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Abstract. We prove that various GIT semistabilities of polar-
ized varieties imply semi-log-canonicity.

1. Introduction

For the study of the moduli of polarized varieties, Geometric Invari-
ant Theory [Mum65] (GIT, for short) is an important basis, because
it constructs the moduli spaces as quotient schemes of the Hilbert
schemes. In that theory, we must put restrictions on the objects to
classify, which we call stability, the GIT stability. It is a quite difficult
and interesting problem to explicitly understand the stability notion.

Let us recall that the compact moduli scheme of curves M̄g is
constructed in GIT by permitting ordinary double points (nodes) to
curves ([DM69], [KM76], [Mum77], [Gie82]), which is sometimes called
the Deligne-Mumford compactification. We note that semistable po-
larized curves have only nodal singularities.

In this paper, we give its higher dimensional generalization and
show that the general effect of singularities on stability is determined
by the discrepancy, an invariant of singularity which was developed
along the minimal model program. This is our new point of view.
Recall that the discrepancy is defined under the following conditions,
which ensure that the canonical divisor KX or the canonical sheaf ωX

is in a tractable class (cf. e.g., [Ale96]).

Definition 1.1. An algebraic scheme X is said to satisfy (∗) when
the following conditions hold.

(i) X is equidimensional and reduced.
(ii) X satisfies Serre’s S2 condition.
(iii) Codimension 1 points of X are Gorenstein.
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(iv) KX is Q-Cartier, in the sense that OX(nKX) := (ω⊗n
X )∨∨

is an invertible sheaf for some n ∈ Z>0, where F∨ :=
HomOX

(F ,OX).

Then, our Main result is the following.

Theorem 1.2. Let X be a projective scheme satisfying (∗) and L be
an ample line bundle on X. Then, if (X,L) is K-semistable, X has
only semi-log-canonical singularities.

We will also explain that Theorem 1.2 above should be the best
possible as we will see in the statements of Theorem 1.5 below.

As already mentioned, the definition of semi-log-canonicity is based
on the discrepancy. The theory of discrepancy originally stemmed out
of a necessity in the way of extending minimal models for surfaces by
the Italian school to higher dimensions after Mori [Mor82], as they
should be allowed to have some mild singularities. Indeed, it forms a
core notion in the minimal model program (the MMP, for short).

Along the development of the MMP, the semi-log-canonicity was
first introduced by Kollár and Shepherd-Barron [KSB88] for surfaces
and extended by Alexeev [Ale96] to higher dimensions. Their original
purpose was to construct the compactified moduli spaces for varieties
of general type not by GIT theory, but by MMP techniques. For
the case of curves, semi-log-canonical singularities are simply smooth
points or nodes. Semi-log-canonical surface singularities are classified
by Kollár-Shepherd-Barron [KSB88, Theorem (4.24)].

Now, let us explain the other side i.e., the stability notion. While
the GIT stability was originally intended to construct moduli spaces
as mentioned at the beginning, the K-(semi)stability is a version of
GIT-stability notion which was firstly introduced by Tian [Tia97] to
describe when a Fano manifold has a Kähler-Einstein metric. Subse-
quently, Donaldson [Don02] extended the notion to general polarized
varieties with an expectation of correspondence with the existence of
Kähler metrics whose scalar curvature are constant (cscK, for short).
We follow Donaldson’s formulation [Don02] in this paper. We note
that it is defined algebro-geometrically, although the introduction is
motivated by differential geometry.

Thus roughly speaking, our Main theorem 1.2 bridges in a fresh way,
these two theories in algebraic geometry, i.e., birational geometry and
GIT stability (in a broader sense). In addition, due to the conjectural
correspondence with metrics side, one could hope that stability or
moduli problems have further connections with differential geometry.

We should make some comments on Theorem 1.2.
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Firstly, we remark on the Fano case. In this paper, X is said to be
(∗)-Fano scheme if X is a projective scheme satisfying (∗) and −KX

is ample (we do not a priori assume normality of X). In this case, we
can prove the following stronger result by slightly different arguments.

Theorem 1.3. If X is a (∗)-Fano scheme as above and
(X,OX(−mKX)) is K-semistable with m ∈ Z>0, then X is log termi-
nal. (In particular, X should be normal).

Secondly, let us comment on other stability notions. Recall that
Mumford and Gieseker studied asymptotic (Chow and Hilbert) sta-
bilit ies, which were the original stability notions for polarized vari-
eties ([Gie82], [Mum77] etc). It is well known that these asymptotic
(Chow or Hilbert) semistabilities imply K-semistability (cf. [RT07,
section 3]). Furthermore, there are more stability notions introduced
recently by Donaldson ([Don10]), called K̄-stability and b-stability.
It seems that these two notions are expected to be equivalent at least
for smooth case, and we can see that K̄-semistability is also stronger
than K-semistability. Therefore, we have

Corollary 1.4. (i) Let X be a projective scheme satisfying (∗) and
L be an ample line bundle on X. Then, if (X,L) is asymptotically
(Chow or Hilbert) semistable, X has only semi-log-canonical singular-
ities.

(ii) Let X be a projective scheme satisfying (∗) and L be an ample
line bundle on X. Then, if (X,L) is K̄-semistable, X has only
semi-log-canonical singularities.

(iii)If X is a (∗)-Fano scheme and (X,OX(−mKX)) with m ∈ Z>0

is asymptotically (Chow or Hilbert) semistable or K̄-semistable, then
X is log terminal. (In particular, X should be normal).

Final but an important remark about Theorem 1.2 is that the fol-
lowing converse has already been proved for Calabi-Yau case ([Od09])
and canonically polarized case ([Od11]). In this sense, Theorem 1.2 is
the best possible as mentioned earlier.

Theorem 1.5. (i)([Od09]) A semi-log-canonical polarized variety
(X,L) with numerically trivial canonical divisor KX is K-semistable.

(ii)([Od11]) A semi-log-canonical (pluri)canonically polarized vari-
ety (X,OX(mKX)) with m ∈ Z>0 is K-stable.

We make a caution that, on the other hand, the singularities do not
determine stabilities in general, as it is well known that there are
smooth but not semistable polarized manifolds.

We also remark that it has been known for a few decades that the
asymptotic (semi)stability version of Theorem 1.5 does not hold (cf.
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[She83], [Od11]). The author supposes that this phenomenon ought to
be a major reason why the relation between discrepancy and stability
of polarized varieties has been unexpected so far.

The bare structure of the proof of Theorem 1.2 is that, assum-
ing non-semi-log-canonicity of X (i.e., X has “bad” singularities), we
construct a “de-stabilizing” one-parameter subgroup by making use
of a certain birational model of X and X × A1. On the way of the
proof, we define S-coefficient, which is an invariant of certain ideals
of X × A1. Very roughly speaking, to those ideals we associate the
one parameter subgroups.

The birational model of X which we shall use is the (relative)
semi-log canonical model whose existence has been conjectured in the
theory of the log minimal model program (LMMP, for short), at least
for normal case. The existence is recently verified in [OX11].

In our standpoint, Shah [Sha81] introduced our key invariant
S-coefficient for isolated singularities by an argument based on
Eisenbud-Mumford’s local stability theory [Mum77], and applied it
to give certain list of semistable surface singularities, which gave us
one of the major inspirations for Theorem 1.2.

Our paper is organized as follows.
In the next section, we will review the basic stability notions for

polarized varieties and some preparatory materials related to the log
minimal model program. In section 3, we will formulate an invariant of
polarized varieties (with an ideal of certain type attached), which we
call the S-coefficient, as a generalization of “aI” in [Sha81]. Actually,
the S-coefficient can be regarded as the leading coefficient of some
series of the Donaldson-Futaki invariants, which can be calculated by
formula 3.2 proven in [Od09], [Wan08]. After that, we give technical
details to the (birational geometric part of) proof of Theorem 1.2, 1.3
in the following sections.

Conventions. Throughout, we work over an algebraically closed field
k with characteristic 0.

A polarization means an ample invertible sheaf and a polarized
scheme means an algebraic scheme X equipped with an ample invert-
ible sheaf L. (X,L) always denotes a polarized scheme, and except
in subsection 2.1 and a tiny part of subsection 3.1, it is assumed to
satisfy (∗) as in the statement of Theorem 1.2. (For example, an ar-
bitrary reduced projective hypersurface, or more generally, a (global)
reduced complete intersection satisfies the conditions. )
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NN(X), NLC(X), NSLC(X) and NKLT(X) denote non-normal lo-
cus, non-log-canonical locus, non-semi-log-canonical locus, and non-
kawamata-log-terminal locus of X, respectively. Xν denotes the nor-
malization of a given variety X.

a(E;X) denotes the discrepancy of a divisor E over a normal variety
X and a(E;X,D) denotes the discrepancy of E over a normal pair
(X,D) (i.e., a pair of a normal variety X and its Weil divisor D with
Q-Cartier KX +D).
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2. Preliminaries

In this section, we review the basics for K-stability, discrepancy,
and log canonical model.

2.1. K-stability. The K-stability was introduced first, under differ-
ential geometric background, by Tian in [Tia97], and reformulated
and extended later by Donaldson [Don02]. Donaldson’s version of
K-stability and K-polystability have been slightly amended recently
by [LX11], while the semistability notion remained the same (see also
[Od12], [Stp11]). Recall that it is the motivation for introducing the
K-(semi, poly)stability to seek the GIT-counterpart of the existence
of special Kähler metric. Indeed, according to Professors Gang Tian



6 YUJI ODAKA

and Toshiki Mabuchi, the “K” in K-stability stands for the K-energy
(Mabuchi energy), a functional on the space of Kähler metrics whose
critical points are canonical Kähler metrics and at last the “K” in the
K-energy came from “K”ähler.

For the definition of the stability, we need the concept of “test
configuration” following Donaldson [Don02]. Our notation (and even
expression) mostly follows [RT07].

Definition 2.1. A test configuration (resp. semi test configuration)
for a polarized complete scheme (X,L) is a quasi-projective scheme
X with an invertible sheaf M on it with:

(i) a Gm action on (X ,M)
(ii) a proper flat morphism α : X → A1

such that α is Gm-equivariant for the usual action on A1:

Gm × A1 −→ A1

(t, x) 7−→ tx,

M is relatively ample (resp. relatively semi ample), and
(X ,M)|α−1(A1\{0}) is Gm-equivariantly isomorphic to (X,L⊗r)× (A1 \
{0}) for some positive integer r, called exponent, with the natural
action of Gm on the latter and the trivial action on the former.

Proposition 2.2 ([RT07, Proposition 3.7]). In the above situation, a
one-parameter subgroup of GL(H0(X,L⊗r)) is equivalent to the data
of a test configuration (X ,M) of (X,L) with the polarization M very
ample (over A1) and of exponent r for r ≫ 0.

In fact, let λ : Gm → GL(H0(X,L⊗r)) be a one-parameter subgroup.
Then, consider the natural action λ × ρ of Gm on (P(H0(X,L⊗r)) ×
A1,O(1)) as a polarized variety, where ρ is the multiplication action

on A1. Then the closure of the orbit X := ((λ× ρ)(Gm))(X × {1})
is a test configuration with the natural polarization O(1)|X and the
restriction of the natural action on (P(H0(X,L⊗r))×A1,O(1)). This
is called the DeConcini-Procesi family of λ by Mabuchi. The fact
that any (very ample) test configuration can be obtained in this way
follows from the fact that an arbitrary Gm-equivariant vector bundle
over A1 should be equivariantly trivial (cf. [Don05, Lemma 2]).

Therefore, the test configuration can be regarded as geometrization
of one-parameter subgroup.

Now, let us define the Donaldson-Futaki invariants for test con-
figurations whose positivity define K-stability. As a preparation,
let us note that the total weight of an action of Gm on some finite-
dimensional vector space will mean the sum of all weights in this
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paper. Here the weights mean the exponents of eigenvalues which
should be powers of t. Take a test configuration (X ,M) and sup-
pose that the exponent r is 1. Otherwise, we can similarly proceed by
considering (X,L⊗r) instead of (X,L). We denote the total weight
of the induced action on (α∗M⊗U)|0 by w(U) and dimX as n. It is
a polynomial of U of degree n + 1. On the other hand, we write
P (u) := dimH0(X,L⊗u). Let us take rP (r)-th power of the action
of Gm on M|0 and multiply suitable power of t so that the action
on the vector space (α∗M⊗r)|{0} would be in the special linear group
SL((α∗M⊗r)|{0}). Then, the corresponding normalized weight on
(α∗M⊗U)|0 is w̃r,Ur := w(u)rP (r)− w(r)uP (u), where u := Ur. It is

a polynomial of form
∑n+1

i=0 ei(r)u
i of degree n + 1 in u for u ≫ 0.

Further, the coefficients ei(r) are again polynomials of degree n + 1
in r for r ≫ 0 : ei(r) =

∑n+1
j=0 ei,jr

j for r ≫ 0. Since the weight
is normalized, en+1,n+1 = 0. en+1,n is called the Donaldson-Futaki in-
variant of the test configuration, which we will denote by DF(X ,M).
Note that (n + 1)!en+1(r)r

n+1 has meaning as the Chow weight of
X ⊂ P(H0(X,L⊗r)) with respect to the SL-normalization of the one
parameter subgroups associated to (X ,M⊗r) via Proposition 2.2 for
r ≫ 0 (cf. [Mum77, Lemma 2.11]).

For an arbitrary semi test configuration (X ,M) we can define
the (normalized) Chow weight or the Donaldson-Futaki invariant in
completely simlar way from the total weights of the induced Gm-
action on (α∗M⊗U)|{0} for U ≫ 0. Also note that the homogeneity
DF(X ,M⊗c) = c2n DF(X ,M) easily follows from the definition.

Now, we can recall the definition of K-stability as follows.

Definition 2.3 (cf. [Stp11], [Od12]). A test configuration (X ,L) is
said to be almost trivial if X is Gm-equivariantly isomorphic to the
product test configuration away from a closed subset of codimension
at least 2.

Definition 2.4. (i) A polarized complete scheme (X,L) is K-stable
(resp. K-semistable) if for any test configurations of (X,L) which
are not almost trivial, with exponent r, the leading coefficient en+1,n

of en+1(r) (the Donaldson-Futaki invariant) is positive (resp. non-
negative).

(ii) A polarized complete scheme (X,L) is K-polystable if it is K-
semistable and the Donaldson-Futaki invariant of a test configuration
(X ,M) is 0 if and only if X is isomorphic to X × A1 away from a
closed subset of codimension at least 2.
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Although we only use K-semistability in this paper, we make re-
marks on other notions. We should note that the original “K-
stability” of [Don02] is what is called “K-polystability” in [RT07]. We
follow the convention of [RT07] at this point. We further note that
it is possible to re-define asymptotic stability by the quantities in-
troduced above, associated to test configurations, due to Proposition
2.2.

About other stability notions, we only note that stablity notions
are related as follows, without giving their definitions and proofs. For
the details, we refer to [RT07] and [Don10].

Claim 2.5. (i) Asymptotically Chow stable ⇒ Asymptotically
Hilbert stable ⇒ Asymptotically Hilbert semistable ⇒ Asymp-
totically Chow semistable ⇒ K-semistable.

(ii) K̄-stable ⇒ K̄-semistable ⇒ K-semistable.

Hence, among these notions, K-semistability is the weakest notion.
It is the reason why Corollary 1.4 should follow from Theorem 1.2,
1.3.

2.2. Singularities via discrepancy. We will now explain the dis-
crepancy and some classes of mild singularities. Consult [KM98, sec-
tion 2.3] and [Koletc92, Chapter 12] for the details. Let us first treat
normal case. Let (X,D) be a normal pair, i.e., a pair of a normal va-
riety X and an effective Q-divisor D such that KX +D is Q-Cartier.
Let π : X ′ → X be a log resolution of D, i.e., π is a proper birational
morphism such that X ′ is smooth and π−1 Supp(D)∪E has a simple
normal crossing divisor support, where E is the exceptional divisor of
π. Then, we denote

KX′ − π∗(KX +D) =
∑
i

a(Ei; (X,D))Ei,

where a(Ei; (X,D)) ∈ Q and Ei run over the set of divisors of X ′ sup-
ported on the exceptional locus or the support Supp(π−1

∗ D) of π−1
∗ D,

the strict transform of D. We sometimes simply write a(Ei; (X,D))
as a(Ei;X) if D = 0, and write a(Ei) if the pair in concern is obvious
from the context.

The pair (X,D) is called log canonical (resp. kawamata log termi-
nal) if and only if a(Ei; (X,D)) ≥ −1 (resp. a(Ei; (X,D)) > −1) for
any Ei. These notions are independent of the choice of the log reso-
lution. We simply call X is log canonical (resp. log terminal) when
(X, 0) is log canonical (resp. kawamata log terminal).

The semi-log-canonicity is an extension to non-normal case of the
notion of log-canonicity. We introduce those notions without divisors,
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i.e. in non-log setting, at this stage of argument. (We will need
some log versions as well later in section 5, where we introduce those
definitions.)

LetX be a projective variety, which is reduced, equidimensional, Q-
Gorenstein, Gorenstein in codimension 1 and satisfies Serre condition
S2 (as we assumed). Let ν : Xν → X be the normalization morphism
and attach a conductor divisor cond(ν) on Xν which is defined by
KXν = ν∗KX +cond(ν). From the assumption, (Xν , cond(ν)) is a log
pair (i.e. KXν +cond(ν) is Q-Cartier). Then, the semi-log-canonicity
of X are defined simply as the log canonicity of the normalized pair,
(Xν , cond(ν)).

For curve case, the semi-log-canonicity is equivalent to that the
curve is nodal (or smooth). For surface case, that class of singulari-
ties is also classified by Kollár-Shepherd-Barron [KSB88]. For higher
dimensional case, it is well known that a semi-log-canonical variety has
only normal crossing singularity in codimension 1, so that repeatedly
taking general hyperplane section leads to a nodal curve.

2.3. Log canonical model. To construct “de-stabilizing” test con-
figurations for non-semi-log-canonical polarized varieties, we need a
birational model called (relative) log canonical model. The definition
is as follows.

Definition 2.6. Let (X,D) be a normal pair, i.e. X is a normal
variety attached with a Q-divisor such that KX +D is Q-Cartier. We
call that a birational projective morphism π : B → (X,D) gives a
(relative) log canonical model of (X,D) (or of X if D = 0) if with the
divisor Ered, which denotes the sum of π-exceptional prime divisors
with coefficients 1, the pair (B,Ered) satisfies

(1) (B,Ered) is a log canonical pair,
(2) KB + Ered is ample over X.

The existence is established in [OX11]. We used the variable B as
we shall use this regarding it as a certain blow up of X. Indeed, this
model is a log canonical model of a log resolution with a boundary
supported on the exceptional set in the sense of log minimal model
program.

3. The S-coefficients

In this section, we introduce the concept of S-coefficients which con-
trol asymptotic behaviors for Donaldson-Futaki invariants of certain
series of test configurations, and establish some basic properties.
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3.1. Review of the formula for Donaldson-Futaki invariants.
In this subsection, let us recall the formula for Donaldson-Futaki in-
variants we shall use from [Od09]. Note that a slightly different ver-
sion of the formula had been also proved independently by Xiaowei
Wang in [Wan08].

Firstly we define a class of ideals, which we shall use for our study of
stability. Let (X,L) be an n-dimensional polarized complete variety
(which is not necessarily normal).

Definition 3.1. A coherent ideal sheaf J of X × A1 is called a flag
ideal if J = I0+I1t+· · ·+IN−1t

N−1+(tN), where I0 ⊆ I1 ⊆ . . . IN−1 ⊆
OX is the sequence of coherent ideal sheaves . (It is equivalent to that
the corresponding subscheme is supported on the central fiber X×{0}
and is Gm-invariant under the natural action of Gm on X × A1.)

Let us introduce some notation. We set L̄ := p∗1L on X × P1

and its restriction L := p∗1L|(X×A1), where pi is the i-th projection
morphism from X × A1 or X × P1. Let us write the blow up B̄(:=
BlJ (X × P1)) → X × P1 or its restriction to B(:= BlJ (X × A1)) →
X×A1 by Π. Its natural exceptional divisor will be written as E , i.e.
OB(−E ′) = Π−1J . (We shall use the symbol (prime) ′ for denoting
exceptional divisors to indicate it they are exceptional divisors of (n+
1)-dimensional variety X × A1, not of X.)

Let us assume r is sufficiently large so that (Π∗L⊗r)(−E ′) is (rela-
tively) semi-ample (over A1). Consider the Donaldson-Futaki invari-
ant of the (semi) test configuration (B, (Π∗L)⊗r(−E ′)). Let us recall
our formula for that.

Theorem 3.2 ([Od09, Theorem 3.2]). Let (X,L) and B, J be as
above. And we assume that exponent r = 1. (It is just to make the
formula easier. For general r, put L⊗r and L̄⊗r to the place of L and
L̄. ) Furthermore, we assume that X is equidimensional, reduced,
satisfying S2 condition, whose codimension 1 points are Gorenstein
and having Q-Cartier canonical divisor KX and B is Gorenstein in
codimension 1. Then the corresponding Donaldson-Futaki invariant
DF((BlJ (X × A1),L(−E ′))) is

1

2(n!)((n+ 1)!)

{
−n(Ln−1.KX)((Π

∗L̄)(−E ′))n+1

+(n+ 1)(Ln)(((Π∗L̄)(−E ′))n.Π∗(p∗1KX))

+(n+ 1)(Ln)(((Π∗L̄)(−E ′))n.KB̄/X×P1)
}
.

In the above, the intersection numbers (Ln−1.KX) and (Ln) are
taken on X. On the other hand, KB̄/X×P1 := KB̄ − Π∗KX×P1 is
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an exceptional divisor on B̄ and thus (((Π∗L̄)(−E ′))n.Π∗(p∗1KX)) and
(((Π∗L̄)(−E ′))n.KB̄/X×P1) are intersection numbers taken on B̄.

We call the sum of first two terms the canonical divisor part since
they involve intersection numbers with KX or its pullback, and the
last term will be called the discrepancy term since it reflects discrepan-
cies over X. We remark that although not all semi test configurations
are of the form (B, (Π∗L)⊗r(−E ′)), it is sufficient for K-(semi)stability
to check the Donaldson-Futaki invariants of the special semi test con-
figurations ([Od09]).

3.2. S-coefficient as a leading coefficient of Donaldson-Futaki
invariants. We define the S-coefficient, the key invariant as follows.

Definition 3.3. Let us fix (X,L) in Theorem 3.2 above and fix a
flag ideal J . Suppose that B̄ is Gorenstein in codimension 1 so
that the canonical divisor class KB̄ is well defined. Then, the S-
coefficient for that flag ideal J is defined as an intersection number
(Ls.(−E ′)n−s.KB̄/(X×P1)) taken on B̄ and we denote it by S(X,L)(J ),
where s denotes the dimension of Supp(OX×A1/J ). We note that
homogeneity S(X,Lλ1 )(J λ2) = λs

1λ
n−s
2 S(X,L)(J ) follows from the defi-

nition.

The main motivation for above definition is the following meaning of
S-coefficient, as leading coefficient of Donaldson-Futaki invariants.

Proposition 3.4. Let (X,L) and J be as above. Then, the following
holds.

(i) The sequence of Donaldson-Futaki invariants DF(BlJ (X ×
A1),L⊗r(−E ′)) for r ≫ 0, forms a polynomial.

(ii) Its coefficient of rd is 0 for d > n+ s and equals to(
n
s

)
(Ln)

2(n!)2
S(X,L)(J )

for d = n+ s.
Hence, if S(X,L)(J ) < 0 for some flag ideal J , then (X,L) is not

K-semistable .

To prove Proposition 3.4 above and analyze the positivity of the
S-coefficients later, we shall use the following general properties of
intersection numbers. As it follows from a standard arguments, we
omit the proof. However, we give statements here for the readers’
convenience as it shall be a key for our estimation.

Lemma 3.5. Let X be an arbitrary n + 1-dimensional equidimen-
sional complete scheme, and π : B̄ → X a surjective, generically finite
morphism. Then
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(i)
(π∗D1. . . . .π

∗Ds.E
′
1. . . . .E

′
n+1−s) = 0

for arbitrary Cartier divisors D1, . . . , Ds on X , and arbitrary Cartier
divisors E ′

1, . . . , E
′
n+1−s with dim(π(∩Supp(E ′

l))) < s.
(ii)

(π∗D1. . . . .π
∗Ds.E

′
1. . . . .E

′
n+1−s) > 0

for arbitrary ample Cartier divisors D1, . . . , Ds on X , arbitrary ample
Cartier divisors E ′

1, . . . , E
′
n−s on B̄ and an arbitrary effective Weil

divisor E ′
n+1−s on B̄ with dim(π(E ′

n+1−s)) = s.

Proof of Proposition 3.4. Replacing L by L⊗r and L by L̄⊗r for the
formula 3.2, we have the formula of DF(BlJ (X × A1),L⊗r(−E ′)).
From that, Proposition 3.4 (i) easily follows.

Further, Lemma 3.5 (i) applied to π = Π: BlJ (X × P1) → X × P1

by taking Di := H × P1 where H ∈ |L⊗m| (m ∈ Z>0), E ′
i = E ′

for i ≤ n − s and E ′
n+1−s = KB̄/(X×P1), implies Proposition 3.4 (ii)

straightforward. �
3.3. S-coefficients and discrepancy. In this subsection, we shall
show a criterion on positivity of S-coefficients, which gives a relation
with discrepancy.

Let us assume, from now on, that X is an equidimensional re-
duced projective variety, satisfies S2 condition and whose codimension
1 points are Gorenstein. Thus we can define the Weil divisor class KX

which we assume to be Q-Cartier. If all codimension 1 points of B are
Gorenstein, we set KB̄/(X×P1) := KB̄ − Π∗(KX × P1) =

∑
a(E ′

i)E
′
i.

Proposition 3.6. Let X be as above and L be an ample line bundle
on X. Moreover, assume that there is a flag ideal J whose blow up B
is Gorenstein in codimension 1 as noted above. Furthermore, assume
that the discrepancies a(E ′

i) satisfy the following. a(E ′
i) ≤ 0 for all

the exceptional prime divisors E ′
i on B which dominate s (maximal)-

dimensional components of Supp(O/J ) and moreover there exists at
least one such i with a(E ′

i) < 0. Then, we have S(X,L)(J ) < 0.

Hence, by combining with Proposition 3.4, we have the following
criterion for when a polarized variety can be not K-semistable.

Corollary 3.7. Let X be as above and assume that there is a flag ideal
J whose blow up B is Gorenstein in codimension 1 and the discrep-
ancies a(Ei) satisfy the following. a(E ′

i) ≤ 0 for all the exceptional
prime divisors E ′

i on B which dominate s (maximal)-dimensional com-
ponents of Supp(O/J ) and moreover there exists at least one such i
with a(E ′

i) < 0. Then (X,L) is not K-semistable for an arbitrary
polarization L.
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Proof of Proposition 3.6. We have

S(X,L)(J ) := (Ls.(−E ′)n−s.KB̄/(X×P1))

= (Ls.(L̄⊗r − E ′)n−s.KB̄/(X×P1)).(1)

Indeed, the equality (1) follows from Lemma 3.5 (i) applied to π =
Π: BlJ (X × P1) → X × P1 by taking Di := H × P1 for i ≤ s + 1
where H ∈ |L⊗m| (m ∈ Z>0) and for i > s + 1, E ′

i = Π∗(H × P1) or
E ′

i = E ′ or E ′
i = KB̄/(X×P1).

Moreover, the last term (Ls.(L̄⊗r − E ′)n−s.KB̄/(X×P1)) is positive
due to Lemma 3.5 (ii) applied to Π: BlJ (X×P1) → X×P1 again by
taking, this time, Di := H×P1 for i ≤ s, E ′

i(i ≤ n−s) to be an ample
compactification of an ample divisor which belongs to |(Π∗L)⊗r(−E ′)|
on B to B̄ with r > 1, and E ′

n+1−s := KB̄/(X×P1). �

4. Normal case

As an application of the theory of S-coeffiecients prepared in the
previous section, we partially prove Theorem 1.2 for normal case
in this section. More precisely, let X be a normal variety of pure
dimension n, having Q-Cartier canonical divisor in this section.

Proof of Theorem 1.2 for normal X. Thanks to Corollary 3.7, it is
sufficient to construct a flag ideal J satisfying the following property.

Property 4.1. The blow up B of J is normal. Furthermore, if we let
KB/X×A1 =

∑
a(E ′

i)E
′
i, then we have a(E ′

i) < 0 for the discrepancy
for an arbitrary Π-exceptional divisor E ′

i.

We will construct such J in the following 2 steps. Without loss of
generality, we can assume that X is irreducible.

Step 1. Firstly, we construct a coherent ideal sheaf I of X, satisfying
the following property. We denote the blow up of X along I by
π : B = BlI(X) → X.

Property 4.2. The blow up B is normal. Furthermore, if let s be
dim(Supp(OX/I)), then, we have a(Ei;X) < −1 for the discrepancy
for an arbitrary π-exceptional divisor Ei.

We construct such I, using the (relative) log canonical model (cf.
subsection 2.3) as follows. Suppose π : B → X is the (relative) log
canonical model of X, which exists due to [OX11, Theorem1.1].
Then, we take the coherent ideal sheaf I := (π)∗OB

(
m(KB/X +Ered)

)
for sufficiently divisible m ∈ Z>0 and the total exceptional divisor
Ered, then BlI(X) ≃ B. Therefore, this I satisfies Property 4.2.
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Step 2. Next step starts with taking I constructed in the previous
step. Using this, we will construct the flag ideal J satisfying Property
4.1 as follows. From the construction, we have dim(Supp(OX/I)) ≤
dim(X) − 2. Let us take sufficiently divisible positive integers m,N

and let us define J := (I + (tm))N where the overline denotes the
integral closure of the coherent ideal. Since it is an invariant ideal
with respect to the natural Gm action on X × A1, J is a flag ideal
as well. We note that C := BlI+(t)(X × A1) is the deformation to the
normal cone (cf. [Ful84], [RT07]) but simply taking it is not sufficient
for our purpose in general. Geometrically speaking, to take I+(tm) as
above, instead of the simplest I+(t), corresponds to take base change
of C by m-th roots of t (i.e. s 7→ t := sm) and B := BlJ (X × A1) is
the normalization of the base change (cf. [Vas05]).

Let us think of the more detailed geometric structure of the defor-
mation to the normal cone C and its modification B. We know that
its central fiber consists of two parts: the strict transform of X ×{0}
canonically isomorphic to B = BlI(X) (we will identify them from
now on), and the exceptional divisors F ′

i which intersect as F ′
i∩B = Ei

whose generic points ηi are regular. Indeed, étale locally we can write
t = xyci with étale local coordinates (i.e., regular parameters) x, y
such that (x = 0) corresponds to B and (y = 0) corresponds to F ′

i .
Based on the above facts, we obtain an étale local description of

B → C explicitly around the generic point ηi of F
′
i ∩B as follows. We

can take an étale local coordinate system (u, y, z1, · · · , zn−2, s) of B
around ηi, and that of C: (x, y, z1, · · · , zn−2, t) around the fiber of ηi
which are connected by the following equations. Here, t denotes the
original coordinate of C corresponding to the A1 direction.

x = uci , t = sm.

We denote the preimage of F ′
i by E ′

i, which is irreducible. Then, from
the above local description, it directly follows that:

(2) a(E ′
i;X × A1) = bi

(
a(Ei;X) + 1

)
,

where each bi :=
m
ci

is a positive integer as m is sufficiently divisible.

Therefore, a(E ′
i;X×A1) < 0 follows from Property 4.2 in the previous

step of construction. This completed the proof of Theorem 1.2 for
normal varieties’ case.

�

5. Non-normal case

To give a proof of the main theorem 1.2 in full generality, we in-
troduce a non-normal generalization of the (relative) log-canonical
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model, which we used in the previous section for normal case. A
reduced equidimensional variety X is called demi-normal if X is S2,
whose codimension 1 points are regular or ordinary nodes.

Definition 5.1. Let X be a demi-normal projective variety. We call
a biratonal projective morphism π : B → X a (relative) semi-log-
canonical model if π is isomorphic over open locus of X with com-
plement’s codimension greater than 1, and satisfies the following two
conditions. Here, Ered denotes the sum of π-exceptional prime divisors
with coefficients 1.

(1) (B,Ered) is a semi-log-canonical pair.
(2) KB + Ered is ample over X.

The existence of such models for any X is again proven in [OX11,
Corollary 1.3]. Given this birational model, the proof of Theorem 1.2
below is similar to the case where X is normal.

Proof of Theorem 1.2. Take the (relative) semi-log-canonical model
π : B → X of X, which exists due to [OX11, Corollary 1.3]. Here,
we note that all the generic points of π-exceptional divisors are reg-
ular, by the definition of the model. Then, if we apply the neg-
ativity lemma [KM98, Lemma (3.39)] to these normalizations, we
have ai < −1 for any i, where KB/X =

∑
aiEi. Therefore, if we

take I := π∗(ω
[l]
B/X(lE))∗∗ with sufficiently divisible positive integer l,

where Ered :=
∑

Ei denotes the total exceptional divisor of π, it
would be a coherent ideal sheaf by Serre’s S2-condition of X. Further,
it satisfies BlI(X) ∼= B by the relative ampleness of KB/X + Ered.

Let us consider a flag ideal J ′ = I +(tm) on X ×A1 for sufficiently
divisible positive integer m, its blow up C = BlJ ′(X × A1) and its
normalization Cν → C. We denote Π: Cν → Xν × A1 the associated
morphism. We can prove KCν − Π∗(KXν × A1 + cond(ν) × A1) =∑

a′iH
′
i with a′i = bi(ai + 1) < 0 where bi are some positive integers

for each exceptional divisor H ′
i and cond(ν) is the conductor divisor

of the normalization. The proof is in a completly similar manner as
in the previous section, by taking (Xν , cond(ν)) instead of X with the
normality assumption.

We use the partial normalization B of C which was introduced
in the proof of [Od09, Proposition 3.8]. The definition is B :=
SpecOC

(i∗OX×(A\{0}) ∩ OCν ), where i : X × (A1 \ {0}) ↪→ X × A1 is
the open immersion. Let f be the associated morphism from Cν to
B. Completely similarly as we argued in the former half of Step 2
of the previous section, we can take a flag ideal J whose blow up is
Π: B = BlJ (X × A1) → X × A1. Let us recall the following lemma.
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Lemma 5.2 ([Od09, Lemma 3.9]). The morphism f : Cν → B is an
isomorphism over an open neighborhood of the generic points of the
central fiber.

Thus, similarly as in the comparison of discrepancies (2), we have
KB/X×A1 =

∑
a′iE

′
i with a′i = bi(ai + 1) < 0 where bi are the positive

integers introduced above, and E ′
i is the strict transform of H ′

i.
Therefore, we complete the proof Theorem 1.2 thanks to Corollary

3.7.
�

6. Fano case

In this section, we prove Theorem 1.3.

proof of Theorem 1.3. In this section we do not use the notion of S-
coefficients but the proof is done by analyzing the formula for the
Donaldson-Futaki invariants 3.2 more directly.

Let us take a flag ideal J := (I + (t))N , where I ⊂ OX corresponds
to the reduced subscheme supported on NN(X), the non-normal lo-
cus of X, and N is a sufficiently divisible positive integer. Here,
we do not take parameter m into account. We note that NN(X)
is purely codimension 1 in X and their generic points are ordi-
nary double points. In the case of curves (i.e., dim(X) = 1), this
means X should be nodal. Consider the (semi) test configuration
of the blow up type (B, (Π∗L)⊗r(−E ′)) for that flag ideal J as we
did. Then, the S-coefficients become 0 and the leading coefficients
of DF(B, (Π∗L)⊗r(−E ′)) with respect to the variable r has the same
signature as ((Π∗L̄)n−1.E ′2). This can be shown to be negative by
cutting X for s := dim(Supp(OX×A1/J )) = n − 1 times by general
hypersurface sections in |L⊗m| for m ≫ 0, reducing to the n = 1 case.

Thus, we can assume that X is normal. Let us assume that X is
log canonical but not log terminal (i.e., strictly log canonical) and
derives a contradiction. In the sense of log minimal model program, a
log resolution with kawamata-log-terminal boundary (X̃, (1− ϵ)Ered)
with 0 < ϵ ≪ 1 should have a log canonical model B over X, by
[BCHM09, Theorem 1.2]. Note that B should be log terminal and so
the morphism B → X is not isomorphism, which is again a blow up
of certain coherent ideal sheaf I. We further remark that the model of
subsection 2.3 corresponds to the ϵ = 0 case. Similarly as in section 4,
we construct a flag ideal J := (I + (tm))N where m,N are sufficiently
divisible positive integers, and its blow up B := BlJ (X ×A1). Then,
KB/X×A1 = 0 so that the discrepancy term vanishes.
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On the other hand, as s < n, the canonical divisor part of the for-
mula 3.2 is negative by [Od11, proof of Theorem 2.13]. Hence, (X,L)
should be not K-semistable. This completes the proof of Theorem 1.3.

�
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