assumption, gi(0; c, π) = 0 and, since gi is

strictly decreasing, gi(δ; c, π) < 0. This is a contradiction. Hence fi is continuous

at (c, π) where gi(0; c, π) = 0. The continuity at (c, π) where hi(0; c, π) = 0 can be

analogously proved. ■

Proof of Theorem 1. (1) By (5) of Lemma 2,
∑I

i=1 ∂fi(c
∗, π∗)/∂π ̸= 0.

By Lemma 2, we can apply the implicit function theorem to the equilibrium

condition
∑

i fi(c, π) = 0 at (c∗, π∗) to show that there is a continuously differ-

entiable equilibrium price function e : V → W around (c∗, π∗). By Proposition

1, gi(0; c
∗, π∗) > 0 for every i ∈ B and hi(0; c

∗, π∗) < 0 for every i ∈ S . By



MARKETS WITH TRANSACTION COSTS 19

normality, gi(0; c
∗, π∗) < 0 < hi(0; c

∗, π∗) for every i ̸∈ B ∪ S . By continuity, for

every c sufficiently close to c∗, gi(0; c, e(c)) > 0 for every i ∈ B, hi(0; c, e(c)) < 0

for every i ∈ S , and gi(0; c, e(c)) < 0 < hi(0; c, e(c)) for every i ̸∈ B ∪ S . Again

by Proposition 1, fi(c, e(c)) > 0 for every i ∈ B, fi(c, e(c)) < 0 for every i ∈ S ,

and fi(c, e(c)) = 0 for every i ̸∈ B ∪ S . Thus, if V is sufficiently small, then

B = {i : fi(c, e(c)) > 0} and S = {i : fi(c, e(c)) > 0} for every c ∈ V .

Since
∑I

i=1 fi(c, e(c)) = 0 for every c ∈ V , by the first claim and Lemma 2,

0 =
d

dc

(
I∑

i=1

fi(c, e(c))

)∣∣∣∣∣
c=c∗

=
I∑

i=1

(
∂fi
∂c

(c∗, π∗) +
∂fi
∂π

(c∗, π∗)e′(c∗)

)

=

(∑
i∈B

∂fi
∂π

(c∗, π∗)

)(
π∗

1 + c∗
+ e′(c∗)

)
+

(∑
i∈S

∂fi
∂π

(c∗, π∗)

)(
− π∗

1− c∗
+ e′(c∗)

)
=DB

QB

1 + c∗
+DS

QS

1− c∗
.

Thus, sgn (DBDS ) + sgn (QBQS ) = 0. Note also that

QB

1 + c∗
>

QS

1− c∗
.

Thus, if DBDS > 0, then QB > 0 > QS . If DBDS < 0, consider, for example,

the case where DB < 0 < DS and DB +DS < 0. Then |DB| > DS and

DB
QB

1 + c∗
+DS

QS

1− c∗
=

QS

1− c∗
DS − QB

1 + c∗
|DB|.

If QB > 0 and QS > 0, then this would be negative, a contradiction. Hence

QB < 0 and QS < 0. The other three cases can be analogously proved. This

complete the proof of the signs for QB and QS .

The sign of T follows from T = QBDB/(1 + c∗). Finally, by the envelope

theorem,

Ui =
d

dc
E [ui (Ai + fi(c

∗, π∗)S − (fi(c
∗, π∗) + c|fi(c∗, π∗)|)e(c))]

∣∣∣∣
c=c∗

= − fi(c
∗, π∗)E [ui (Ai + fi(c

∗, π∗)S − (fi(c
∗, π∗) + c∗|fi(c∗, π∗)|)π∗)]

×


d

dc
((1 + c)e(c))

∣∣∣∣
c=c∗

if i ∈ B

d

dc
((1− c)e(c))

∣∣∣∣
c=c∗

if i ∈ S

=


−fi(c

∗, π∗)
QB

1 + c∗
E [ui (Ai + fi(c

∗, π∗)S − (fi(c
∗, π∗) + c∗|fi(c∗, π∗)|)π∗)] if i ∈ B,

−fi(c
∗, π∗)

QS

1− c∗
E [ui (Ai + fi(c

∗, π∗)S − (fi(c
∗, π∗) + c∗|fi(c∗, π∗)|)π∗)] if i ∈ S .

Since u′
i > 0, this implies the signs for the Ui. ■
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Proof of Theorem 2. (1) For every i and c ∈ [0, 1),

hi(0; c, π) → E [(S − esssupS)u′
i(Ai)] < 0

as π ↑ (1 − c)−1 esssupS. Thus hi(0; c, π) < 0 if π < (1 − c)−1 esssupS is

sufficiently close to (1 − c)−1 esssupS. By Proposition 1, fi(c, π) < 0 for ev-

ery i and every π < (1 − c)−1 esssupS sufficiently close to (1 − c)−1 esssupS.

Thus
∑

i fi(c, π) < 0 for every π < (1 − c)−1 esssupS sufficiently close to (1 −
c)−1 esssupS. We can analogously show that

∑
i fi(c, π) > 0 for every π suffi-

ciently close to (1+c)−1 essinf S. By the intermediate value theorem, there is a π ∈
((1 + c)−1 essinf S, (1− c)−1 esssupS) such that

∑
i fi(c, π) = 0, that is, there is an

equilibrium. There is no equilibrium price outside

((1 + c)−1 essinf S, (1− c)−1 esssupS), because if π ≥ (1 − c)−1 esssupS, then

0 > hi(0; c, π) ≥ gi(0; c, π), implying that fi(c, π) < 0 for every i (if well de-

fined); and if π ≤ (1+c)−1 essinf S, then 0 < gi(0; c, π) ≤ hi(0; c, π), implying that

fi(c, π) > 0 for every i (if well defined).

Let Ki(c) = {π : fi(c, π) = 0}, then, by (2.4),

Ki(c) =

[
E [Su′

i(Ai)]

(1 + c)E [u′
i(Ai)]

,
E [Su′

i(Ai)]

(1− c)E [u′
i(Ai)]

]
.

Thus the intersection
∩I

i=1Ki(c) is a compact interval. If it is nonempty, then

every π ∈
∩I

i=1Ki(c) is a trivial equilibrium, and there is no other equilibrium,

because if π is to the right of this intersection, then fi(c, π) ≤ 0 for every i and

fi(c, π) < 0 for some i, resulting in
∑

i fi(c, π) < 0; and if π is to the left of this

intersection, then fi(c, π) ≥ 0 for every i and fi(c, π) > 0 for some i, resulting

in
∑

i fi(c, π) > 0. On the other hand, if
∩I

i=1Ki(c) = ∅, then any equilibrium

is nontrivial. Moreover, since fi(c, π) is a strictly decreasing function of π on the

entire domain ((1 + c)−1 essinf S, (1− c)−1 esssupS), the equilibrium is unique.

(2) If c1 ≤ c2, thenKi(c1) ⊆ Ki(c2) for every i. Hence
∩I

i=1Ki(c1) ⊆
∩I

i=1Ki(c2).

Thus, if there is no nontrivial equilibrium under c1, then
∩I

i=1Ki(c1) ̸= ∅, and

hence
∩I

i=1Ki(c2) ̸= ∅, which implies that there is no nontrivial equilibrium under

c2.

(3) First, we prove that e is right-continuous. Let c∗ ∈ V and π∗ be an equi-

librium price under c∗. Although π∗ need not be a normal equilibrium price for

the entire economy of I agents, π∗ is a normal equilibrium price for the economy

consisting only of agents i with fi(c
∗, π∗) ̸= 0. By Lemma 1, if fi(c

∗, π∗) ̸= 0,

then ∂fi(c
∗, π∗)/∂π and ∂fi(0, (1 + sgn(fi(c

∗, π∗))c)π∗)/∂π share the same sign.

Thus, by Theorem 1, there is an equilibrium price function e around (c∗, π∗) for
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this economy that satisfies DB < 0 and DS < 0. Thus (1 + c)e(c) > (1 + c∗)π∗

and (1 − c)e(c) < (1 − c∗)π∗ for every c > c∗ sufficiently close to c∗. Since

∂gi(0; 0, π)/∂π < 0 for every π,

gi(0; c
∗, π∗) = gi(0; 0, (1 + c∗)π∗) > gi(0; 0, (1 + c)e(c)) = gi(0; c, e(c)).

Thus, if gi(0; c
∗, π∗) ≤ 0, then gi(0; c, e(c)) < 0. Similarly, if hi(0; c

∗, π∗) ≥ 0,

then hi(0; c, e(c)) > 0. Hence, by Lemma 1, if fi(c
∗, π∗) = 0, then fi(c, e(c)) = 0.

Therefore, e(c) is, in fact, a (unique) nontrivial equilibrium price under c for the

entire economy of I agents, and c ∈ V for every c > c∗ sufficiently close to c∗.

Thus, e is right-continuous.

Next, we prove that e is left-continuous. To do so, we show that for every i, there

is at most one c ∈ [0, 1) such that c ∈ V and gi(0; c, e(c)) = 0. Suppose, on the

contrary, that there were two proportional transaction costs, c1 and c2 with c1 < c2,

such that cn ∈ V and gi(0; cn, e(cn)) = 0 for both n = 1, 2. Since gi(0; cn, e(cn)) =

gi(0; 0, (1+cn)e(cn)) and ∂gi/∂π < 0, this implies that (1+c1)e(c1) = (1+c2)e(c2).

Let B = {j : fj(c2, e(c2)) > 0}, S = {j : fj(c2, e(c2)) < 0}, and N = {j :

fj(c2, e(c2)) = 0}. Then B ̸= ∅ and S ̸= ∅, because c2 ∈ V .

For every j ∈ N , 0 ≥ gj(0; c1, e(c1)) = gj(0; c2, e(c2)) by Lemma 1. Thus

fj(c1, e(c1)) ≤ 0 and hence

(A.14)
∑
j∈N

fj(c1, e(c1)) ≤ 0.

For every j ∈ B,

0 < fj(c2, e(c2)) = fj(0, (1 + c2)e(c2)) = fj(0, (1 + c1)e(c1)) = fj(c1, e(c1)).

Thus

(A.15)
∑
j∈B

fj(c1, e(c1)) =
∑
j∈B

fj(c2, e(c2)).

Since c1 < c2 and (1 + c1)e(c1) = (1 + c2)e(c2), e(c1) > e(c2) and hence (1 −
c1)e(c1) > (1 − c2)e(c2). For every j ∈ S , by (3.9), 0 > fj(c2, e(c2)) = fj(0, (1 −
c2)e(c2)) > fj(0, (1− c1)e(c1)) = fj(c2, e(c2)). Thus

(A.16)
∑
j∈S

fj(c1, e(c1)) <
∑
j∈S

fj(c2, e(c2)).
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By (A.14), (A.15), and (A.16),

0 =
I∑

j=1

fj(c1, e(c1)) =
∑
j∈B

fj(c1, e(c1)) +
∑
j∈S

fj(c1, e(c1)) +
∑
j∈N

fj(c1, e(c1))

<
∑
j∈B

fj(c2, e(c2)) +
∑
j∈S

fj(c2, e(c2)) +
∑
j∈N

fj(cc, e(cc))

=
I∑

j=1

fj(c2, e(c2)) = 0.

This is a contradiction. Thus, for every i, there is at most one c ∈ [0, 1) such that

c ∈ V and gi(0; c, e(c)) = 0.

We can analogously show that for every i, there is at most one c ∈ [0, 1) such

that c ∈ V and hi(0; c, e(c)) = 0. Therefore, there are at most 2I c’s, for which

e(c) is a nontrivial and abnormal equilibrium price under c.

Let’s now prove that e is left-continuous. Let c∗ ∈ V and π∗ be an equilibrium

price under c∗. Since there are only finitely many c’s for which e(c) is not a normal

equilibrium price, the equilibrium price e(c) of the proportional transaction cost

c is normal for every c ∈ (c∗ − ε, c∗) with ε > 0 sufficiently small. By Theorem 1,

(1−c)e(c) is a strictly decreasing function of c ∈ (c∗−ε, c∗). Since (1−c)e(c) ≥ 0,

limc↑c∗(1 − c)e(c) exists, and we write π∗ = (1 − c∗)−1 limc↑c∗(1 − c)e(c). Then

e(c) → π∗ as c ↑ c∗. Thus, by part (1) of Lemma 2, fi(c, e(c)) → fi(c
∗, π∗).

Hence
∑I

i=1 fi(c, e(c)) →
∑I

i=1 fi(c
∗, π∗). Since

∑I
i=1 fi(c, e(c)) = 0 for every

c ∈ (c∗ − ε, c∗),
∑I

i=1 fi(c
∗, π∗) = 0. Since c∗ ∈ V , π∗ = e(c∗). The left continuity

has thus been proved.

Therefore, (1 + c)e(c) is a continuous function of c on V . By Theorem 1, has

strictly positive derivatives at all but finitely many points. Thus (1 + c)e(c) is a

strictly increasing function of c on V . Analogously, (1− c)e(c) is a continuous and

strictly decreasing function of c on V .

(4) Just as in the proof of Theorem 1, we can show that if c∗ ∈ V and e(c∗) is

a normal equilibrium price, then

d

dc
|fi(c, e(c))|

∣∣∣∣
c=c∗

=


∂fi
∂π

(c∗, e(c∗))
QB

1 + c∗
if i ∈ B,

∂fi
∂π

(c∗, e(c∗))
−QS

1− c∗
if i ∈ S .

Thus,

(A.17)
d

dc
|fi(c, e(c))|

∣∣∣∣
c=c∗

< 0

whenever fi(c
∗, e(c∗)) ̸= 0.
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Based on this result, we can prove the first claim of part (4) as follows. Suppose,

on the contrary, that there are c1 and c2 such that c1 ≤ c2, fi(c1, e(c1)) = 0, and

fi(c2, e(c2)) ̸= 0. Then c1 < c2, |fi(c1, e(c1))| = 0, and |fi(c2, e(c2))| > 0. Let c3

be the largest c such that c < c2 and fi(c, e(c)) = 0. Since |fi(c, e(c))| > 0 for

every c > c3 sufficiently close to c3, there are c4 and c5 such that c3 < c4 < c5, e(c)

is a normal equilibrium price under c for every c ∈ [c4, c5], and |fi(c4, e(c4))| <
|fi(c5, e(c5))|. Since |fi(c, e(c))| is a continuously differentiable function of c on

[c4, c5], we can apply the average value theorem to show that there is a c6 ∈ [c4, c5]

such that
d

dc
|fi(c, e(c))|

∣∣∣∣
c=c6

> 0.

This contradicts (A.17). Hence if c1 ≤ c2 and fi(c1, e(c1)) = 0, then fi(c2, e(c2)) =

0.

Thus, the set {c ∈ V : fi(c, e(c)) ̸= 0} is an interval, |fi(c, e(c))| is a continuous

function of c and continuously differentiable at all but finitely many points. Thus,

by (A.17), |fi(c, e(c))| is a strictly decreasing function on this set. Similarly,

E [ui (Ai + fi(c, e(c))S − (fi(c, e(c)) + |fi(c, e(c))|c)e(c))]

is a continuous function of c and continuously differentiable at all but finitely many

points. Thus, by Theorem 1, it is a strictly decreasing function on this set. ■

Proof of Proposition 1. By (2.8) and u′′
i < 0, it suffices to prove that

B ≡ E [u′
i(Pi) + fi(0, π)(S − π)u′′

i (Pi)] > 0,

where Pi = Ai + fi(0, π)(S − π). Indeed, this follows immediately from the as-

sumption that u′
i > 0 if fi(0, π) = 0. So suppose that fi(0, π) ̸= 0. By Remark

2,

B =E [u′
i(Pi) (1− fi(0, π)(S − π)Ri(Pi))]

=E [u′
i(Pi) (1− fi(0, π)(S − π) (Ri(Pi)− αi))]− αifi(0, π)E [u′

i(Pi)(S − π)]

=E [u′
i(Pi) (1− (Pi − Ai) (Ri(Pi)− αi))] .

Define Ω1 = {ω ∈ Ω : Pi(ω) > Ai(ω)} and Ω2 = {ω ∈ Ω : Pi(ω) ≤ Ai(ω)}. Again
by Remark 2, P (Ω2) > 0. Since (Pi(ω) − Ai(ω)) (Ri(Pi(ω))− αi) ≤ 0 for every

ω ∈ Ω2, ∫
Ω2

u′
i(Pi(ω)) (1− (Pi(ω)− Ai(ω)) (Ri(Pi(ω))− αi)) dP (ω)

≥
∫
Ω2

u′
i(Pi(ω)) dP (ω) > 0.
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Since u′(Pi) (Ri(Pi)− αi) ≥ 0 and Ri(Pi)− αi ≤ (Pi − di)
−1 almost surely,

B =

∫
Ω1

u′
i(Pi(ω)) (1− (Pi(ω)− Ai(ω)) (Ri(Pi(ω))− αi)) dP (ω)

+

∫
Ω2

u′
i(Pi(ω)) (1− (Pi(ω)− Ai(ω)) (Ri(Pi(ω))− αi)) dP (ω)

>

∫
Ω1

u′
i(Pi(ω)) (1− (Pi(ω)− Ai(ω)) (Ri(Pi(ω))− αi)) dP (ω)

≥
∫
Ω1

u′
i(Pi(ω))

(
1− Pi(ω)− Ai(ω)

Pi(ω)− di

)
dP (ω)

=

∫
Ω1

u′
i(Pi(ω))

Ai(ω)− di
Pi(ω)− di

dP (ω).

Since Ai ≥ di and Pi > di almost surely, the last integral is nonnegative. Thus

the proof is completed. ■

Proof of Proposition 2 and the subsequent claim. By Theorem 1, it suffices

to show that f1(0, π
∗) < 0, f2(0, π

∗) >, ∂f1(0, π
∗)/∂π > 0, and ∂f1(0, π

∗)/∂π +

∂f2(0, π
∗)/∂π < 0.

For each i = 1, 2, define mi : (0, 1) → R by

m1(π) =

(
1

γ1

1

1− π
− 1

)
+

(
1

1− π
− 1

)1/γ1

,

m2(π) =

(
1

γ2

1

π
− 1

)
+

(
1

π
− 1

)1/γ2

.

Then, m1 is continuous and strictly increasing, and m2 is continuous and strictly

decreasing. As π → 0, m1(π) → 1/γ1− 1, and as π → 1, m2(π) → 1/γ2− 1. Since

γ1 > 1, 1/γ1 − 1 < 0. Thus, there is a π◦ ∈ (0, 1) such that m1(π) ⋚ 0 if and only

if π ⋚ π◦. Since mi(1/2) = 2/γi for each i, π◦ < 1/2 and m2(π) > 0 for every

π ∈ (0, π◦]. Hence m2(π)/m1(π) → −∞ as π ↑ π◦.

For each i = 1, 2, define ki : (0, 1) → R by

k1(π) =
(1− π)−1/γ1

π1−1/γ1 + (1− π)1−1/γ1
,

k2(π) =
π−1/γ2

π1−1/γ2 + (1− π)1−1/γ2
.

Then, for each i, ki is continuously differentiable and strictly-positive-valued. Also,

for each i, define ti : (0, 1) → R by

ti(π) =
(π(1− π))−1/γi

(π1−1/γi + (1− π)1−1/γi)
2mi(π).
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Then k′
1(π) = t1(π) and k′

2(π) = −t2(π) for every π. Moreover, as π ↑ π◦,

k1(π)

k2(π)

t2(π)

t1(π)
→ −∞.

Hence there is a π∗ ∈ (0, π◦) such that

(A.18)
k1(π

∗)

k2(π∗)

t2(π
∗)

t1(π∗)
< −1.

When either a1 or a2 is given, define the other via

(A.19) a1k1(π
∗) = a2k2(π

∗).

We shall prove that π∗ is an equilibrium price for the Arrow security if there is

no transaction cost. Note that

E[u1(A1 + y1(S − π))] =
1

2
u1(a1 + (1− π)y1) +

1

2
u1(−πy1)

and

E[u2(A2 + y2(S − π))] =
1

2
u1((1− π)y2) +

1

2
u2(a2 − πy2).

By the first-order conditions, the the solutions to these problems are given by

f1(0, π) = −a1k1(π) and f2(0, π) = a2k2(π). Hence f1(0, π
∗) < 0 and f2(0, π

∗) > 0.

Moreover,

f1(0, π
∗) + f2(0, π

∗) = −a1k1(π
∗) + a2k2(π

∗) = 0.

Thus π∗ is an equilibrium price for the Arrow security in the absence of transaction

costs. Moreover,

∂f1
∂π

(0, π∗) = −a1k
′
1(π

∗) = −a1t1(π
∗) > 0,

∂f2
∂π

(0, π∗) = a2k
′
1(π

∗) = −a2t2(π
∗) < 0,

∂f1
∂π

(0, π∗) +
∂f2
∂π

(0, π∗) = −a1t1(π
∗)

(
1 +

k1(π
∗)

k2(π∗)

t2(π
∗)

t1(π∗)

)
< 0.

This completes the proof of Proposition 2.

To prove the subsequent claim, it suffices to show that

(A.20)
k1(π)

k2(π)
→ 0

and

(A.21)
k1(π)

k2(π)

t2(π)

t1(π)
→ −∞

as π ↓ 0 . Indeed, then, for all a1 and a2 with a2/a1 sufficiently close to zero, there

is a π∗ ∈ (0, 1) for which (A.18) and (A.19) hold. Then the argument in Steps 2

and 3 of the proof of Proposition 2 is valid.
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To prove (A.20) and (A.21), write γ = γ1 = γ2. Then

k1(π)

k2(π)
=

(1− π)−1/γ

π−1/γ
=

(
π

1− π

)1/γ

→ 0

as π ↓ 0. As for (A.21),

k1(π)

k2(π)

t2(π)

t1(π)
=

(
π

1− π

)1/γ
m2(π)

m1(π)
=

(
1

γ

1

π
− 1

)
+

(
1

π
− 1

)1/γ

(
1

π
− 1

)1/γ

1

m1(π)

=


1

γ

1

π
− 1(

1

π
− 1

)1/γ
+ 1

 1

m1(π)
.

Write ρ = 1/π, then
1

γ

1

π
− 1(

1

π
− 1

)1/γ
=

ρ

γ
− 1

(ρ− 1)1/γ

The derivative of the numerator with respect to ρ is equal to 1/γ and that of the

denominator is equal to (1/γ) (ρ− 1)1/γ−1. Since

1/γ

(1/γ) (ρ− 1)1/γ−1
= (ρ− 1)1−1/γ → ∞

as ρ ↑ ∞, L’Hôpital’s rule implies that

1

γ

1

π
− 1(

1

π
− 1

)1/γ
=

ρ

γ
− 1

(ρ− 1)1/γ
→ ∞

as ρ ↑ ∞. Since 1/m1(π) → −γ/(γ − 1) < 0 as π ↓ 0, (A.21) follows from this. ■
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