| タイトル | 浦安市における各種動的サウンディング試験の比較 | その5: DPM-HT |
|-----------|---|
| 著者 | 塩野 敏昭, 赤井 理一郎, 片山 浩明, 深井 公, 大島 昭彦 |
| 集合論文 | 浦安地盤調査一斉試験報告会論文集 |

URL: http://hdl.handle.net/2433/173654

<table>
<thead>
<tr>
<th>タイプ</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>版</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
浦安市における各種動的サウンディング試験の比較(その5 : DPM-HT)

1. まえがき
従来から実用化されている小型動的コーン貫入試験装置（通称ミラム、以下 MRS と呼ぶ）を基に、より可操性と操作性を考慮した簡易小型動的コーン貫入試験装置（手動型ミラム、以下 ISO の基準を参考に DPM-HT と呼ぶ）を開発した（資料-1 参照）。

DPM-HT は、MRS の貫入ロッドと先端コーンを使用し、ハンマーの重量や落下高さは同一であるが、MRS に比べると支点に足場パイプを用いることから組み立て解体が簡便であり、打撃は油圧装置を用いて小型モーターと人力を動力としている。このように DPM-HT は可操性や操作性、保守性に優れ、騒音もなく少ない特徴を有する（図-1）。

本論文では、浦安市における各種動的サウンディングの一斉試験の結果 1, 2, 3 を基に DPM-HT と MRS の換算 N 値の違いとその原因について考察し、考察を受けて改良を加えて装置の試験結果についても報告する。

2. 試験結果
試験地点の地質構成は、粘性土主体の埋立層が地点 1 で GL:8m、地点 2 で GL:6m、その下位には液状化したと考えられている沖積砂層が地点 1 で GL:17m、地点 2 で GL:15m まで堆積している。

図-2 に地点 1 および地点 3 における DPM-HT および MRS の換算 N 値 (Nd) と深度の関係を示す。図同には標準貫入試験 (SPT) の N 値をあわせて示した。

図-2 から、地点 1 では、深度 GL:8m 付近まで DPM-HT と MRS の Nd 値はほぼ同様の値を示し、SPT の N 値も同様であるが、GL:8m 以深では DPM-HT の Nd 値が他の試験に比べて最大 2 倍程度の大きな値を示している。地点 3 においても同様の傾向が見られ、N 値が 10 程度以上の地盤に対して、DPM-HT と MRS の Nd 値が大きく異なることが確認された。なお、地点 3 の表層部は他の試験結果でも場所によって試験値にバラツキがみられ、人工地盤の状態の変化を反映したものと考えられる。

図-3 に DPM-HT および MRS の貫入ロッドの周面摩擦力（トルク）と深度の関係を示す。
地点 1 では、深度 GL:4m 付近まで DPM-HT と MRS のトルク値がゼロを示すが、それ以深では DPM-HT のトルクが MRS を上回る傾向を示す。地点 3 においてもほぼ同様の傾向が見られ、両地点共に、Nd 値が 2 以下の粘性土を除いては DPM-HT のトルクが MRS を上回る傾向が確認された。

Comparison of Various Dynamic Sounding Tests in Urayasu City(Part5:DPM-HT)
Shiono Toshiaki(Hokushin Boring), Akai Riitiro(Hokushin Boring), Katayama Hiroaki(Toho Drilling Equipment), Fukai Akira(Sekisui House, Ltd), Oshima Akihiko(Osaka City University)
なお、DPM-HT に限って見ると Nd 値とトルクの関係は良く対応しており、Nd が大きくなるに従ってトルクも増える傾向がある。

3. 換算 N 値の違いに及ぼす要因の考察

DPM-HT と MRS の Nd 値の違い（打撃効率）に影響を及ぼす要因として、以下の 4 点が考えられる。①②③は打撃エネルギーの違いに着目したもの、④は支柱の構造に起因する貫入ロッドの曲がりの影響に着目したもの、⑤はアンビルの底部の孔に差し込まれたロッド頭部の“遊び”や摩擦に着目したものである。

①ハンマーとアンビルの形状
②ハンマーの落下方法
③支柱の構造
④貫入ロッド頭部の固定
⑤貫入ロッド頭部の固定

①については、表-1 に示す様にハンマーの形状（長さ、外径）が異なる。両者の長さの比（DPM-HT／MRS）は約 0.84、外径は約 1.13 である。また、それぞれのハンマーの長さと外径の比は DPM-HT 約 0.89、MRS 約 1.19 であり、DPM-HT が MRS に比べて太った形状である。図-4 に DPM-HT と MRS の外径とアンビルの形状の違いを誇張した概念図を示す。

宇野ら 6）は、標準貫入試験において、実用に供されている現状のハンマー（長さ: 直径 = 1:2）であれば、形状の相違が N 値に及ぼす影響はほとんどないとした。

一方、藤田 8）は、理論式をもとにハンマー径が JIS 規格より 20mm 小さい場合には N 値は 5％程度小さくなり、また、アンビル径が 10mm 大きい場合には N 値は 1％程度小さくなると算定している。

②について、DPM-HT は図-5 に示す様に標準貫入試験と同じ様の半自動落下方式を採用しており、一方、MRS は回転するチェーンがハンマーを持ち上げ、チェーンに等間隔にセットされた爪がハンマーキャッチャーの留め金を外す仕組みとなっている。いずれの方式も打撃効率に及ぼす人為的な影響は同程度で寡少と考えられる。

③について、DPM-HT の支柱はパイプ足場材で組まれており、貫入ロッドの鉛直性に上端ガイド管と下端ガイドベースで確保されている。一方、MRS は一本の支柱とハンマーを組むバスクレートが一体となって貫入ロッドの鉛直性を確保している。このような両者の支柱の構造の違いが、ガイドロッドや貫入ロッドの曲がりに影響を与え、Nd 値やトルクの違いを生じた可能性が考えられる。ガイドロッドが曲がった場合に生じるハンマーの打撃エネルギーの損失は 1° 傾斜した場合 10％程度と言われている 8）。

ただし、ロッドが地表部分から曲がって貫入した場合には、アンビル底部にヒッズを装着する際、ロッドの頭部が底部の孔スムースに取まらない状態となる。今回の試験では、終始その様な状況は認められなかったことから、少なくとも地表部分からロッドが曲がって貫入している事実はない。

④について、アンビルの底の孔に差し込まれた貫入ロッド頭部における打撃エネルギーの損失が考えられる。DPM-HT
はロッドの頭部を片側からポルトで固定しているが、衝撃によるポルトの緩みが避けられず、孔の内壁とロッドが干渉しやすいで打撃効率の減少につながる可能性がある。（写真-2）

4. DPM-HT の改良

DPM-HT と MRS の Nd 値の違い（打撃効率）に影響を及ぼす要因として、ハンマー形状やアンピル底部の構造などによるエネルギー効率やロッドの曲がりの影響など複数の要因が考えられたことから DPM-HT の改良を行った。

（1）ハンマー形状の改良

改良後のハンマー形状を表-2 および写真-3 に示す。改良後の長さと外径の比は 1.51。DPM-HT と MRS の長さの比は約 1.18、外径は約 0.93 で DPM-HT が MRS に比べて細長い形状である。

（2）アンピルとロッド接続治具の改良

アンピル底部の孔の深さを 75mm から 115mm にすると共に、接続治具を介してロッドを隙間なく孔に装着することにより、貫入ロッド頭部の“遊び”や揺れ合うことによるエネルギー効率の減少を抑制する工夫をした（写真-4）。

5. DPM-HT の改良前後の試験結果

改良型 DPM-HT と従来型 DPM-HT の比較試験を行った結果を図-6 に示す。対象とした地質は、谷部を埋めた二次堆積の火山灰質シルトであり、含水比が高く粘着性を有する粘性土である。

図-6 から GL-8m 以深で改良型の Nd 値が従来型に比べて 2 程度小さく測定される傾向が見られる。また、トルクについては、GL-3 ～8m 間で改良型 DPM-HT が 10 ～20N・m 程度小さく、それ以深では 10N・m 程度大きく測定された。

図-7 の同深度における改良型と従来型の Nd 値の関係から両者の Nd 値の比は 0.92、相関係数は 0.80 で改良型が従来型に比べて 8％小さい値を示している。

図-8 に同深度における N 値と Nd 値の関係を示す。N 値 10 以下の小さい範囲のデータではあるが、Nd/N は 0.5 ～1.5 の範囲でバラついている。
6. 今後の課題
今後、さらに改良型 DPM-HT と従来型 DPM-HT の比較試験を行うことにより、さまざまな土質に対する適用性を検証して調査精度の向上を図り、経済性・簡便性を重視した液状化予測手法の開発のための基礎データを蓄積していく予定である。

最後に、今回は全深度において Nd 値のトルク補正を行ったが、とくに深部においてロッドに大きな摩擦損失が発生することから Nd 値の精度に与えるトルクの影響を検討することが望まれる。

参考文献
3) 蒲原市における各種動的サンディング試験の比較（その 5: DCPT）, 第 47 回地盤工学会研究発表会, pp.139-140, 2012.
4) 宇都、冬木: N値を考慮する 3 標準貫入試験の機械（その 1）, 土と基礎, 22-2, pp.81-87, 1974.
5) 藤田圭一: 特殊管理された SPT とそのメカニズム、品質保証された N値とその解釈, 基礎工, 31-2, pp.2-6, 2003.

資料-1
動的コーン貫入試験装置の寸法と重量（片山2012年に一部加筆）

<table>
<thead>
<tr>
<th>動的コーン貫入試験装置</th>
<th>ISO（規格）</th>
<th>国内販売品</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Probing Apparatus</td>
<td>（ISO 22478-2-2005）</td>
<td>DPH-HT DPT DCPL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>打撃装置 Driving device</th>
<th>DPL（light）</th>
<th>DPM（medium）</th>
<th>DPH（heavy）</th>
<th>DPH（other heavy）</th>
<th>ミニラム</th>
<th>オートラム</th>
<th>DPM-HT</th>
<th>DSPT</th>
<th>DCPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ハンマー重量 hammer mass</td>
<td>m</td>
<td>kg</td>
<td>kg</td>
<td>kg</td>
<td>kg</td>
<td>kg</td>
<td>kg</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>落下高さ height fall</td>
<td>h</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
</tbody>
</table>

| コーン 90° Cone | | |
|----------------|------------------|
| 公称断面積 nominal cross section area | A | m² |
| 基底直径 (新品) base diameter (new) | D | mm |
| 端面直径 (使用後) base diameter (worn) | D | mm |
| マンホール長さ mantle length | L | mm |
| コーン先端長さ length of cone tip | L | mm |
| 最大取扱重量 max. permissible weight | | |

<table>
<thead>
<tr>
<th>ロッド</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>質量 mass</td>
<td>kg/m</td>
</tr>
<tr>
<td>外径 diameter</td>
<td>mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ロッド径の変動 rod deviation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>直下部 5m lowermost 5m</td>
<td>%</td>
</tr>
<tr>
<td>それ以外以外 remainder</td>
<td>%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 打撃当たりのコース単位面積打撲当りの仕事</th>
<th>E/A</th>
<th>kN m/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPH-HDD</td>
<td>%</td>
<td>100</td>
</tr>
</tbody>
</table>

DPH-HDD	%	100
DPH-HDD	%	100
DPH-HDD	%	100

DPH-HDD トヨマ外径
HB: 北陸ホーロング TOHO: 東邦地下工業 TQC: 総合土工コンサルタント