1	Diversity and ubiquity of xylariaceous endophytes in live and dead leaves of
2	temperate forest trees
3	
4	Takashi Osono • Osamu Tateno • Hayato Masuya
5	
6	T. Osono
7	Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan
8	e-mail: tosono@ecology.kyoto-u.ac.jp
9	
10	O. Tateno
11	Laboratory of Forest Ecology, Graduate School of Agriculture, Kyoto University,
12	Kyoto 606-8502 Japan
13	
14	H. Masuya
15	Forestry & Forest Products Research Institute, Tsukuba, Ibaraki 305-8687 Japan
16	
17	

- 1 **Abstract**To test the hypothesis that xylariaceous endophytes were ubiquitous on 2 live and dead leaves of various tree species in the field, xylariaceous fungi were 3 isolated from live leaves and bleached and nonbleached portions of dead leaves of 4 a total of 94 tree species in a cool temperate forest in Japan. The biodiversity of 5 xylariaceous endophytes was evaluated as the richness of operational taxonomic 6 units (OTUs) determined by phylogenetic analysis of the nucleotide sequence of 7 the D1/D2 region of the LSU rDNA of fungal isolates. A total of 326 isolates of 8 xylariaceous fungi were isolated from live and dead leaves and classified into 15 9 OTUs. The three major OTUs, Xylaria sp.1, Nemania sp., and Biscogniauxia sp., 10 accounted for 94% (308 isolates) of the total number of isolates, and were isolated 11 from various live and dead leaves. Xylaria sp.1 was frequently encountered on 12 bleached portions (which were produced due to the selective decomposition of lignin) of dead leaves of broad-leaved deciduous tree species. The results suggest 13 14 that xylariaceous endophytes did not show host specificity and had a saprobic 15 phase on dead leaves in their life cycles and that Xylaria sp.1 was capable of 16 decomposing lignin in the field conditions.
- 17 **Keywords** diversity fungi lignin Xylariaceae

Introduction

3

7

8

9

10

11

12

13

14

15

16

17

1

2

4 Endophytic fungi are defined as those that can colonize internal plant tissues at

5 some time in their life without causing apparent harm to their host (Sieber 2007).

6 Endophytic fungi on leaves of forest trees play ecological roles as presumed

mutualists (Saikkonen 2007), latent pathogens (Sieber 2007), and saprobic

decomposers after leaf death (Osono 2006; Promputtha et al. 2007). Previous

studies have shown that a few groups of endophytic fungi in the Rhytismataceae

and Xylariaceae in Ascomycota take part in the decomposition of lignin (Osono

2002; Koide et al. 2005; Osono and Hirose 2010). As lignin is a major structural

component often limiting decomposition (Hirobe et al. 2004; Osono and Takeda

2005), these ligninolytic endophytes are of particular importance in terms of their

roles in carbon turnover and nutrient cycling in forest ecosystems and deserve

further studies on their ecology and functioning.

Osono and Hirose (2009) reviewed the ecology of endophytic fungi

associated with leaf litter decomposition and recognized two groups of ligninolytic

endophytes. The first is Rhytismataceous endophytes, which are relatively 1 2 host-specific, usually colonize dead leaves for less than one year, and cause lignin 3 decomposition in the initial stage of decomposition. The second is xylariaceous endophytes, which appear to have low host specificity and are found on leaves of 4 5 various tree species (Whalley 1985, 1996; Petrini and Petrini 1985; Petrini et al. 6 1995). Xylariaceous endophytes are primarily saprobic and persist until the late 7 stages of decomposition (Osono 2006). Osono and Takeda (2001) demonstrated 8 that an endophyte, Xylaria sp., was frequently isolated from bleached portions on dead leaves of Japanese beech (Fagus crenata), which were produced due to the 9 10 selective decomposition of lignin by the fungal colonizer. It is unclear, however, 11 whether the ligninolytic activity of xylariaceous endophytes occur on leaf litter of 12 other tree species with different leaf traits. Further studies are needed regarding 13 the biodiversity, host range, and functioning of xylariaceous endophytes 14 associated with leaf litter decomposition and, particularly, with lignin decomposition. 15

The purpose of the present study was to evaluate the diversity and ubiquity of xylariaceous endophytes in live and dead leaves of trees in a cool

16

temperate forest. Thus, we isolated xylariaceous endophytes from live and dead 1 2 leaves for a total of 94 tree species with one of four types of leaf traits (79 3 broad-leaved deciduous, 8 broad-leaved evergreen, 2 coniferous deciduous, and 5 coniferous evergreen species). The biodiversity of xylariaceous endophytes was 4 5 evaluated as the richness of operational taxonomic units (OTUs) examined with 6 phylogenetic analysis of the nucleotide sequence of the D1/D2 region of the LSU 7 rDNA of fungal isolates. Fungi in Xylariaceae have been extensively subjected to 8 molecular phylogenetic analysis (i.e., Lee et al. 2000; Davis et al. 2003; Okane et al. 2008; Peláez et al. 2008; Guedegbe et al. 2009) and are suitable for molecular 9 10 identification of fungal isolates obtained from live and dead leaves of different 11 host trees.

Materials and Methods

15 Study site

12

13

14

16

17 Leaf materials used for fungal isolation were collected in Ashiu Experimental

Forest of Kyoto University (35°18'N, 135°43'E, 355-660 m a.s.l.), Kyoto Prefecture, 1 2 central Japan. During the past 29 years, the mean annual temperature was 3 11.7°C and mean monthly temperature ranged from 0.4°C in January to 25.5°C in August at the office of the Ashiu Experimental Forest at 355 m a.s.l. The mean 4 5 annual precipitation during the past 29 years was 2353 mm. The study area is 6 covered with snow from December to April. The Ashiu Experimental Forest is in a 7 mountainous area, with natural stands of warm temperate forests dominated by 8 evergreen oaks Quercus salicina Bl. and Q. acuta Thunb. ex Murray. below approximately 600 m a.s.l., and natural stands of cool temperate forests 9 10 dominated by a deciduous beech, Fagus crenata Bl., and a deciduous oak, Q. 11 crispula Bl., above the warm temperate region. The area is thus an ecotone of two 12 climatic regions and hence has high richness of plant species, including 243 tree

14

13

15 Sample collection

16

17 Live and dead leaves of a total of 94 tree species in 38 plant families were

species recorded in the Ashiu Experimental Forest.

collected in the study site during the growing season from May to November in 1 2 2008 (Table 1). Broad-leaved deciduous tree species accounted for 84% (79 species) 3 of the 94 species examined. Live, healthy-looking leaves of 74 tree species were collected in May, August, and November, mostly in August. On each sampling 4 5 occasion, a total of 10 live, healthy-looking leaves were harvested for each tree 6 species from two randomly chosen trees, two branches per individual tree, at an 7 approximate height of 3-4 m. Two types of dead leaves were collected: those 8 bearing bleached portions on the surfaces and those that were not bleached. The 9 presence of bleached portions is associated with fungal colonization within leaf 10 tissues and decomposition of lignin (Osono 2007). In the present study, the 11 bleached portions were observed on dead leaves of 15 tree species, including 12 deciduous broad-leaved, 2 evergreen broad-leaved, and one evergreen coniferous 12 13 tree species (Table 1). The bleached dead leaves were collected in May and July. 14 Dead leaves without obvious bleached portions (denoted as nonbleached dead leaves) were collected for 63 tree species in May, June, and November. Bleached 15 16 and nonbleached dead leaves were collected from the forest floor for each tree 17 species on each sampling occasion. Sampling of a total of 1840 leaves was carried

- 1 out during the study period. The leaves were placed in paper bags and taken to
- 2 the laboratory. The leaves were processed within 24 hours after the collection.
- 3 One leaf disk was punched out from the central part of each sample leaf, avoiding
- 4 the primary vein, with a sterile cork borer (5.5 mm in diameter). A total of 10 leaf
- 5 disks were used for each tree species, each leaf type, and on each sampling
- 6 occasion, making a total of 1840 disks for the isolation of xylariaceous fungi.

8 Fungal isolation

7

9

10 A surface disinfection method (Kinkel and Andrews 1988) was used to isolate 11 xylariaceous fungi. The leaf disks were submerged in 70% ethanol (v/v) for 1 min to wet the surface, then surface-disinfected for 30 seconds in a solution of 15% 12 hydrogen peroxide, and then submerged again for 1 min in 70% ethanol. The disks 13 14 were rinsed with sterile, distilled water, transferred to sterile filter paper in Petri dishes (9 cm in diameter), and dried for 24 h to suppress vigorous bacterial growth 15 16 after plating (Widden and Parkinson 1973). The disks were placed in 9-cm Petri dishes containing lignocellulose agar (LCA) modified by Miura and Kudo (1970), 17

two disks per plate. LcA contains glucose 0.1%, KH₂PO₄ 0.1%, MgSO₄·7H₂O 0.02%, 1 2 KCl 0.02%, NaNO₃ 0.2%, yeast extract 0.02%, and agar 1.3% (w/v). Note that the modified LCA of Miura and Kudo (1970) does not contain lignin or other 3 recalcitrant compounds. The modified LCA was used because its low glucose 4 5 content suppresses the overgrowth of fast-growing fungal species (Osono and 6 Takeda 1999). Plates were incubated at 20°C in the dark and observed at 1, 4, and 7 8 weeks after surface disinfection. Putative xylariaceous fungi that produced on 8 the plates conidia and conidiophores of anamorphic Xylariaceae, such as 9 Xylocoremium, Geniculosporium, and Nodulisporium, and (or)dark 10 pseudosclerotinial plates in submerged hyphae were subcultured on fresh LCA to 11 establish pure cultures.

12

13

Determination of OTUs

14

15

16

17

The pure cultures obtained were identified by molecular analysis. When fungal structures such as spores and sporocarps were produced on the medium, their morphological characteristics were observed with a Nikon Optiphot

microscope (Nikon Inc., Tokyo, Japan). For molecular analysis, a small amount of 1 2 mycelial tips from each culture were picked, crushed in 24 µl of distilled water in 3 a tube, microwaved for 12 seconds, and used as templates for PCR. A reaction mixture (50 μl) containing 25 μl Qiagen GoTaq premix (Qiagen, Ontario, Canada) 4 5 and 10 pmol of each primer and distilled water was added to the templates. The 6 oligonucleotide primer-pair NL1 and NL4 (O'Donnell 1993) were used for PCR of 7 ribosomal DNA large subunit D1/D2 region. The reactions were initiated with 4 8 min of denaturation at 95°C, followed by 40 cycles of two-step PCR, consisting of 9 20 seconds at 94°C and 60 seconds at 56°C with a final extension for 10 min at 10 72°C on a GeneAmp 9700 thermal cycler (Perkin-Elmer Applied Biosystems, 11 California, USA). Amplification products were purified using a QIAquick PCR 12 Purification Kit (Qiagen, Ontario, Canada), and sequenced with a Big Dye 13 Terminator Cycle Sequencing FS Ready Reaction kit ver. 3.1 and an ABI PRISM 14 3100 genetic analyzer (Perkin-Elmer Applied Biosystems, California, USA). Both 15 strands of a fragment were sequenced. Sequence data sets were manually 16 truncated both ends and edited using the program BioEdit sequence editor 17 version 5.09 (Hall 1999). Homology searches were performed using each obtained

1 sequences data on a BLAST program at the National Center for Biotechnology 2 Information (NCBI). Neighbor joining trees were also constructed using MEGA version 5 (Tamura et al. 2011) with related sequences from NCBI database. 3 Isolates with more than 99% homology of sequence and within the same cluster 4 5 were treated as OTUs with tentative codes for data analysis. In the case that 6 obtained sequences contained polymorphic sites, they are treated as the same 7 OTUs with close relatives. 8 Statistical analysis 9 10 11 To assess the affinity of major fungal OTUs to leaf traits of host trees, Fisher's 12 exact probability test was performed to examine the differences in the number of tree species from which the major OTUs were isolated between broad-leaved and 13 14 coniferous trees and between deciduous and evergreen trees. 15 16 Results 17

1 Operational taxonomic units of xylariaceous fungi

A total of 326 isolates of xylariaceous fungi were isolated from live and dead leaves of 82 (87%) of the 94 tree species examined (Table 1). Xylariaceous fungi were isolated from live leaves of 74 (84%) of 88 tree species, from bleached dead leaves of 12 (80%) of 15 tree species, and from nonbleached dead leaves of 36

(57%) of 63 tree species (Table 1).

The fungal isolates were classified into 15 OTUs (Table 2). *Xylaria* sp.1 was the most dominant OTU (135 isolates), followed by *Nemania* sp. (123 isolates) and *Biscogniauxia* sp. (50 isolates). These three OTUs (308 isolates) accounted for 94% of the total number of isolates (326 isolates). The other 12 OTUs were isolated only infrequently, with the number of isolates ranging from 1 to 4.

The number of OTUs isolated from live leaves was 13, and those from bleached and nonbleached dead leaves were 3 and 5, respectively (Table 2).

Nemania sp. was the most dominant OTU on live leaves, followed by Xylaria sp.1 and Biscogniauxia sp. Xylaria sp.1 accounted for 93% of the total number of isolates from bleached dead leaves. Xylaria sp.1 was the most dominant OTU on

1 nonbleached dead leaves, followed by *Nemania* sp. and *Biscogniauxia* sp.

Xylaria sp.1, Nemania sp., and Biscogniauxia sp. were isolated from live leaves of 43 (49%), 51 (58%), and 24 (27%), respectively, of 88 tree species examined (Table 2). Xylaria sp.1 was isolated from bleached dead leaves of 12 tree species (Table 2). Xylaria sp.1, Nemania sp., and Biscogniauxia sp. were isolated from nonbleached dead leaves of 22 (35%), 26 (41%), and 5 (8%) of 63 tree species examined, respectively (Table 2). The number of tree species from which Xylaria sp.1, Nemania sp., and Biscogniauxia sp. were isolated from both of live and dead leaves (bleached or nonbleached) was 20, 16, and 1 species, respectively.

Patterns of occurrence of major OTUs

The number of tree species from which the three major OTUs were isolated was summarized in Table 3 with respect to four types of leaf traits (i.e., broad-leaved deciduous, broad-leaved evergreen, coniferous deciduous, and coniferous evergreen). When live leaves were considered, the number of tree species from which *Xylaria* sp.1, *Nemania* sp., and *Biscogniauxia* sp. were isolated was not

- 1 significantly different between broad-leaved and coniferous trees (P=0.25, P=0.31,
- 2 and P=0.17, respectively) or between deciduous and evergreen trees (P=0.17,
- 3 P=0.24, and P=0.15, respectively) (Table 3).
- 4 Xylaria sp.1 was isolated from bleached dead leaves of all of the 12
- 5 broad-leaved deciduous tree species examined, but not on those of broad-leaved or
- 6 coniferous evergreen tree species (Table 3). Nemania sp. was not isolated from
- 7 bleached dead leaves (Table 3). Biscogniauxia sp. was isolated from bleached dead
- 8 leaves of one broad-leaved deciduous tree species (Table 3).
- 9 When nonbleached dead leaves were considered, the number of tree species from which Xylaria sp.1 and Nemania sp. were isolated was not 10 11 significantly different between broad-leaved and coniferous trees (P=0.32 and P=0.24, respectively) or between deciduous and evergreen trees (P=0.34 and 12 P=0.17, respectively) (Table 3). Biscogniauxia sp. was isolated from nonbleached 13 dead leaves of 2 out of 58 broad-leaved tree species, which were significantly 14 (P=0.002) lower than in coniferous trees (three out of five tree species) (Table 3). 15 16 The number of tree species of which Biscogniauxia sp. was isolated from 17 nonbleached dead leaves was not significantly different between deciduous and

evergreen trees (P=0.06).

2

3

1

Discussion

4

5 In previous studies at the present study site, xylariaceous fungi were isolated 6 from live and dead leaves of two major tree species, Fagus crenata and Swida 7 controversa (Osono 2002, Osono et al. 2004). In the present study, 15 OTUs of 8 xylariaceous fungi were found from live and dead leaves of 94 tree species, 9 indicating that they are major components of endophytic and litter-inhabiting fungi in the cool temperate forest. The community structure of the fungal OTUs 10 11 was highly skewed, with the top three OTUs accounting for 94% of the total number of isolates (Table 2). In a similar study of endophytic Xylariaceae from 12 13 Thailand, Okane et al. (2008) isolated from live leaves of 25 tree species a total of 14 273 isolates that were assigned to 25 OTUs according to their 28S rDNA D1/D2 15 sequence. The top three OTUs with respect to the number of fungal isolates 16 accounted for 31% of the total number of isolates in the study of Okane et al. 17 (2008). Thus, the diversity of xylariaceous endophytes was lower in the cool

- 1 temperate forest in the present study than in the tropical forest of Okane et al.
- 2 (2008) in terms of the dominance of a few major OTUs and the lower prevalence of
- 3 rare OTUs.
- Xylaria sp.1 and Nemania sp. occurred on live and dead leaves of 4 5 multiple tree species (Table 3), regardless of leaf traits (i.e. broad-leaved vs 6 coniferous, deciduous vs evergreen), suggesting the low host specificity, which is 7 consistent with previous studies of xylariaceous endophytes (Petrini et al. 1995; 8 Cannon and Simmons 2002; Murali et al. 2007; Okane et al. 2008). Previous 9 studies have shown that *Xylaria* sp.1 was also isolated from live and dead twigs 10 (Fukasawa et al. 2009) and cupules (Fukasawa et al. 2012) of F. crenata, 11 indicating its low tissue specificity. Biscogniauxia sp. was isolated from nonbleached dead leaves more frequently (in terms of the number of tree species 12 isolated with respect to the total number of tree species examined) for coniferous 13 than for broad-leaved tree species (Table 3), but the number of coniferous tree 14 15 species examined was too low (i.e. five species) to be conclusive with the affinity of this OTU to the dead coniferous leaves. 16
- 17 Relating the endophytic fungal OTUs from live and dead leaves to their

fruiting bodies is needed to evaluate their ecology and life cycles. Unfortunately, 1 2 however, the teleomorphic states of the major OTUs in the present study have not 3 yet been collected at the study site, making it difficult to evaluate the ecology and life cycle of the leaf-associated xylariaceous fungi in detail. Only a few rare OTUs 4 5 have been phylogenetically related to teleomorphic states fruiting on woody 6 tissues (i.e., Xylaria hypoxylon and Hypoxylon fragiforme in Table 2). Thus, 7 further efforts are needed to search for fruiting bodies to identify the OTUs and to 8 clarify their ecology and host- and tissue-specificity at the study site. It might also 9 be important to take into consideration the possibility that the endophytic life stage of xylariaceous fungi is 'a dead-end' of the life cycle as it rarely ends with 10 11 sexual reproduction on the leaf. Alternatively, some xylariaceous endophytes with 12 Geniculosporium and Nodulisporium anamorphs can establish from conidia and grow and reproduce endophytically as anamorphic fungi (Rogers 1985). 13

The three major OTUs were isolated from not only live leaves but also bleached and nonbleached dead leaves of broad-leaved deciduous tree species (Table 2), indicating that these xylariaceous endophytes have a saprobic phase in their life cycles. The isolation of *Xylaria* sp.1 and *Nemania* sp. from both live and

14

15

16

dead leaves of the same tree species suggested that these OTUs could persist in 1 2 dead leaves from live leaves. Xylaria sp.1 was isolated from both bleached and 3 nonbleached dead leaves, whereas Nemania sp. and Biscogniauxia sp. were mostly isolated from nonbleached dead leaves (Table 2). Because the lignin 4 5 content is lower in bleached than in nonbleached portions (Osono 2007), Xylaria 6 sp.1 is probably capable of decomposing lignin more actively than the other two 7 OTUs. This is consistent with a pure culture test showing that *Xylaria* sp.1 8 contained isolates that decomposed lignin in *F. crenata* leaves more actively than 9 Nemania sp. (as Geniculosporium sp., Osono and Takeda 2002). However, we 10 cannot exclude a possibility that *Xylaria* sp.1 preferred bleached to nonbleached 11 portions as substrata for colonization.

Xylaria sp.1 was isolated from bleached dead leaves of deciduous broad-leaved trees but not from those of evergreen broad-leaved or coniferous trees, despite its occurrence on live and nonbleached dead leaves of these evergreen trees (Table 3). However, the number of evergreen tree species examined for bleached dead leaves in the present study was too low to determine whether Xylaria sp.1 was truly absent from bleached dead leaves of evergreen

12

13

14

15

16

- 1 trees. Further studies are needed to examine bleached dead leaves of evergreen
- 2 trees for the occurrence of xylariaceous fungi and to explore possible mechanisms
- 3 relating to the reduction of xylariaceous fungi in these leaves.

- 5 Acknowledgments We thank members of the Ashiu Experimental Forest of
- 6 Kyoto University for help with fieldwork; Dr. Norio Sahashi, Dr. Kunihiko Hata,
- 7 and Dr. Izumi Okane for useful discussions; and Dr. Elizabeth Nakajima for
- 8 critical reading of the manuscript. This work was supported by the Global
- 9 Environmental Research Fund (RF-086) of the Ministry of the Environment,
- 10 Japan, and by Global COE Program A06 of Kyoto University.

11

12

References

- 14 Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic
- fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210-220
- 16 Davis EC, Franklin JB, Shaw AJ, Vilgalys R (2003) Endophytic Xylaria
- 17 (Xylariaceae) among liverworts and angiosperms: phylogenetics,

- distribution, and symbiosis. Am J Bot 90:1661-1667
- 2 Fukasawa Y, Osono T, Takeda H (2009) Effects of attack of saprobic fungi on twig
- 3 litter decomposition by endophytic fungi. Ecol Res 24:1067-1073
- 4 Fukasawa Y, Tateno O, Hagiwara Y, Hirose D, Osono T. (2012) Fungal succession
- 5 and decomposition of beech cupule litter. Ecol Res 27:in press
- 6 Guedegbe HJ, Miambi E, Pando A., Houngnandan P, Rouland-Lefevre C (2009)
- 7 Molecular diversity and host specificity of termite-associated *Xylaria*.
- 8 Mycologia 101:686-691
- 9 Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and
- analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95-98
- Hirobe M, Sabang J, Bhatta BK, Takeda H (2004) Leaf-litter decomposition of 15
- tree species in a lowland tropical rain forest in Sarawak: decomposition
- rates and initial litter chemistry. J For Res 9:341-346
- 14 Kinkel LL, Andrews JH (1988) Disinfection of living leaves by hydrogen peroxide.
- 15 Trans Br Mycol Soc 91:523-528
- 16 Koide K, Osono T, Takeda H (2005) Colonization and lignin decomposition of
- 17 Camellia japonica leaf litter by endophytic fungi. Mycoscience 46:280-286

- 1 Lee JS, Ko KS, Jung HS (2000) Phylogenetic analysis of Xylaria based on nuclear
- 2 ribosoma ITS1-5.8S-ITS2 sequences. FEMS Microbiol Let 187:89-93
- 3 Miura K, Kudo M (1970) An agar-medium for aquatic hyphomycetes. Trans Mycol
- 4 Soc Japan 11:116-118 (in Japanese with English abstract)
- 5 Murali TS, Suryanarayanan TS, Venkatesan G (2007) Fungal endophyte
- 6 communities in two tropical forests of southern India: diversity and host
- 7 affiliation. Mycol Progr 6:191-199
- 8 O'Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW
- 9 (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation
- in fungal systematics. CAB International, Wallingford, UK, pp 225-233
- 11 Okane I, Srikitikulchai P, Toyama K, Læssøe T, Sivichai S, Hywel-Jones N,
- 12 Nakagiri A, Potacharoen W, Suzuki K (2008) Study of endophytic
- 13 Xylariaceae in Thailand: diversity and taxonomy inferred from rDNA
- sequence analyses with saprobes forming fruit bodies in the field.
- 15 Mycoscience 49:359-372
- Osono T (2002) Phyllosphere fungi on leaf litter of Fagus crenata: occurrence,
- 17 colonization, and succession. Can J Bot 80:460-469

- 1 Osono T (2006) Role of phyllosphere fungi of forest trees in the development of
- 2 decomposer fungal communities and decomposition processes of leaf litter.
- 3 Can J Microbiol 52:701-716
- 4 Osono T (2007) Ecology of ligninolytic fungi associated with leaf litter
- 5 decomposition. Ecol Res 22:955-974
- 6 Osono T, Takeda H (1999) A methodological survey on incubation of fungi on leaf
- 7 litter of Fagus crenata. Appl For Sci Kansai 8:103-108 (in Japanese with
- 8 English abstract)
- 9 Osono T, Takeda H (2001) Effects of organic chemical quality and mineral
- 10 nitrogen addition on lignin and holocellulose decomposition of beech leaf
- 11 litter by *Xylaria* sp. Eur J Soil Biol 37:17-23
- 12 Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse
- fungi in a cool temperate deciduous forest in Japan. Mycologia
- 14 94:421-427
- Osono T, Takeda H (2005) Decomposition of lignin, holocellulose, polyphenol and
- soluble carbohydrate in leaf litter of 14 tree species in a cool temperate
- 17 forest. Ecol Res 20:41-49

- 1 Osono T, Hirose D (2009) Ecology of endophytic fungi associated with leaf litter
- decomposition. In: Rai M, Bridge P (eds) Applied Mycology. CAB
- 3 International, Oxon, UK, pp 92-109
- 4 Osono T, Hirose D (2010) Colonization and lignin decomposition of pine needle
- 5 litter by *Lophodermium pinastri*. For Path 41:156-162
- 6 Osono T, Bhatta BK, Takeda H (2004) Phyllosphere fungi on living and
- 7 decomposing leaves of giant dogwood. Mycoscience 45:35-41
- 8 Peláez F, González V, Platas G, Sánchez-Ballesteros J, Rubio V (2008) Molecular
- 9 phylogenetic studies within the Xylariaceae based on ribosomal DNA
- 10 sequences. Fun Div 31:111-134
- 11 Petrini L, Petrini O (1985) Xylariaceous fungi as endophytes. Sydowia 38:216-234.
- 12 Petrini O, Petrini LE, Rodrigues KF. (1995) Xylariaceous endophytes: an exercise
- in biodiversity. Fitopathol Bra 20:531-539
- 14 Promputtha I, Lumyong S, Dhanasekaren V, McKenzie EHC, Hyde KD, Jeewon R
- 15 (2007) A phylogenetic evaluation of whether endophytes become
- saprotrophs at host senescence. Microb Ecol 53:579-590
- 17 Rogers JD (1985) Anamorphs of Xylaria: taxonomic considerations. Sydowia

- 2 Saikkonen K (2007) Forest structure and fungal endophytes. Fun Biol Rev 2:67-74
- 3 Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fun Biol
- 4 Rev 2:75-89
- 5 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5:
- 6 Molecular Evolutionary Genetics Analysis using maximum likelihood,
- 7 evolutionary distance, and maximum parsimony methods. Mol Biol Evol
- 8 28:2731-2739
- 9 Whalley AJS (1985) The Xylariaceae: some ecological considerations. Sydowia
- 10 38:369-382
- Whalley AJS (1996) The xylariaceous way of life. Mycol Res 100:897-922
- 12 Widden P, Parkinson D (1973) Fungi from Canadian coniferous forest soils. Can J
- 13 Bot 51:2275-2290

1 Osono et al. Table 1

Table 1 Tree species examined in the present study, month of collection in 2008, and the number of isolates of xylariaceous fungi on live leaves and bleached and nonbleached portions of dead leaves

					Bleache	hed portions		
			Live leaves		dead lea	ves	of dead leaves	
				Number		Number		Number
Tree species	Famil	Family ^a Abbr.		of isolates	Month of isolates		Month	of isolates
Broad-leaved, deciduous								
Actinidia arguta	At	Aa	A	0	-	-	-	-
Acer carpinifolium	Ac	Ac	A	2	-	-	N	0
Acer nikoense	Ac	Ae	A	2	-	-	-	-
Alnus firma	Be	Af	M, A, N	0, 7, 0	-	-	-	-
Actinidia polygama	At	Ag	A	2	-	-	N	1
Acer japonicum	Ac	Aj	A	4	-	-	N	4
Acer micranthum	Ac	Ak	A	1	-	-	-	-
Aralia elata	Ar	Al	A	1	-	-	-	-
Acer mono	Ac	Am	A	2	M	3	N	0
Acer nipponicum	Ac	An	A	3	-	-	-	-

$A can tho panax\ scia dophylloides$	Ar	Ap	A	0 -	- N	1
Akebia quinata	Lr	Aq	A	1 -		-
Acer rufinerve	Ac	Ar	A	3 M	4 N	1
Acer sieboldianum	Ac	As	A	4 M	1 N	0
Aesculus turbinata	Hi	At	A	1 M	2 N	0
Acer amoenum var. matsumurae	Ac	Ay	-		- N	1
Benthamidia cousa	Co	Bc	A	3 -	- N	3
Betula grossa	Be	Bg	M, A, N	1, 2, 7 M	2 N	1
Boehmeria spicata	\mathbf{Ur}	Bs	A	1 -		-
Clethra barvinervis	Er	Cb	A	3 -	- M, N	0, 0
Castanea crenata	Fa	\mathbf{Cc}	A	1 M	1 N	0
Corylus sieboldiana	Be	Ch	A	0 -		-
Carpinus tschonoskii	Be	Ci	A	8 -	- N	2
Cercidiphyllum japonicus	Cr	Cj	A	6 -	- M, N	0, 1
Carpinus japonica	Be	Ck	A	8 -	- N	4
Carpinus laxiflora	Be	Cl	M, A, N	0, 1, 4 M	3 N	0
Carpinus cordata	Be	Cs	A	4 -	- N	0
Clerodendrum trichotomum	Ve	Ct	A	0 -		-
Cladrastis sikokiana	Fb	Cy	A	3 -	- N	0
Deutzia crenata	Sx	Dc	A	3 -	- N	0
Eunomyces alatus f. subtriflorus	Ce	Ea	A	3 -	- N	1

Evodiopanax innovans	Ar	El	A	1 -	- N	0
Elliottia paniculata	\mathbf{Er}	Ep	-		- N	0
Fagus crenata	Fa	Fc	A	3 M	2 N	0
Fraxinus sieboldiana	Ol	Fs	A	5 -		-
Hydrangea hirta	Sx	Hh	A	2 -	- N	3
Hamamelis japonicus var. obtusata	На	Hj	A	4 -	- M, N	0, 3
Hydrangea petiolaris	Sx	Hр	A	1 -	- M, N	1, 1
Hovenia tomentella	Rh	Ht	-		- N	0
Hydrangea paniculata	Sx	Hy	A	4 -		-
Ilex macropoda	Aq	Im	A	3 -	- N	3
Juglans mandshurica var. sachaliensis	Ju	Jm	A	3 -		-
Kalopanax pictus	Ar	Kp	-		- M, N	2, 0
Lindera erythrocarpa	La	Le	A	3 -	- Jun, N	0, 0
Lyonia ovalifolia	\mathbf{Er}	Lo	A	0 M	3 N	2
Lindera triloba	La	Lt	A	2 -	- N	0
Lindera umbellata	La	Lu	A	2 -	- N	0
Mallotus japonicus	Eu	Mj	A	1 -	- N	6
Meliosma myriantha	Sa	Mm	A	0 -	- N	5
Magnolia obovata	Ma	Mo	A	3 M	3 N	0
Magnolia salicifolia	Ma	Ms	A	2 -	- M, N	1, 0
Malus tschonoskii	Ro	Mt	A	2 -	- N	0

Prunus grayana	Ro	Pg	A	6 -	- N	1
Pterostyrax hispida	St	Ph	A	0 -	- N	0
Pterocarya rhoifolia	Ju	\Pr	A	5 -	- M, N	0, 0
Populus sieboldii	Sl	Ps	A	5 -		-
Paulownia tomentosa	Pa	Pt	A	1 -		-
Prunus jamasakura	Ro	Py	A	5 -	- N	4
Quercus crispula	Fa	Qc	A	4 M	1 N	1
Quercus serrata	Fa	Qs	A	0 M	2 N	2
Rhus javanica var. roxburghii	An	Rj	A	2 -		-
Rhus trichocarpa	An	Rt	A	1 -		-
Sorbus alnifolia	Ro	Sa	A	1 -	- M, N	1, 0
Swida controversa	Co	Sc	A	1 -	- N	1
Schizophragma hydrangeoides	Sx	Sh	A	2 -		-
Styrax japonica	St	Sj	A	5 -		-
Sorbus commixta	Ro	Sn	A	1 -	- N	2
Styrax obassia	St	So	A	1 -	- N	0
Stachyurus praecox	Sp	Sp	A	3 -	- N	6
Symplocos chinensis	Sy	Ss	A	3 -	- N	7
Symplocos coreana	Sy	St	A	2 -		-
Ulmus parvifolia	Ul	Up	A	3 -	- N	1
Viburnum furcatum	Ca	Vf	A	3 -		-

Viburnum plicatum var. tomentosum	Ca	Vp	A	3 -	- M, N	0, 0
Viburnum wrightii	Ca	Vw	A	0 -		-
Wisteria floribunda	Fb	Wf	A	0 -		-
Weigela hortensis	Ca	Wh	A	4 -	- N	1
Zanthoxylum piperitum	Ru	Zp	A	0 -		-
Zelkova serrata	Ul	Zs	A	0 -	- N	0
Broad-leaved, evergreen						
Daphniphyllum macropodum var. humile	Da	Dm	M	4 -	- M	0
Eurya japonica	Th	Ej	A	2 -		-
Ilex pedunculosa	Aq	Ip	M	2 -		-
Ilex sugerokii	Aq	Is	A	2 -		-
Pieris japonica	Er	Pj	M	0 -	- M	0
Quercus acuta	Fa	Qa	-	- Jul	0 -	-
Quercus salicina	Fa	Ql	A	3 Jul	0 -	-
Trochodendron aralioides	Tr	Ta	M	2 -	- M	2
Coniferous, deciduous						
Larix gmelinii	Pi	Lg	A	0 -	- M, N	1, 0
Metasequoia glyptostroboides	Cu	Mg	A	2 -	- N	0
Coniferous, evergreen					-	-
Abies firma	Pi	Ai	-	- Jul	0 -	-
Chamaecyparis obtusa	Cu	Co	A	1 -		-

Cryptomeria japonica	Cu	Cr	A	1	-	M, N 1, 3
Picea abies	Pi	Pa	A	1		M 1
Pinus densiflora	Pi	Pd	A	3	-	M 1
Number of tree species examined		S	94	88	15	63
Number of leaves examined		184	10	940	150	750
Number of isolates of xylariaceous fungi		326		216	27	83
Number of tree species from which						
xylariaceous fungi were isolated		8	32	74	12	36
(% total number of tree species)		(87%	₆)	(84%)	(80%)	(57%)

^{1 &}lt;sup>a</sup> Tree family: Ac, Aceraceae; An, Anacardiaceae; Aq, Aquifoliaceae; Ar, Araliaceae; At, Actinidiaceae; Be, Betulaceae; Ca,

² Caprifoliaceae; Ce, Celastraceae; Co, Cornaceae; Cr, Cercidiphyllaceae; Cu, Cupressaceae; Da, Daphniphyllaceae; Er,

³ Ericaceae; Eu, Euphorbiaceae; Fa, Fagaceae; Fb, Fabaceae; Ha, Hamamelidaceae; Hi, Hippocastanaceae; Ju, Juglandaceae;

⁴ La, Lauraceae; Lr, Lardizabalaceae; Ol, Oleaceae; Pa, Paulowniaceae; Pi, Pinaceae; Rh, Rhamnaceae; Ro, Rosaceae; Ru,

⁵ Rutaceae; Sa, Sabiaceae; Sl, Salicaceae; Sx, Saxifragaceae; Sp, Stachyuraceae; St, Styracaceae; Sy, Symplocaceae; Th,

⁶ Theaceae; Tr, Trochodendraceae; Ul, Ulmaceae; Ur, Urticaceae; Ve Verbenaceae.

⁷ b Month: M, May; Jun, June; Jul, July; A, August; N, November.

Osono et al. Table 2

Table 2 BLAST search result of 15 operational taxonomic units (OTUs) of xylariaceous fungi on live leaves and bleached and nonbleached portions of dead leaves, and the number of tree species from which the 15 OTUs were isolated.

				Numb	Number of isolates					Numl	Number of tree species				
	Accession		Identity	Live	[216]	Dead	Dead leaves			Live	Live [88]		Dead leaves		
OTU	number	BLAST search result	(%)			Bleac	hed [27]	Nonblea	ched [83]			Bleached [15]		Nonbleached [63]	
Xylaria sp.1	AB686646	Xylariales cf. JP14-3, Q906954	99	68	(31%)	25	(93%)	42	(51%)	43	(49%)	12	(80%)	22	(35%)
Nemania sp.	AB669031	Fungal sp. mh337.6, GU552551	100	89	(41%)	0		34	(41%)	51	(58%)	0		26	(41%)
Biscogniauxia sp.	AB686647	Xylariaceae sp., GU048581	98	44	(20%)	1	(4%)	5	(6%)	24	(27%)	1	(7%)	5	(8%)
Annulohypoxylon sp.	AB669044	Annulohypoxylon moriforme, DQ840058	99	3	(1.4%)	0		1	(1.2%)	2	(2%)	0		1	(2%)
Daldinia sp.	AB669047	Daldinia childiae, EF562505	99	2	(0.9%)	0		0		2	(2%)	0		0	
Xylaria sp.2	AB686648	Fungal sp. mh1111.61, GU552542	99	2	(0.9%)	0		0		2	(2%)	0		0	
Rosellinia sp.	AB686649	Rosellinia corticium, DQ840078	99	2	(0.9%)	0		0		2	(2%)	0		0	
Xylaria hypoxyloln	AB686650	Xylaria hypoxylon, NG_027599	97	1	(0.5%)	0		0		1	(1%)	0		0	
Nodulisporium sp.	AB686651	Annulohypoxylon moriforme, DQ840057	99	0		1	(4%)	0		0		1	(7%)	0	
Hypoxylon cf. fragiforme	AB686652	Hypoxylon fragiforme, AY083829	99	0		0		1	(1.2%)	0		0		1	(2%)
Xylaria sp.4	AB686653	Fungal endophyte, EU687185	97	1	(0.5%)	0		0		1	(1%)	0		0	
Xylaria sp.3	AB686654	Xylariaceae sp., AB376751	98	1	(0.5%)	0		0		1	(1%)	0		0	
Xylaria sp.5	AB686655	Xylariales cf. JP14-3, GQ906954	94	1	(0.5%)	0		0		1	(1%)	0		0	

Xylaria sp.6	AB669070	Anthostomella leucospermi, EU552100	99	1	(0.5%)	0	0	1	(1%)	0	0
Xylariaceae sp.	AB669071	Xylariaceae sp., GU048581	95	1	(0.5%)	0	0	1	(1%)	0	0

Note: Total numbers of isolates or tree species examined are shown in square brackets, and the percentages relative to the total number of tree species are shown in parentheses.

1 Osono et al. Table 3

2

Table 3 Number of tree species from which the 15 OTUs of xylariaceous fungi and three major OTUs were isolated, as related to the life form of tree species.

	Total number	Xylariacea	Xylariaceae, <i>Xylaria</i> sp.1		<i>Nemania</i> sp.		Biscogniauxia sp.		
	of tree species	15 OTUs							
	examined								
Live leaves									
Broad-leaved, deciduous	75	63	(84%)	38	(51%)	43	(57%)	21	(28%)
Broad-leaved, evergreen	7	6	(86%)	3	(43%)	4	(57%)	1	(14%)
Coniferous, deciduous	2	1	(50%)	1	(50%)	1	(50%)	0	(0%)
Coniferous, evergreen	4	4	(100%)	1	(25%)	3	(75%)	0	(0%)
Bleached portions of dead	leaves								
Broad-leaved, deciduous	12	12	(100%)	12	(100%)	0	(0%)	1	(8%)
Broad-leaved, evergreen	2	0	(0%)	0	(0%)	0	(0%)	0	(0%)
Coniferous, evergreen	1	0	(0%)	0	(0%)	0	(0%)	0	(0%)
Nonbleached portions of de	ead leaves								
Broad-leaved, deciduous	55	31	(56%)	20	(36%)	25	(45%)	2	(4%)
Broad-leaved, evergreen	3	1	(33%)	1	(33%)	0	(0%)	0	(0%)
Coniferous, deciduous	2	1	(50%)	0	(0%)	0	(0%)	1	(50%)
Coniferous, evergreen	3	3	(100%)	1	(33%)	1	(33%)	2	(67%)

⁵ Note: No bleached portions of dead leaves were examined for coniferous deciduous tree species.