1	Effects of 24-week add-on treatment with ciclesonide and montelukast on small airways
2	inflammation in asthma
3 4 5 6 7	*Hitoshi Nakaji ^{1,2} , *Guergana Petrova ¹ , Hisako Matsumoto ¹ , Toshiyuki Iwata ¹ , Isao Ito ¹ , Tsuyoshi Oguma ¹ , Hideki Inoue ¹ , Tomoko Tajiri ¹ , Tadao Nagasaki ¹ , Yoshihiro Kanemitsu ¹ , Akio Niimi ^{1,3} , Michiaki Mishima ¹
8 9	¹ Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
10	² Department of Respiratory Medicine, Wakayama Red Cross Hospital, Wakayama, Japan
11 12	³ Division of Respiratory Medicine, Department of Medical Oncology and Immunology, Nagoya City University School of Medical Sciences, Nagoya, Japan
13	* HN and GP equally contributed to this study
14	Trial registration; Registry ID UMIN000001083
15	
16	Corresponding author: Hisako Matsumoto, MD, PhD
17	Department of Respiratory Medicine
18	Postgraduate School of Medicine, Kyoto University
19	54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
20	Telephone: +81-75-751-3830; Fax: +81-75-751-4643
21	E-mail: <u>hmatsumo@kuhp.kyoto-u.ac.jp</u>
22	
23	1

24 Authors' contributions

25 HN recruited and managed the patients, collected, analyzed and interpreted the data, and

26 prepared the manuscript. GP collected, analyzed and interpreted the data, and wrote the draft.

- 27 HM conceived the study, recruited and managed the patients, collected, analyzed and interpreted
- the data, and revised the manuscript. TI collected and analyzed data and prepared the part of the
- 29 draft. AN and II recruited the patients, collected the data, and contributed to the edition of the
- 30 manuscript. TO and HI performed IOS measurements and collected the data and prepared the
- 31 part of the draft. TT, TN, and YK measured exhaled nitric oxide and analyzed and interpreted the
- 32 data, and prepared the part of the draft. MM contributed to the discussion of the data and critical
- 33 revision of the manuscript.

35 Abstract

Background: Eosinophilic inflammation of the small airways is a key process in asthma that
often smolders in treated patients. The long-term effects of add-on therapy on the persistent
inflammation in the small airways remain unknown.

39 **Objective:** To examine the effects of add-on therapy with either ciclesonide, an inhaled

40 corticosteroid with extrafine particles, or montelukast on small airway inflammation.

41 Methods: Sixty patients with stable asthma receiving inhaled corticosteroid treatment were

42 enrolled in a randomized, open-label, parallel comparison study of 24-week add-on treatment

43 with ciclesonide or montelukast. Patients were randomly assigned to 3 groups: ciclesonide (n =

44 19), montelukast (n = 22) and no add-on as controls (n = 19). At baseline and at weeks 4, 12 and

45 24, extended nitric oxide analysis; pulmonary function tests, including impulse oscillometry;

46 blood eosinophil counts; and asthma control tests (ACTs) were performed.

Results: A total of 18 patients in the ciclesonide group, 19 in the montelukast group and 15 in 47 the control group completed the study and were analysed. With repeated-measures analysis of 48 variance, ciclesonide produced a significant decrease in alveolar nitric oxide and a significant 49 improvement in ACT scores over time. Montelukast produced significant decreases in alveolar 50 51 nitric oxide concentrations and blood eosinophil counts over time and slightly improved ACT scores, whereas no such changes were observed in the control group. Alveolar nitric oxide 52 concentrations with ciclesonide and reactance area at low frequencies with montelukast produced 53 54 greater improvements over time compared with control.

55 Conclusions: Ciclesonide add-on therapy and montelukast add-on therapy may act differently,

56 but both separately can improve small airway abnormalities and provide better asthma control.

57

58 Funding; funded by none

- 60 Key words: add-on treatment, alveolar nitric oxide, asthma control, ciclesonide, montelukast,
- 61 small airways
- 62
- 63

64 Introduction

Asthma is a chronic inflammatory disease of the airways characterized by variable, recurring
symptoms and reversible airflow obstruction. The immunohistopathologic features include
infiltration of eosinophils and lymphocytes, mast cell activation and epithelial cell injury. To
date, pathological ^{1, 2}, physiologic ³ and radiologic findings ⁴ have provided sufficient evidence
to support not only large but also small airways involvement in inflammation and airflow
obstruction, particularly in patients with severe asthma^{5, 6}.

Recently, it was found that eosinophilic inflammation of the small airways could be 71 assessed by determining alveolar nitric oxide concentrations^{7, 8}. Small airway inflammation as 72 assessed by alveolar nitric oxide concentrations is increased in patients with refractory asthma⁸ 73 and those with nocturnal asthma⁹ and is associated with disease severity^{10, 11} and small airways 74 dysfunction¹¹. Of note, 20% of asthmatic patients have increased alveolar nitric oxide 75 concentrations despite treatments with inhaled corticosteroids (ICSs) and long-acting β_2 agonists 76 ¹². Alveolar nitric oxide concentrations can also predict a future risk of disease exacerbation ¹³. 77 78 These findings suggest that, even in apparently stable patients taking ICSs, additional treatment targeting the small airways may lead to reaching total asthma control. 79

Few studies have evaluated the changes in alveolar nitric oxide concentrations based on either an uncorrected ⁷ or corrected ¹⁴ model of add-on medication for persistent inflammation of the small airways. Previous studies found that oral prednisolone ¹⁰, but not double doses of ICSs,⁸ could decrease alveolar nitric oxide concentrations. These results suggest that alveolar nitric oxide concentrations may be resistant to a simple ICS dose elevation. In steroid-naive patients, however, extrafine particle hydrofluoroalkane–ciclesonide resulted in decreased alveolar nitric oxide concentrations ¹⁵ and hydrofluoroalkane–beclomethasone propionate

87	improved peripheral airway dysfunction ¹⁶ . Collectively, an extrafine particle ICS is expected to
88	decrease alveolar nitric oxide concentrations when they are used as an add-on medication.
89	Leukotriene receptor antagonists (LTRAs) that are administered systemically are another
90	medication that are supposed to decrease alveolar nitric oxide concentrations. Treatment with
91	montelukast for 4 weeks improved small airway obstruction in steroid-naive patients, which
92	resulted in a decrease in regional air trapping ¹⁷ . So far published study data of an add-on LTRA
93	to ICS therapy for 3 to 8 weeks with regard to alveolar nitric oxide concentrations have been
94	conflicting ^{18,19} . These effects require confirmation with a longer-term study.
95	For this study, we hypothesized that prolonged add-on therapy to the ICS treatment with
96	either ciclesonide or montelukast would have beneficial effects on the persistent inflammation of
97	the small airways and would improve pulmonary function. To test this hypothesis, our primary
98	objectives were to examine the effects of this add-on therapy on alveolar nitric oxide
99	concentrations and to compare its effects on small airways in patients with stable asthma who
100	had not been previously treated with extrafine particle ICSs or LTRAs.

101 Methods

The full details of the study methods are given in the eMethods. In brief, adult patients with 102 103 stable asthma who regularly visited our outpatient asthma clinic were enrolled from April 2008 to August 2011. Asthma was diagnosed according to American Thoracic Society criteria²⁰. 104 105 Patients were included if they were classified as being in treatment steps 2 to 5 of ICS treatment according to the Global Initiative for Asthma guidelines ²¹. These patients had no exacerbations 106 3 months before enrollment, had alveolar nitric oxide concentrations of 5.0 ppb or higher, and 107 108 were either never-smokers or ex-smokers who had smoked fewer than 5 pack-years and had stopped more than 1 year before. The threshold level for uncorrected alveolar nitric oxide 109 concentrations was set at 5.0 ppb; this value was the average minus 1 SD of uncorrected alveolar 110 nitric oxide concentrations of 70 patients with asthma taking ICSs in our previous study ²². 111

Exclusion criteria were current or previous use of extrafine particle ICSs or LTRAs.
Patients were also excluded if, during the study period, any adverse effects of the add-on therapy
or asthma exacerbations, including mild exacerbations, defined as an increased need for rescue
use of short-acting β₂- agonists, were noted.

This study was approved by the ethics committees of our institute and was registered in
UMIN Clinical Trials Registry (Registry Identified UMIN000001083). Written informed consent
was obtained from all participants.

119

120 Design and Measurements

This was a randomized, open-label, parallel comparison study of 24-week add-on
treatment with either inhaled ciclesonide or montelukast. Patients were randomly assigned to 3
treatment groups: inhaled ciclesonide, 400 µg once daily add-on (ciclesonide group);

124	montelukast, 10 mg once daily add-on (montelukast group); and control group, who were taking
125	current medication only. At weeks 0 (baseline), 4, 12, and 24 (end of study period) the patients
126	underwent extended nitric oxide analysis and pulmonary function tests, including tests with an
127	impulse oscillometry system (IOS), spirometry, and a nitrogen single-breath wash out test. At the
128	same time points, patients completed an asthma control test (ACT) questionnaire comprising 5
129	questions with a best possible score of 25 23 and were given a rhinitis symptom score (RSS), a
130	self-assessment questionnaire comprising 4 questions, the responses to which were ranked on a
131	Likert-type scale with a maximum of 5 points per answer. The RSS was determined based on the
132	Japanese Guideline for Allergic Rhinitis (best score, 20) ²⁴ (eTable 1).
133	At the start and end of the study period, blood samples were obtained for blood
134	eosinophil counts and serum high sensitivity C-reactive protein ²⁵ , serum eosinophil cationic
135	protein, ²⁶ and serum YKL-40, a chitinase like protein ²⁷ . Blood samples for eosinophil cationic
136	protein determinations were collected in SST tubes (Becton Dickinson, Mountain View,
137	California) and were processed as previously described ²⁶ . YKL-40 levels were determined using
138	an enzyme-linked immunosorbent assay kit (Quidel, San Diego, California) following the
139	manufacturer's instructions ²⁷ .

Nitric oxide levels were determined with a chemiluminescence analyzer (NOA 280;
Sievers, Boulder, Colorado) according to current guidelines, and as previously described alveolar
nitric oxide concentrations are provided as noncorrected ⁷ and corrected values using a trumpetshaped model with axial back diffusion (eMethods) ¹⁴.
After nitric oxide measurements, patients underwent prebronchodilator and

postbronchodilator (ie, inhalation of 200 µg of salbutamol) pulmonary function tests.

146	Spirograms were obtained as recommended by the American Thoracic Society/European
147	Respiratory Society ²⁸ . A nitrogen single-breath washout test was performed only before the
148	inhalation of salbutamol to assess ventilation inhomogeneity by measuring the slope of phase 3
149	of the nitrogen washout curve (ΔN_2).
150	Respiratory impedance was determined by IOS using a Jaeger MasterScreen, IOS^{TM}
151	(Erich Jaeger, Hoechberg Germany) that met standard recommendations (eMethods). ^{16, 22}
152	
153	Statistical analysis
154	For sample size determinations, we originally sought to enroll 90 patients based on previous
155	findings ^{15, 17, 19} . However, as described in the "Results" section, we decided to stop patient
156	enrollment at 60 because of the more frequent occurrence of exacerbations in the control group,
157	although these were mild.
158	Statistical analysis used JMP 6.00 (SAS Institute Inc., Cary, North Carolina) on a per-
159	protocol basis. For non-normally distributed results, comparisons were made by the Kruskal-
160	Wallis test, Fisher exact test or Wilcoxon signed-rank test as appropriate. For normally
161	distributed results, comparisons were made by analysis of variance (ANOVA) and the paired t-
162	test. Two-way repeated-measures ANOVA was used to assess the variations among the 3
163	treatment modalities and at different time points. For cases with unequal variations in the
164	treatment modalities, only 1-way repeated-measures ANOVA within 1 treatment group was used.
165	For correlation analysis, the Spearman rank-correlation test was used. Data are expressed as
166	mean \pm SD. P \leq 0.05 were considered statistically significant.
167	

168 Results

169 Enrollment, Dropout, and Exacerbation Rates and Baseline Characteristics

Sixty asthmatic patients were enrolled in this study and randomly assigned to the groups: 170 19 in the ciclesonide group, 22 in the montelukast group, and 19 in the control group (Fig 1). The 171 172 reasons for patient dropout were as follows: in the ciclesonide group, 1 patient had a possible adverse effect (urticaria); in the montelukast group, 3 patients had possible adverse effects (2 173 experienced mild gastrointestinal discomfort and they preferred to discontinue use of the 174 medication and 1 patient had mildly elevated transaminase levels); and in the control group, 3 175 176 had mild asthma exacerbations and they preferred to intensify medications and 1 patient discontinued ICS treatment following a general practitioner's advice. As a result 18 patients in 177 the ciclesonide group, 19 in the montelukast group, and 15 in the control group completed the 178 179 study and were analyzed thereafter (Table 1). For these patients, adherence to the add-on and current medications was satisfactory, which was confirmed by 2 of the authors (H.N. and H.M.) 180 on each visit by checking the residual number of medications. 181 182

When the exacerbation frequencies were compared between the 19 patients in the control group and the 41 patients in the add-on therapy groups and assuming that the 5 patients who dropped out for reasons other than exacerbation would complete the protocol without exacerbation, the control group had a significantly higher rate of exacerbation (p = 0.03; by Fisher exact test). The baseline patient characteristics, ICS doses, and biomarkers, including fractional exhaled nitric oxide (FeNO) and alveolar nitric oxide concentrations, were not significantly different among the 3 patients who later experienced mild exacerbations and the other 57 patients.

190

191 ACT scores and RSSs

192 By 1-way ANOVA, there was a significant improvement in ACT scores during the treatment period within the ciclesonide group (p = 0.02; Fig 2), and there was a trend for improvement 193 within the montelukast group (p = 0.08). When subscores for the ACT components were 194 separately analyzed in the ciclesonide group, subscores for ACT question 3 concerning nocturnal 195 196 symptoms and question 5 for self-rating were marginally and insignificantly improved over time (p = 0.05 and p = 0.06, respectively). Because of the unequal variations among the 3 treatment 197 modalities, we did not conduct 2-way ANOVA for the ACT scores. Details on ACT scores 198 199 across the treatment steps are presented in eTable 2. Among the 3 groups, neither the proportions of patients with allergic rhinitis nor their 200

baseline RSSs differed. However, a significant difference was seen in the time trends for RSS among the 3 treatment modalities (p = 0.004; eFig 1); in particular, using 2-way ANOVA, significant differences were seen for the symptom of nasal obstruction (p = 0.046). When comparing 2 different treatment modalities in a post hoc analysis, the montelukast group exhibited a significantly better time trend for the RSS than the control group (p < 0.001) and a trend for better scores than the ciclesonide group (p = 0.07; eFig 1). A significant increase in RSS over time was found only in the montelukast group (p < 0.001, by 1-way ANOVA).

There were no associations between changes in ACT or RSS from baseline to the end of the treatment period and changes in alveolar nitric oxide concentrations or corrected alveolar nitric oxide concentrations in either treatment group.

211

212 Nitric Oxide Results

213	No significant differences were found in the time trends for FeNO at an expiratory flow rate of
214	50 mL/s among the 3 treatment modalities or within each of the groups (results not shown).
215	The time trends for uncorrected alveolar nitric oxide concentrations were significantly
216	different among the 3 treatment groups ($p = 0.048$, by 2-way ANOVA). When comparing 2
217	different treatment modalities in a post hoc analysis, the ciclesonide group had a greater decrease
218	in alveolar nitric oxide concentrations over time than the control group ($p = 0.03$, by 2-way
219	ANOVA). By 1-way ANOVA, alveolar nitric oxide concentrations in the control group did not
220	change during the study period, whereas in both of the add-on treatment groups, alveolar nitric
221	oxide concentrations significantly decreased over time ($p = 0.01$ for the ciclesonide and
222	montelukast groups; Fig 3).
223	For corrected alveolar nitric oxide concentrations, 1-way ANOVA showed that there was
224	an insignificant decrease over time in the ciclesonide group ($p = 0.06$).
225	
226	Pulmonary Function Tests
227	None of the spirometry indices, ΔN_2 , or IOS indices of respiratory resistance at 5 Hz (Rrs ₅),
228	respiratory resistance at 20 Hz (Rrs ₂₀), or respiratory reactance at 5 Hz (Xrs ₅) revealed any
229	difference among the 3 treatment modalities during the treatment period regardless of
230	prebronchodilator or postbronchodilator conditions. No significant changes were observed within
231	any of the 3 groups (data not shown).
232	A significant difference was found in the time trends for the reactance area (AX) among
233	the 3 treatment modalities ($p = 0.04$, by 2-way ANOVA). The AX levels in the montelukast
234	group improved over time when compared with the control group ($p = 0.05$, by 2-way ANOVA;
235	Fig 4). For Rrs5–Rrs20, 2-way ANOVA was not used because of the unequal variations among

236	the 3 treatment modalities; however, 1-way ANOVA revealed that there was a trend for a change
237	over time in the ciclesonide group ($p = 0.09$).

238	Although there were associations between corrected alveolar nitric oxide concentrations
239	and IOS indices of AX or Rrs_5 - Rrs_{20} at baseline (r = 0.30, p < 0.05 for both, n = 52), no
240	associations were found between changes in pulmonary function data from baseline to the end of
241	the treatment period and changes in alveolar nitric oxide concentrations or corrected alveolar
242	nitric oxide concentrations in either treatment group.
243	
244	Blood Test Results
245	Blood samples were obtained at baseline and at the end of the treatment period to determine
246	blood eosinophil counts and serum levels of eosinophil cationic protein, high sensitivity C-
247	reactive protein, and YKL-40. No significant changes were found in these tests results between
248	the beginning and the end of the treatment period, except for the montelukast group in which the
249	eosinophil counts significantly declined after treatment $(2.9 \pm 2.2\% \text{ at } 24 \text{ weeks})(p = 0.02, \text{ paired})$
250	<i>t</i> test).
251	

252 Discussion

To the best of our knowledge, this is the first long-term study that clarified the benefits and potential role of add-on therapy with either ciclesonide of extrafine particle ICS or montelukast in steroid-treated patients with stable asthma. Ciclesonide may have attenuated smoldering inflammation of the small airways and significantly improved asthma control over time. Montelukast ameliorated the remnant dysfunction of the small airways and reduced nasal symptoms and blood eosinophil counts. To a lesser extent than ciclesonide, montelukast also improved smoldering inflammation of the small airways.

260 Alveolar nitric oxide concentration is an established marker of small airway inflammation and is correlated with eosinophil counts in bronchoalveolar lavage fluid ⁸. In the 261 ciclesonide group, alveolar nitric oxide concentrations significantly decreased over time when 262 compared with the control group and the ciclesonide intragroup analysis. Our data confirmed 263 earlier findings of the effects of 5-week treatment with ciclesonide on alveolar nitric oxide 264 concentrations in steroid-naïve patients¹⁵ and reinforced the advantage of extrafine particle ICSs 265 266 to treat smoldering inflammation of the small airways, even in patients already taking ICSs. There remains the possibility that the addition of ciclesonide to the patients' current medication 267 268 may have exerted anti-inflammatory effects via the increase in the total amount of ICS, which may have suppressed the remnant inflammation throughout the airways. However, this is 269 unlikely because FeNO at 50 mL/s did not change over time. Taken the results of the previous 270 short-term study and current study together, ciclesonide would be capable of treating the small 271 airways potentially because of its particles size, which was sufficiently small to reach the 272 peripheral airways. 273

274 In contrast to uncorrected alveolar nitric oxide concentrations, corrected alveolar nitric oxide concentrations only showed a trend toward being decreased in the ciclesonide group (p =275 0.06, 1-way ANOVA). Although corrected alveolar nitric oxide concentrations reflect airway 276 dysfunction^{22, 29}, as do alveolar nitric oxide concentrations, corrected alveolar nitric oxide 277 concentrations do not reflect disease severity ^{14, 22} or asthma control status ²⁹. It is also not 278 increased during asthma exacerbations in adults 30 , a finding that is in contrast to several lines of 279 evidence for alveolar nitric oxide concentrations. Although alveolar nitric oxide concentrations 280 are contaminated with bronchial nitric oxide, potentially from small conducting airways where 281 282 diffusion begins to replace bulk flow, our findings on alveolar nitric oxide concentrations imply that relatively small airways, albeit not actual peripheral airways, are still important in the 283 management of asthma. 284

Studies of add-on medication using LTRAs that have evaluated changes in alveolar nitric 285 oxide concentrations in persistent inflammation of the small airways reported inconsistent 286 findings. Previous add-on studies of montelukast to fluticasone¹⁸ or fluticasone and salmeterol 287 treatment ¹² did not find any significant benefits for montelukast with regard to decreases in 288 alveolar nitric oxide concentrations after montelukast add-on therapy. However, these earlier 289 290 studies were relatively short-term, with treatment periods of only 3 to 4 weeks. Yasui et al. investigated pranlukast use in patients with stable asthma and found significant decreases in both 291 292 corrected and uncorrected alveolar nitric oxide concentrations after 8-week crossover of add-on therapy with pranlukast ¹⁹. In agreement with that study, we found that alveolar nitric oxide 293 concentrations in the montelukast group decreased during the 24-week add-on period, although 294 295 these levels were not significantly different from the control group. As with the ciclesonide 296 group, FeNO at 50 mL/s did not change over time. These findings indicate that add-on treatment

with LTRAs for longer than 8 weeks suppresses the remnant inflammation in the small airways.
In addition, our intervention study that covered the 2 seasons for allergic rhinitis (spring and autumn) provided additional evidence of the established benefit of montelukast on allergic rhinitis ³¹ and justified a role for LTRA in the therapy for patients with stable asthma with concomitant allergic rhinitis, even those with minimal symptoms.

Symptoms and airway obstruction are integral to the definition of asthma, and represent 302 important components for assessing asthma control in both clinical practice and clinical trials. 303 Therefore, one of the end points in our study was ACT scores. Despite the disadvantage in 304 adherence to inhalation use, as reported previously on adherence to LTRA of 67.7% vs. 33.8% 305 for ICS ³², ACT scores significantly improved over time in the ciclesonide group. In addition, 306 there was a marginal improvement in the subscore of ACT question 3 concerning nocturnal 307 symptoms in the ciclesonide group. To date, a number of studies have confirmed that 308 eosinophilic inflammation worsens in patients with nocturnal asthma, particularly in the 309 peripheral airways ³³. Lehtimaki et al⁹ reported that nocturnal symptoms in asthmatic patients 310 311 were related to higher alveolar nitric oxide concentrations. These results are in accordance with our results showing that ciclesonide add-on treatment reduced inflammation in the small airways, 312 313 as assessed by alveolar nitric oxide concentrations, and improved nocturnal symptoms, as assessed by ACT subscores. Care must be taken when interpreting these findings, however, 314 because the minimally important difference in ACT scores that reflects a clinically meaningful 315 change is considered to be 3 points ³⁴, and the increase in ACT composite scores in our 316 ciclesonide group did not achieve this. Despite this minimal change, these statistically significant 317 changes would still favour add-on therapy for patients with seemingly stable asthma. 318

319 We did not find any significant changes in spirometry function results or ΔN_2 between the control and therapy add-on groups, which may seem unexpected. Spirometry is not sensitive 320 enough to detect early small airway involvement because the small airways are pathways of very 321 low resistance and only contribute to approximately 10% of the total airway resistance ³⁵. Instead 322 of using ΔN_2 , ventilation heterogeneity within conductive and acinar airways could have been 323 separately assessed using a nitrogen multiple-washout test ³⁶. Another possible reason could be 324 that our patients had already good pulmonary function, so that changes in alveolar nitric oxide 325 concentrations were not reflected in the airway function. However, in the montelukast group, the 326 AX^{16, 22} significantly decreased over time when compared with the control group, as was found 327 in our previous intervention study in steroid-naïve patients ¹⁶. Montelukast may have reversed 328 remodeling in the airway walls by reducing airway smooth muscle layer thickening and 329 subepithelial fibrosis in long-term treatment, as has been shown in an animal model ³⁷. More 330 significant findings might be expected in extended studies in a larger number of patients. 331 A limitation of our study was that it was a parallel, open-label, and unblinded study, 332 333 which might have influenced subjective measures, such as asthma symptoms and rescue use of short-acting β_2 agonists. Another issue is the use of 2 different inhalers for corticosteroids, 334 although we achieved good adherence in the ciclesonide group. In future studies with more 335 patients and longer treatment periods, this issue could be resolved. 336 In addition, we may have missed some patients with occult inflammation in the small 337 338 airways by excluding those with alveolar nitric oxide concentrations less than 5 ppb, given that

some patients who have high FeNO and low alveolar nitric oxide concentrations exhibit

340

341 of dilatation of constricted small airways from terminal to respiratory bronchioles. However, by

17

paradoxical increases in alveolar nitric oxide concentrations after treatment ³⁸, possibly because

setting this threshold for alveolar nitric oxide concentrations during patient enrollment, thechanges of alveolar nitric oxide concentrations in this study could be simply interpreted.

Finally, from the ethical standpoint, we stopped enrollment at 60 patients because of a 344 higher, albeit mild, exacerbation rate in the control group, which was consistent with the finding 345 that elevated alveolar nitric oxide concentration was associated with risk of asthma 346 exacerbation¹³. Thus, some of the insignificant findings, particularly of the pulmonary function 347 data in this study, may be due to lesser statistical power. Lack of associations between the 348 changes in alveolar nitric oxide concentrations and changes in pulmonary function data or ACT 349 350 scores might be another issue. However, we did not set the sample size to seek significant associations between changes in alveolar nitric oxide concentrations and any other clinical 351 indices because of their potentially large variations during the treatment period, although 352 alveolar nitric oxide concentrations, pulmonary function, and ACT were intuitively thought to 353 behave in parallel. Despite these limitations, the current findings of a decrease in alveolar nitric 354 oxide concentrations with add-on treatment are sufficient to be used as a future reference when 355 356 intensifying treatment with extrafine particle ICS or LTRA add-on therapy, even in patients with seemingly stable asthma who are receiving ICS treatment but still have evidence of small 357 358 airways inflammation as assessed by alveolar nitric oxide concentrations.

We conclude that ciclesonide and montelukast may act differently but that both separately can improve small airway abnormalities (eTable 3). By coadministration of these medications, cumulative effects on inflammation and small airways function can be expected and should be clarified in a future study. We can achieve additional benefits by treating inflammation of the small airways in patients with stable asthma to reach the ultimate asthma treatment goal: ideal control.

365

366 Acknowledgments

367 The authors are grateful to Ms Aya Inazumi and Ms Yuko Maeda for their technical assistance.

369	References		
370			
371	1.	Hamid Q, Song Y, Kotsimbos TC, et al. Inflammation of small airways in asthma. J	
372		Allergy Clin Immunol. 1997;100: 44-51.	
373	2.	Carroll N, Cooke C, James A. The distribution of eosinophils and lymphocytes in the	
374		large and small airways of asthmatics. Eur Respir J. 1997;10: 292-300.	
375	3.	in 't Veen JC, Beekman AJ, Bel EH, Sterk PJ. Recurrent exacerbations in severe asthma	
376		are associated with enhanced airway closure during stable episodes. Am J Respir Crit	
377		Care Med. 2000;161: 1902-1906.	
378	4.	Ueda T, Niimi A, Matsumoto H, et al. Role of small airways in asthma: investigation	
379		using high-resolution computed tomography. J Allergy Clin Immunol. 2006;118: 1019-	
380		1025.	
381	5.	Johnson JR, Hamid Q. Appraising the small airways in asthma. Curr Opin Pulm Med.	
382		2012;18: 23-28.	
383	6.	Contoli M, Kraft M, Hamid Q, et al. Do small airway abnormalities characterize asthma	
384		phenotypes? In search of proof. Clin Exp Allergy. 2012;42: 1150-1160.	
385	7.	Tsoukias NM, George SC. A two-compartment model of pulmonary nitric oxide	
386		exchange dynamics. J Appl Physiol. 1998;85: 653-666.	
387	8.	Berry M, Hargadon B, Morgan A, et al. Alveolar nitric oxide in adults with asthma:	
388		evidence of distal lung inflammation in refractory asthma. Eur Respir J. 2005;25: 986-	
389		991.	
390	9.	Lehtimaki L, Kankaanranta H, Saarelainen S, Turjanmaa V, Moilanen E. Increased	
391		alveolar nitric oxide concentration in asthmatic patients with nocturnal symptoms. Eur	
392		Respir J. 2002;20: 841-845.	
393	10.	Gelb AF, Taylor CF, Nussbaum E, et al. Alveolar and airway sites of nitric oxide	
394		inflammation in treated asthma. Am J Respir Crit Care Med. 2004;170: 737-741.	
395	11.	van Veen IH, Sterk PJ, Schot R, et al. Alveolar nitric oxide versus measures of peripheral	
396		airway dysfunction in severe asthma. Eur Respir J. 2006;27: 951-956.	
397	12.	Gelb AF, Taylor CF, Shinar CM, Gutierrez CA, Zamel N. Effect of fluticasone 250	
398		microg/salmeterol 50 microg and montelukast on exhaled nitric oxide in asthmatic	
399		patients. Can Respir J. 2008;15: 193-198.	

- 400 13. Gelb AF, Flynn Taylor C, Shinar CM, Gutierrez C, Zamel N. Role of spirometry and
 401 exhaled nitric oxide to predict exacerbations in treated asthmatics. Chest. 2006;129:
 402 1492-1499.
- 403 14. Condorelli P, Shin HW, Aledia AS, Silkoff PE, George SC. A simple technique to
 404 characterize proximal and peripheral nitric oxide exchange using constant flow
 405 exhalations and an axial diffusion model. J Appl Physiol. 2007;102: 417-425.
- 406 15. Cohen J, Douma WR, ten Hacken NH, et al. Ciclesonide improves measures of small
 407 airway involvement in asthma. Eur Respir J. 2008;31: 1213-1220.
- Yamaguchi M, Niimi A, Ueda T, et al. Effect of inhaled corticosteroids on small airways
 in asthma: investigation using impulse oscillometry. Pulm Pharmacol Ther. 2009;22:
 326-332.
- 411 17. Zeidler MR, Kleerup EC, Goldin JG, et al. Montelukast improves regional air-trapping
 412 due to small airways obstruction in asthma. Eur Respir J. 2006;27: 307-315.
- 413 18. Fritscher LG, Rodrigues MT, Zamel N, Chapman KR. The effect of montelukast on
 414 exhaled nitric oxide of alveolar and bronchial origin in inhaled corticosteroid-treated
 415 asthma. Respir Med. 2009;103: 296-300.
- 416 19. Yasui H, Fujisawa T, Inui N, et al. Impact of add-on pranlukast in stable asthma; the
 417 additive effect on peripheral airway inflammation. Respir Med. 2012;106: 508-514.
- Standards for the diagnosis and care of patients with chronic obstructive pulmonary
 disease (COPD) and asthma. This official statement of the American Thoracic Society
 was adopted by the ATS Board of Directors, November 1986. Am Rev Respir Dis.
 1987;136: 225-244.
- 422 21. Global Initiative for Asthma Management and Prevention: National Institutes of Health,
 423 National Heart, Lung and Blood Institute, 2006.
- 424 22. Matsumoto H, Niimi A, Jinnai M, et al. Association of alveolar nitric oxide levels with
 425 pulmonary function and its reversibility in stable asthma. Respiration. 2011;81: 311-317.
- 426 23. Nathan RA, Sorkness CA, Kosinski M, et al. Development of the asthma control test: a
 427 survey for assessing asthma control. J Allergy Clin Immunol. 2004;113: 59-65.
- 428 24. Okubo K, Kurono Y, Fujieda S, et al. Japanese guideline for allergic rhinitis. Allergol Int.
 429 2011;60: 171-189.

- 430 25. Takemura M, Matsumoto H, Niimi A, et al. High sensitivity C-reactive protein in asthma.
 431 Eur Respir J. 2006;27: 908-912.
- 432 26. Matsumoto H, Niimi A, Minakuchi M, Izumi T. Serum eosinophil cationic protein levels
 433 measured during exacerbation of asthma: characteristics of patients with low titres. Clin
 434 Exp Allergy. 2001;31: 637-643.
- 435 27. Otsuka K, Matsumoto H, Niimi A, et al. Sputum YKL-40 Levels and Pathophysiology of
 436 Asthma and Chronic Obstructive Pulmonary Disease. Respiration. 2012;83: 507-519.
- 437 28. ATS/ERS recommendations for standardized procedures for the online and offline
 438 measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J
 439 Respir Crit Care Med. 2005;171: 912-930.
- 440 29. Mahut B, Trinquart L, Le Bourgeois M, et al. Multicentre trial evaluating alveolar NO
 441 fraction as a marker of asthma control and severity. Allergy. 2010;65: 636-644.
- Gelb AF, George SC, Silkoff PE, et al. Central and peripheral airway/alveolar sites of
 exhaled nitric oxide in acute asthma. Thorax. 2010;65: 619-625.
- 444 31. Lagos JA, Marshall GD. Montelukast in the management of allergic rhinitis. Ther Clin
 445 Risk Manag. 2007;3: 327-332.
- Jones C, Santanello NC, Boccuzzi SJ, et al. Adherence to prescribed treatment for
 asthma: evidence from pharmacy benefits data. J Asthma. 2003;40: 93-101.
- Kraft M, Djukanovic R, Wilson S, Holgate ST, Martin RJ. Alveolar tissue inflammation
 in asthma. Am J Respir Crit Care Med. 1996;154: 1505-1510.
- 450 34. Schatz M, Kosinski M, Yarlas AS, et al. The minimally important difference of the
 451 Asthma Control Test. J Allergy Clin Immunol. 2009;124: 719-723 e711.
- 452 35. Macklem PT. The physiology of small airways. Am J Respir Crit Care Med. 1998;157:
 453 \$181-183.
- 454 36. Verbanck S, Schuermans D, Vincken W. Inflammation and airway function in the lung
 455 periphery of patients with stable asthma. J Allergy Clin Immunol. 2010;125: 611-616.
- 456 37. Henderson WR, Jr., Chiang GK, Tien YT, Chi EY. Reversal of allergen-induced airway
 457 remodeling by CysLT1 receptor blockade. Am J Respir Crit Care Med. 2006;173: 718458 728.
- 459 38. Van Muylem A, Kerckx Y, Michils A. Acinar effect of inhaled steroids evidenced by
 460 exhaled nitric oxide. J Allergy Clin Immunol. 2010;126: 730-735 e732.

462	
463	Figure legends
464	Figure 1. Registration and randomization
465	Figure 2. Asthma control test (ACT) scores in the 3 study groups. *Significant changes in ACT
466	scores within the ciclesonide add-on group ($p = 0.02$, by 1-way analysis of variance).
467	Figure 3. Alveolar nitric oxide concentrations in the 3 study groups. *Significant difference in
468	the time trends for alveolar nitric oxide concentrations among the 3 treatment modalities (p =
469	0.048, by 2-way analysis of variance [ANOVA]). †Significant changes in alveolar nitric oxide
470	concentrations in the ciclesonide add-on group ($p = 0.03$ vs the control group, by 2-way
471	ANOVA) ($p = 0.01$, by 1-way ANOVA). \ddagger Significant changes within montelukast add-on group
472	(p = 0.01, by 1-way ANOVA).
473	Figure 4. Reactance area (AX) levels in the 3 study groups. *Significant difference in the time
474	trends for AX levels among the 3 treatment modalities ($p = 0.04$, by 2-way analysis of variance
475	[ANOVA]), †posthoc analysis between the montelukast add-on and control groups ($p = 0.05$, by

2-way ANOVA).

Figure 2

Figure 3

Figure 4

	Ciclesonide group $(n = 18)$	Montelukast group $(n = 19)$	Control group $(n = 15)$
Female / male	13 / 5	13/6	9/6
Age, y	64.5 ± 9.9	61.8 ± 10.6	57.4 ± 21.1
Treatment Step $2/3/4/5^{1}$	6/11/1/0	6 / 10 / 3 / 0	9/3/2/1
Smoking history			
(never / ex-smoker)	17 / 1	15/4	12/3
Atopy (yes $/ no$) ²⁾	10 / 8	12 / 7	7 / 8
Total IgE, IU/mL	120 (7-25000)	159 (8-1900)	86 (8-760)
Daily dose of ICS, μg^{3}	361 ± 263	353 ± 174	333 ± 222
Use of LABA (yes / no)	11 / 7	10 / 9	6/9
Use of theophylline (yes / no)	3 / 15	3 / 16	1 / 14
FeNO ₅₀ , ppb	42.4 ± 32.1	44.5 ± 36.4	37.5 ± 15.7
Alveolar nitric oxide			
concentrations, ppb	9.7 ± 5.6	8.4 ± 2.7	7.5 ± 1.6
Corrected alveolar nitric oxide			
concentrations, ppb	7.0 ± 5.5	5.7 ± 3.3	5.0 ± 2.0
FEV ₁ , % predicted	93.9 ± 17.5	93.7 ± 20.3	94.7 ± 23.8
FEV ₁ /FVC, %	74.7 ± 18.6	74.2 ± 18.2	73.6 ± 24.6
ΔN_2 , %	1.8 ± 1.7	1.8 ± 1.7	2.1 ± 2.2
Rrs ₅ , kPa sL ⁻¹	0.43 ± 0.15	0.40 ± 0.13	0.40 ± 0.14
Rrs_{20} , kPa sL ⁻¹	0.35 ± 0.11	0.31 ± 0.09	0.33 ± 0.10
Rrs_5 - Rrs_{20} , $kPa sL^{-1}$	0.08 ± 0.05	0.09 ± 0.07	0.07 ± 0.07
Xrs ₅ , kPa sL ⁻¹	-0.14 ± 0.06	-0.14 ± 0.06	-0.14 ± 0.07
AX, kPa L ⁻¹	0.67 ± 0.51	0.78 ± 0.91	0.71 ± 0.68
ACT score	22.7 ± 2.5	23.2 ± 2.3	23.2 ± 2.7
Rhinitis symptom score	16.9 ± 2.1	16.4 ± 2.1	17.2 ± 1.7
Blood eosinophils, %	5.3 ± 3.9	4.7 ± 2.9	4.0 ± 2.5
Serum ECP, µg/L	16.6 ± 17.6	11.4 ± 11.1	15.0 ± 15.5
Serum hsCRP, mg/dL	0.21 ± 0.37	0.10 ± 0.20	0.14 ± 0.17
Serum YKL-40, ng/dL	115.2 ± 86.0	123.2 ± 83.7	93.2 ± 116.4

Table 1. Characteristics of the study patients

511 Setum TKE-40, ng/dE 115.2 ± 80.0 125.2 ± 85.7 95.2 ± 110.4
512 Data are presented as number or mean ± SD, except for IgE, which is presented as median
513 (range); p>0.05 for all characteristics according to the analysis of variance, the Kruskal-Wallis
514 test or Fisher's exact test. 1) According to the 2006 Global Initiative for Asthma guidelines, 2)
515 Atopy was determined based on the presence of specific serum IgE antibodies to at least 1
516 common inhalant allergen, including cat dander, dog dander, weed pollens, grass pollens, molds,
517 or house dust mite, 3) equivalent to fluticasone proprionate

518	E-Supplement material
519	
520 521	Effects of 24-week add-on treatment with ciclesonide and montelukast on small airways inflammation in asthma
522	
523 524 525	*Hitoshi Nakaji ^{1,2} , *Guergana Petrova ¹ , Hisako Matsumoto ¹ , Toshiyuki Iwata ¹ , Isao Ito ¹ , Tsuyoshi Oguma ¹ , Hideki Inoue ¹ , Tomoko Tajiri ¹ , Tadao Nagasaki ¹ , Yoshihiro Kanemitsu ¹ , Akio Niimi ^{1,3} , Michiaki Mishima ¹
526	
527 528	¹ Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
529	² Department of Respiratory Medicine, Wakayama Red Cross Hospital, Wakayama, Japan
530 531	³ Division of Respiratory Medicine, Department of Medical Oncology and Immunology, Nagoya City University School of Medical Sciences, Nagoya, Japan
532	* HN and GP equally contributed to this study
533	Trial registration; Registry ID UMIN000001083
534	
535	Corresponding author: Hisako Matsumoto, MD, PhD
536	Department of Respiratory Medicine
537	Postgraduate School of Medicine, Kyoto University
538	54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
539	Telephone: +81-75-751-3830; Fax: +81-75-751-4643
540	E-mail: <u>hmatsumo@kuhp.kyoto-u.ac.jp</u>
541	

543 eMethods

Adult patients with stable asthma who regularly visited our outpatient asthma clinic were enrolled from April 2008 to August 2011. Asthma was diagnosed according to American Thoracic Society criteria based on a history of recurrent episodes of wheezing and chest tightness, with or without cough, and documented airway reversibility with a bronchodilator or hyperresponsiveness to inhaled methacholine ^{e1}.

Nitric oxide levels were determined with a chemiluminescence analyzer (NOA 280; 549 Sievers, Boulder, Colorado) according to current guidelines and as previously described ^{e2}. The 550 analyzer was daily calibrated with gas without nitric oxide and a standard concentration of 640 551 ppb nitric oxide. Lower detection limit for nitric oxide was 2 ppb. The concentrations were 552 determined using a data analysis program (NOA Analysis[™] Software; Sievers). Seated patients 553 554 inserted a mouthpiece, inhaled orally to total lung capacity, exhaled immediately against a 555 resistance and maintained mouth pressure at 20 cm H₂O, displayed on a pressure gauge. The steady-state nitric oxide plateau was taken as the fractional exhaled nitric oxide (FeNO) value. 556 557 By varying expiratory resistances, we measured FeNO levels at 3 expiratory flows of 50, 100 and 200 mL/s in that order. Alveolar nitric oxide concentrations are provided as non-corrected^{e3} 558 and corrected values using trumpet-shaped model and axial back diffusion ^{e2, e4}. 559

560 After nitric oxide measurements, patients underwent prebronchodilator and postbronchodilator (ie, inhalation of 200 µg of salbutamol) pulmonary function tests. Respiratory 561 impedance was determined by impulse oscillometry system (IOS) followed by spirometric test 562 and a nitrogen single-breath washout test. Forced vital capacity, forced expiratory volume in 1 563 second, and forced midexpiratory flow were determined using a ChestGraph HI-701 spirometer 564 (Chest MI Corp., Tokyo, Japan). Spirograms were obtained in triplicate, and the best of 3 565 reproducible measurements was recorded, as recommended by the American Thoracic 566 Society/European Respiratory Society^{e5}. A nitrogen single-breath washout test was performed 567 only before the inhalation of salbutamol to assess ventilation inhomogeneity by measuring the 568 slope of phase 3 of the nitrogen washout curve. 569

Respiratory impedance was determined using a Jaeger MasterScreen, IOS (Erich Jaeger, 570 Hoechberg Germany), which met standard recommendations^{e6}. In brief, rectangular mechanical 571 572 impulses containing a continuous power spectrum ranging from 0 to 100 Hz, generated by a loudspeaker at intervals of 0.2 second, were applied to the respiratory system through a 573 574 mouthpiece during tidal breathing. The resulting pressure and flow signals were measured next to the mouthpiece and were analyzed for amplitude and phase differences using a fast Fourier 575 576 transform to determine respiratory resistance (Rrs) and respiratory reactance (Xrs) of the total respiratory system. To reduce loss of energy in the upper airways, the chin and cheeks were 577 supported by the patients' hands. As proxies for peripheral airway function, we used the negative 578 frequency dependence of Rrs between 5 and 20 Hz (Rrs5-Rrs20), Xrs at 5 Hz (Xrs5), and 579 580 reactance area (AX) that is the integral of Xrs from 5 Hz to the resonant frequency at which Xrs crosses zero e2,e7. 581

583 eReferences

e1. Standards for the diagnosis and care of patients with chronic obstructive pulmonary
disease (COPD) and asthma. This official statement of the American Thoracic Society was
adopted by the ATS Board of Directors, November 1986. Am Rev Respir Dis. 1987;136:225-244.

e2. Matsumoto H, Niimi A, Jinnai M, et al. Association of alveolar nitric oxide levels with
pulmonary function and its reversibility in stable asthma. Respiration. 2011; 81: 311-317.

e3. Tsoukias NM, George SC. A two-compartment model of pulmonary nitric oxide
exchange dynamics. J Appl Physiol. 1998; 85: 653-666.

e4. Condorelli P, Shin HW, Aledia AS, Silkoff PE, George SC. A simple technique to
characterize proximal and peripheral nitric oxide exchange using constant flow exhalations and
an axial diffusion model. J Appl Physiol. 2007; 102: 417-425.

e5. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J.
2005; 26: 319-338.

e6. Oostveen E, MacLeod D, Lorino H, et al. The forced oscillation technique in clinical
practice: methodology, recommendations and future developments. Eur Respir J. 2003; 22:
1026-1041.

e7. Yamaguchi M, Niimi A, Ueda T, et al. Effect of inhaled corticosteroids on small airways
in asthma: investigation using impulse oscillometry. Pulm Pharmacol Ther. 2009; 22: 326-332.

601 e8. Okubo K, Kurono Y, Fujieda S, et al. Japanese guideline for allergic rhinitis. Allergol Int.
602 2011;60:171-189.

603

604

605

606

608 eFigure legends

- 609 eFigure 1. Rhinitis symptom scores (RSS) in the 3 study groups. *Significant difference in the time trends
- for RSS among the 3 treatment modalities (p = 0.004, by 2-way analysis of variance [ANOVA]).
- 11 †Significant changes in RSS in montelukast add-on group (p < 0.001 vs control group, by 2-way
- 612 ANOVA) (p < 0.001, by 1-way ANOVA).

613

eFigure 1

616	eTable 1.		
617	Rhinitis symptom scores ^{e8} (originally in Japanese)		
618			
619	A. Mean number of episodes of paroxysmal sneezing in a day		
620	$1. \ge 21$ times 2. 20-11 times 3. 10-6 times 4. 5-1 times 5. none		
621			
622	B. Mean number of episodes of nasal discharge a day		
623	$1. \ge 21$ times 2. 20-11 times 3. 10-6 times 4. 5-1 times 5. none		
624			
625	C. Nasal blockage		
626	1. completely obstructed all day		
627	2. severe nasal blockage causing prolonged oral breathing in a day		
628	3. severe nasal blockage causing occasional oral breathing in a day		
629	4. nasal blockage without oral breathing		
630	5. not obstructed / no symptoms		
631			
632	D. Disturbance of daily activity (troubles with work, study, household work, sleep, going out, etc)		
633	1. impossible		
634	2. painful and complicating daily life		
635	3. intermediate between 2) and 4)		
636	4. few troubles		
637	5. not disturbed at all		
638			

		Treat		
		2 and 3	4 and 5	p value
Ciclesonide	ACT scores	23.1 ± 1.9	16	NS
(n = 18)	total/good/no control (n)	7/10/0	0/0/1	< 0.01
Montelukast	ACT scores	23.3 ± 2.4	22.3 ± 2.3	NS
(n = 19)	total/ good/no control (n)	7/7/2	1/2/0	NS
Control	ACT scores	23.7 ± 1.7	21.3 ± 5.5	NS
(n = 15)	total/good/no control (n)	5/7/0	1/1/1	NS

eTable 2. Asthma control test (ACT) scores and distribution of control status at baseline according to thetreatment steps

641 Data are presented as mean \pm SD.

642 Control status is defined as total when ACT score was equal to 25 points, good when ACT score was 20

or higher, no control when ACT score was less than 20.

644 NS; no significant difference by Wilcoxon rank-sum test or χ^2 test.

645

eTable 3. Summary of the results

		Ciclesonide	Montelukast	Control
		add-on	add-on	
FeNO		NS	NS	NS
Alveolar nitric oxide concentrations	vs other groups	Significant decrease vs controls	NS	-
	within the treatment modality	Decreased	Decreased	NS
Corrected alveolar nitric oxide concentrations	within the treatment modality	Insignificantly decreased	NS	NS
AX	vs other groups	NS	Significant decrease vs controls	-
Blood eosinophils	within the treatment modality	NS	Decreased	NS
ACT	within the treatment modality	Improved	Insignificantly improved	NS

650 ACT: asthma control test

651 AX: reactance area at low frequencies

652 NS; no significant difference or no significant changes