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In this paper, we consider quantum correlations of bipartite systems having a slight
interaction, and reinterpret Tsirelson’s problem (and hence Kirchberg’s and Connes’s
conjectures) in terms of finite-dimensional asymptotically commuting positive op-
erator valued measures. We also consider the systems of asymptotically commuting
unitary matrices and formulate the Stronger Kirchberg Conjecture. C© 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4795391]

I. INTRODUCTION

A POVM (positive operator valued measure) with m outputs is an m-tuple (Ai )m
i=1 of positive

semi-definite operators on a Hilbert spaceH such that
∑

Ai = 1. We write the convex sets of quantum
correlation matrices of two independent systems of d POVMs with m outputs by

Qc =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[〈ξ, Ak
i Bl

jξ 〉] k, l
i, j

:

H a Hilbert space, ξ ∈ H a unit vector

(Ak
i )m

i=1, k = 1, . . . , d, POVMs on H,

(Bl
j )

m
j=1, l = 1, . . . , d, POVMs on H,

[Ak
i , Bl

j ] = 0 for all i, j and k, l

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

and

Qs = closure

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[〈ξ, Ak
i Bl

jξ 〉] k, l
i, j

:

dimH < +∞, ξ ∈ H a unit vector

(Ak
i )m

i=1, k = 1, . . . , d, POVMs on H,

(Bl
j )

m
j=1, l = 1, . . . , d, POVMs on H,

[Ak
i , Bl

j ] = 0 for all i, j and k, l

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Here i, j, k, l are indices and Ak
i does not mean the kth power of Ai. The sets Qc and Qs are closed

convex subsets of Mmd (R≥0) such that Qs ⊂ Qc. Whether they coincide (for some/all m, d ≥ 2,
(m, d) �= (2, 2)) is the well-known Tsirelson problem, and the matricial version of it is known to be
equivalent to Kirchberg’s and Connes’s conjectures. We refer the reader to Refs. 4, 5, 8, and 11 for
the literature and the proof of the equivalence. The matricial version of Tsirelson’s problem asks
whether Qn

c = Qn
s for all n, where Qn

c and Qn
s are defined as follows:

Qn
c =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
V ∗ Ak

i Bl
j V

]
k, l
i, j

:

H a Hilbert space, V : �n
2 → H an isometry

(Ak
i )m

i=1, k = 1, . . . , d, POVMs on H,

(Bl
j )

m
j=1, l = 1, . . . , d, POVMs on H,

[Ak
i , Bl

j ] = 0 for all i, j and k, l

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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and

Qn
s = closure

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
V ∗ Ak

i Bl
j V

]
k, l
i, j

:

dimH < +∞, V : �n
2 → H an isometry

(Ak
i )m

i=1, k = 1, . . . , d, POVMs on H,

(Bl
j )

m
j=1, l = 1, . . . , d, POVMs on H,

[Ak
i , Bl

j ] = 0 for all i, j and k, l

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

In this paper, we consider “slightly interacting” systems. Suppose Alice and Bob conduct
measurements by systems of operators (A1/2

i )m
i=1 and (B1/2

j )m
j=1, respectively. If Bob conducts a

measurement immediately after Alice’s measurement of a state ξ , then the probability of the output
(i, j) is ‖B1/2

j A1/2
i ξ‖2—and vice versa. Therefore, when they conduct measurements of a state

ξ at the same time, the probability of the output (i, j) is given by 〈ξ, (Ai • B j )ξ 〉, where A • B
= (A1/2BA1/2 + B1/2AB1/2)/2. Thus, for ε > 0, we define the quantum correlation matrices of slightly
interacting systems to be

Qn
ε = closure

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
V ∗(Ak

i • Bl
j )V

]
k, l
i, j

:

dimH < +∞, V : �n
2 → H an isometry

(Ak
i )m

i=1, k = 1, . . . , d, POVMs on H,

(Bl
j )

m
j=1, l = 1, . . . , d, POVMs on H,

‖[Ak
i , Bl

j ]‖ ≤ ε for all i, j and k, l

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

where ‖[A, B]‖ denotes the operator norm of the commutator [A, B] = AB − BA. We note that Qn
ε

is a closed convex subset of Mmd (Mn(C)+). Recall that a POVM (Ai )m
i=1 is said to be projective if

all Ai’s are orthogonal projections. We also introduce the projective analogue of Qn
ε :

Pn
ε = closure

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
V ∗(Pk

i • Ql
j )V

]
k, l
i, j

:

dimH < +∞, V : �n
2 → H an isometry

(Pk
i )m

i=1 projective POVMs on H,

(Ql
j )

m
j=1 projective POVMs on H,

‖[Pk
i , Ql

j ]‖ ≤ ε for all i, j and k, l

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

We simply write Pε for P1
ε . The following is the main result of this paper. It probably suggests that

Qc is more natural than Qs (cf. Introduction of Ref. 4).

Theorem. For every m, d, and n, one has Qn
c = ⋂

ε>0 Qn
ε = ⋂

ε>0 Pn
ε . In particular, an affir-

mative answer to Tsirelson’s problem is equivalent to that
⋂

ε>0 Pε ⊂ Qs .

Hence, the matricial version of Tsirelson’s problem would have an affirmative answer if the
following assertion holds for some/all (m, d).

Strong Kirchberg Conjecture (I). Let m, d ≥ 2 be such that (m, d) �= (2, 2). For every κ > 0,
there is ε > 0 with the following property. If dimH < +∞, and (Pk

i )m
i=1 and (Ql

j )
m
j=1 is a pair of d

projective POVMs on H such that ‖[Pk
i , Ql

j ]‖ ≤ ε, then there are a finite-dimensional Hilbert space
H̃ containing H and projective POVMs (P̃k

i )m
i=1 and (Q̃l

j )
m
j=1 on H̃ such that ‖[P̃k

i , Q̃l
j ]‖ = 0 and

‖�H(P̃k
i ) − Pk

i ‖ ≤ κ and ‖�H(Q̃l
j ) − Ql

j‖ ≤ κ , where �H is the compression to H.

We will deal in Sec. IV with a parallel and equivalent conjecture in the unitary setting.

II. PRELIMINARY FROM C*-ALGEBRA THEORY

As it is observed in Refs. 4, 5, and 11, the study of quantum correlation matrices is essentially
about the algebraic tensor product Fd

m ⊗ Fd
m of the C*-algebra

Fd
m = �m

∞ ∗ · · · ∗ �m
∞,
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the unital full free product of d-copies of �m
∞. We note that Fd

m is *-isomorphic to the full group
C*-algebra C*�m, d of the group �m,d = (Z/mZ)∗d . The condition m, d ≥ 2 and (m, d) �= (2, 2) is
equivalent to that �m, d contains the free groupsFr . We denote by (ei )m

i=1 the standard basis of minimal
projections in �m

∞, and by (ek
i )m

i=1 the kth copy of it in the free product Fd
m . We also write ek

i for the
elements ek

i ⊗ 1 in Fd
m ⊗ Fd

m and f l
j for 1 ⊗ el

j . Thus, the maximal tensor product Fd
m ⊗max Fd

m is the
universal C*-algebra generated by projective POVMs (ek

i )m
i=1 and ( f l

j )
m
j=1 under the commutation

relations [ek
i , f l

j ] = 0. In passing, we note that C*�⊗max C*� is canonically *-isomorphic to C*(�
× �) for any group �. By Stinespring’s dilation theorem (Theorem 1.5.3 in Ref. 3), one has

Qn
c = {[ϕ(ek

i f l
j )

]
k, l
i, j

: ϕ : Fd
m ⊗max Fd

m → Mn(C) u.c.p.} ⊂ Mmd (Mn(C)+).

See Refs. 4 and 5 for the proof. Here u.c.p. stands for “unital completely positive.”
We recall the notion of quasi-diagonality. We say a subset C of B(H) is quasi-diagonal if there

is an increasing net (Pr) of finite-rank orthogonal projections on H such that Pr↗1 in the strong
operator topology and ‖[C, Pr]‖ → 0 for every C ∈ C. A C*-algebra C is said to be quasi-diagonal
if there is a faithful *-representation π of C on a Hilbert space H such that π (C) is a quasi-diagonal
subset. A *-representation π : C → B(H) is said to be essential if π (C) does not contain non-
zero compact operators. The following theorem of Voiculescu is the most fundamental result on
quasi-diagonal C*-algebras. See Sec. 7 of Ref. 3 (Theorems 7.2.5 and 7.3.6) for the details.

Theorem 1 (Voiculescu Ref. 13). The following statements hold.

• Let C ⊂ B(H) be a faithful essential ∗-representation of a quasi-diagonal C∗-algebra C. Then,
C is a quasi-diagonal subset of B(H).

• Quasi-diagonality is a homotopy invariant.

The following is based on Brown’s idea (Ref. 2 and Proposition 7.4.5 in Ref. 3).

Theorem 2. The C∗-algebras Fd
m ⊗max Fd

m and C∗Fd ⊗max C∗Fd are quasi-diagonal.

Proof. We consider Fd
m as a C*-subalgebra of M = Mm(C) ∗ · · · ∗ Mm(C). Since the condi-

tional expectation � from Mm(C) onto �m
∞ extends to a u.c.p. map �̃ from M to Fd

m which restricts
to � on each free product component,1 the canonical embedding Fd

m ↪→ M is indeed faithful and
�̃ is a conditional expectation from M onto Fd

m . It follows that Fd
m ⊗max Fd

m ⊂ M ⊗max M. We will
prove that the latter is quasi-diagonal.

Let θ : M ⊗max M → B(H) be a faithful *-representation on a separable Hilbert space H. We
omit writing θ for a while and denote by M′′ the von Neumann algebra generated by θ (M ⊗ C1).
We write {ei, j }m

i, j=1 for the matrix units in Mm(C) and {ek
i, j } for the kth copy of it in M. We

note that the matrix units {ek
i, j } is unitarily equivalent to the first copy {ei, j} inside M′′. This

is a well-known fact, but we include the proof for the reader’s convenience. Let z ∈ M′′ be the
central projection such that zM′′ is finite and (1 − z)M′′ is properly infinite (Theorem V.1.19 in
Ref. 10). Then, the projections ze1, 1 and zek

1,1 are equivalent since they have the same center
valued trace z/n (Corollary V.2.8 in Ref. 10). The projections (1 − z)e1, 1 and (1 − z)ek

1,1 are also
equivalent, since they are properly infinite and have full central support 1 − z (Theorem V.1.39
in Ref. 10). Therefore, for each k, there is a partial isometry wk ∈ M′′ such that w∗

k wk = e1,1 and
wkw

∗
k = ek

1,1. Now, Uk = ∑
i ei,1w

∗
k ek

1,i is a unitary element in M′′ such that Ukek
i, jU

∗
k = ei, j for all

i, j and k. Since M′′ is a von Neumann algebra, there is a norm-continuous path Uk(t) of unitary
elements connecting Uk(0) = 1 to Uk(1) = Uk. It follows that the *-homomorphisms πt : M �→ M′′,
ek

i, j �→ Uk(t)ek
i, jUk(t)∗, give rise to a homotopy from π0 : M ↪→ M′′ to π1 : M → Mm(C) ⊂ M′′.

Likewise, there is a homotopy ρt : M → θ (C1 ⊗ M)′′ between the embedding ρ0 of M as the
second tensor component and ρ1 which ranges in Mm(C). Thus, πt × ρt : M ⊗max M → B(H) is
a homotopy between the embedding θ and π1 × ρ1. Therefore, M ⊗max M is embeddable into a
C*-algebra which is homotopic to Mm(C) ⊗ Mm(C). Now quasi-diagonality of M ⊗max M follows
from Theorem 1. The case for C∗Fd is similar (Proposition 7.4.5 in Ref. 3). �
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III. PROOF OF THEOREM

We start the proof of the inclusion
⋂

ε>0 Qn
ε ⊂ Qn

c . Take m, d, n, and [Xk,l
i, j ] ∈ ⋂

ε>0 Qn
ε arbitrary.

Then, for every r ∈ N, there are a pair of d POVMs (Ak
i (r ))m

i=1 and (Bl
j (r ))m

j=1 onHr and a u.c.p. map

ϕr : B(Hr ) → Mn(C) such that ‖[Ak
i (r ), Bl

j (r )]‖ ≤ r−1 and ‖ϕr (Ak
i (r ) • Bl

j (r )) − Xk,l
i, j ‖ ≤ r−1. We

consider the C*-algebras

M =
∞∏

r=1

B(Hr ) = {(C(r ))∞r=1 : C(r ) ∈ B(Hr ), sup
r

‖C(r )‖ < +∞},

K =
∞⊕

r=1

B(Hr ) = {(C(r ))∞r=1 : C(r ) ∈ B(Hr ), lim
r

‖C(r )‖ = 0}

and Q = M/K, with the quotient map π : M → Q. Then Ak
i = π ((Ak

i (r ))∞r=1) and Bl
j

= π ((Bl
j (r ))∞r=1) are commuting POVMs in Q. Fix an ultra-limit Lim and consider the u.c.p. map

ϕ̃ : M → Mn(C) defined by ϕ̃((C(r ))∞r=1) = Limr ϕr (C(r )) ∈ Mn(C). It factors through Q and one
obtains a u.c.p. map ϕ : Q → Mn(C) such that ϕ̃ = ϕ ◦ π . It follows that ϕ(Ak

i Bl
j ) = ϕ(Ak

i • Bl
j )

= Xk,l
i, j , and hence [Xk,l

i, j ] ∈ Qn
c .

For the inclusion Qn
c ⊂ ⋂

ε>0 Pn
ε , take m, d, n and [Xk,l

i, j ] ∈ Qn
c arbitrary. Then, there is a u.c.p.

map ϕ : Fd
m ⊗max Fd

m → Mn(C) such that ϕ(ek
i f l

j ) = Xk,l
i, j . By Stinespring’s dilation theorem, there

are a *-representation of Fd
m ⊗max Fd

m on a separable Hilbert space H and an isometry V : �n
2 → H

such that ϕ(C) = V ∗CV for C ∈ Fd
m ⊗max Fd

m . By inflating the *-representation, we may assume
it is faithful and essential. Since Fd

m ⊗max Fd
m is quasi-diagonal (Theorem 2), there is an increasing

sequence (Pr )∞r=1 of finite-rank orthogonal projections on H such that Pr↗1 in the strong operator
topology and ‖[C, Pr]‖ → 0 for C ∈ Fd

m ⊗max Fd
m . Thus, Pr ek

i Pr and Pr f l
j Pr are close to projections

(as r → ∞) and one can find projective POVMs (Ek
i (r ))m

i=1 and (Fl
j (r ))m

j=1 on PrH such that
‖Pr ek

i Pr − Ek
i (r )‖ → 0 and ‖Pr f l

j Pr − Fl
j (r )‖ → 0. We note that ‖Pr V − V ‖ → 0. It follows that

‖[Ek
i (r ), Fl

j (r )]‖ → 0 and

lim
r→∞ V ∗(Ek

i (r ) • Fl
j (r ))V = lim

r→∞ V ∗Ek
i (r )Fl

j (r )V = V ∗ek
i f l

j V = Xk,l
i, j .

This implies [Xk,l
i, j ] ∈ ⋂

ε>0 Pn
ε . �

IV. ASYMPTOTICALLY COMMUTING UNITARY MATRICES

Kirchberg’s conjecture6 asserts that C∗Fd ⊗min C∗Fd = C∗Fd ⊗max C∗Fd for some/all d ≥ 2.
By Choi’s theorem (Theorem 7.4.1 in Ref. 3), C∗Fd is residually finite dimensional (RFD) and
so is C∗Fd ⊗min C∗Fd . Since finite-dimensional representations factor through the minimal tensor
product, Kirchberg’s conjecture is equivalent to the assertion that C∗Fd ⊗max C∗Fd is RFD. For the
following, let u1, . . . ud be the standard unitary generators of C∗Fd . We also write ui for the elements
ui⊗1 in C∗Fd ⊗ C∗Fd and v j for 1⊗uj. We denote by U(H) the set of unitary operators on H. For
α ∈ Md (Mn(C)), we consider

‖α‖min = ‖
∑
i, j

αi, j ⊗ uiv j‖Mn (C)⊗C∗Fd⊗minC∗Fd

= sup{‖
∑
i, j

αi, j ⊗ Ui Vj‖ : k ∈ N, Ui , Vj ∈ U(�k
2)s.t.[Ui , Vj ] = 0}

and

‖α‖max = ‖
∑
i, j

αi, j ⊗ uiv j‖Mn (C)⊗C∗Fd⊗maxC∗Fd

= sup{‖
∑
i, j

αi, j ⊗ Ui Vj‖ : Ui , Vj ∈ U(�2)s.t.[Ui , Vj ] = 0}.
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In the above expressions, one may assume U1 = 1 and V1 = 1 by replacing Ui and Vj with U ∗
1 Ui

and Vj V ∗
1 . It follows that ‖α‖min = ‖α‖max for d = 2. By Pisier’s linearization trick, Kirchberg’s

conjecture is equivalent to the assertion that ‖α‖min = ‖α‖max holds for every d ≥ 3 (or just d = 3)
and every α ∈ Md (Mn(C)). See Sec. 12 of Ref. 9, Chap. 13 in Ref. 3, and Ref. 7 for the proof of
this fact and more information. The proof of the following lemma is omitted because it is almost the
same as that of the main theorem.

Lemma 3. For every α ∈ Md (Mn(C)), one has

‖α‖max = inf
ε>0

sup{‖
∑
i, j

αi, j ⊗ Ui Vj‖ : k ∈ N, Ui , Vj ∈ U(�k
2) s.t. ‖[Ui , Vj ]‖ ≤ ε}.

We observe the following fact. Suppose dimH < ∞ and U, V ∈ U(H) are such that ‖[U, V ]‖ ≤
ε. It is well-known that the pair (U, V ) need not be close to a commuting pair of unitary matrices,12

but after a dilation it is. Indeed, this follows from amenability of Z2. Let m = �1/
√

ε� and F
= {0, . . . , m}2 ⊂ Z2. We define an isometry W : H → �2Z2 ⊗ H by Wξ = |F |−1/2 ∑

x∈F δx ⊗
ϕ(x)ξ , where ϕ((p, q)) = U pV q ∈ U(H) for (p, q) ∈ F. Then, for the commuting unitary operators
u and v, acting on �2Z2 ⊗ H by shifting indices in Z2 by ( − 1, 0) and (0, − 1), respectively, one
has

‖W ∗uW − U‖ = ‖ 1

|F |
∑

x∈F∩((−1,0)+F)

ϕ(x)∗ϕ(x + (1, 0)) − U‖

≤ mε + 1/(m + 1) < 2
√

ε.

Similarly, one has ‖W ∗vW − V ‖ < 2
√

ε. Since C∗Z2 is Abelian (and RFD), one can find a finite
dimensional Hilbert space H̃ containing H and commuting unitary matrices Ũ and Ṽ on H̃ such that
‖�H(Ũ ) − U‖ < 2

√
ε and ‖�H(Ṽ ) − V ‖ < 2

√
ε, where �H : B(H̃) → B(H) is the compression.

We note that �H(Ũ ) ≈ U and �H(Ṽ ) ≈ V for any unitary elements imply �H(Ũ Ṽ ) ≈ U V (see,
e.g., Theorem 18 in Ref. 8). Keeping these facts in mind, we formulate the Strong Kirchberg
Conjecture (II).

Strong Kirchberg Conjecture (II). Let d ≥ 2. For every κ > 0, there is ε > 0 with the
following property. If dimH < +∞ and U1, . . . , Ud , V1 . . . , Vd ∈ U(H) are such that ‖[Ui , Vj ]‖
≤ ε, then there are a finite-dimensional Hilbert space H̃ containing H and Ũi , Ṽ j ∈ U(H̃) such that
‖[Ũi , Ṽ j ]‖ = 0 and ‖�H(Ũi ) − Ui‖ ≤ κ and ‖�H(Ṽ j ) − Vj‖ ≤ κ .

We note that the analogous statement for U1, U2, V is true, by the proof of the following theorem
plus the fact that C∗(F2 × Z) is RFD and has the LLP (local lifting property). See Chap. 13 in
Ref. 3 for the definition of the LLP and relevant results.

Theorem 4. The following conjectures are equivalent.

(1) The Strong Kirchberg Conjecture (I) holds for some/all (m, d).
(2) The Strong Kirchberg Conjecture (II) holds for some/all d.
(3) Kirchberg’s conjecture holds and C∗(Fd × Fd ) has the LLP for some/all d ≥ 2.
(4) The algebraic tensor product C∗Fd ⊗ C∗Fd ⊗ B(�2) has unique C∗-norm.

We note that it is not known whether C∗(Fd × Fd ) has the LLP, but it is independent of d ≥ 2
and equivalent to that the LLP is closed under the maximal tensor product. Also it is equivalent to the
LLP for C*(�m, d × �m, d). This problem seems to be independent of Kirchberg’s conjecture. We
will only prove the equivalence (2)⇔(3), because the proof of (1)⇔(3) is very similar and (3)⇔(4)
is an immediate consequence of the tensor product characterization of the LLP (see Ref. 6 and Chap.
13 in Ref. 3).

Lemma 5. The following conjectures are equivalent:

(1) For every κ > 0, there is ε > 0 with the following property. If dimH < +∞ and
U1, . . . , Ud , V1 . . . , Vd ∈ U(H) are such that ‖[Ui , Vj ]‖ ≤ ε, then there are a (not necessarily
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finite-dimensional) Hilbert space H̃ containingH and Ũi , Ṽ j ∈ U(H̃) such that ‖[Ũi , Ṽ j ]‖ = 0
and ‖�H(Ũi ) − Ui‖ ≤ κ and ‖�H(Ṽ j ) − Vj‖ ≤ κ .

(2) The C∗-algebra C∗(Fd × Fd ) has the LLP.

Proof. (1)⇒(2): To prove the LLP of C*-algebra C∗(Fd × Fd ), it suffices to show that the surjec-
tive *-homomorphism π from C∗(F2d ) = C∗(w1, . . . , wd , w

′
1, . . . , w

′
d ) onto C∗(Fd × Fd ), wi �→ ui

and w′
j �→ v j , is locally liftable. By the Effros–Haagerup theorem (Theorem C.4 in Ref. 3), this

follows once it is shown that the canonical surjection

� : B(�2) ⊗min C∗(F2d )/B(�2) ⊗min ker π → B(�2) ⊗min C∗(Fd × Fd )

is isometric. Let u0 = 1 = v0 and E = span{ui , v j : 0 ≤ i, j ≤ d} be the operator subspace of
C∗(Fd × Fd ). By Pisier’s linearization trick, it is enough to check that � is (completely) isometric
on B(�2) ⊗ E . For this, take α ∈ Md+1(B(�2)) arbitrary and let

λ = ‖
∑

αi, j ⊗ uiv j‖B(�2)⊗minC∗(F2d )/B(�2)⊗minker π .

Let (en)∞n=1 be a quasi-central approximate unit for ker π in C∗(F2d ), and let wi (n) = (1 − en)1/2wi (1
− en)1/2 + en and w′

j (n) likewise (although the proof will equally work for w′
j (n) = w′

j ). Then, one
has

‖
∑

αi, j ⊗ wi (n)w′
j (n)‖B(�2)⊗minC∗(F2d ) ≥ λ,

lim
n

‖[wi (n), w′
j (n)]‖ = lim

n
‖(1 − en)2[wi , w

′
j ]‖ = ‖π ([wi , w

′
j ])‖ = 0

and limn ‖[w∗
i (n), w′

j (n)]‖ = 0. Since C∗(F2d ) is RFD, one can find a finite-dimensional *-
representation σ n such that

‖
∑

αi, j ⊗ σn(wi (n)w′
j (n))‖B(�2)⊗minσn (C∗(F2d )) ≥ λ − 1

n
.

For every contractive matrices x and y, we consider the unitary matrices defined by

Ux =

⎡
⎢⎢⎣

x
√

1 − xx∗√
1 − x∗x −x∗

x
√

1 − xx∗√
1 − x∗x −x∗

⎤
⎥⎥⎦ and

Vy =

⎡
⎢⎢⎣

y
√

1 − yy∗
y

√
1 − yy∗√

1 − y∗y −y∗√
1 − y∗y −y∗

⎤
⎥⎥⎦ .

We observe that the (1, 1)-entry of Ux Vy is xy, and if ‖[x, y]‖ ≈ 0 and ‖[x*, y]‖ ≈ 0, then ‖[Ux , Vy]‖ ≈
0. Thus, applying the assumption (1) to Uσn (wi (n)) and Vσn (w′

j (n)), one may find unitary operators

Ũi (n), Ṽ j (n) and the compression �n such that [Ũi (n), Ṽ j (n)] = 0, ‖�n(Ũi (n)) − Uσn (wi (n))‖ → 0,
and ‖�n(Ṽ j (n)) − Vσn (w′

j (n))‖ → 0. It follows that

‖
∑

αi, j ⊗ uiv j‖B(�2)⊗minC∗(Fd×Fd ) ≥ lim sup
n→∞

‖
∑

αi, j ⊗ Ũi (n)Ṽ j (n)‖

≥ lim sup
n→∞

‖
∑

αi, j ⊗ �n(Ũi (n)Ṽ j (n))‖

= lim sup
n→∞

‖
∑

αi, j ⊗ Uσn (wi (n))Vσn (w′
j (n))‖

≥ lim sup
n→∞

‖
∑

αi, j ⊗ σn(wi (n)w′
j (n))‖

≥ λ.

This proves that � is isometric on B(�2) ⊗ E , and the assertion (2) follows.
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(2)⇒(1): Suppose that the assertion (1) does not hold for some κ > 0. Thus, there are unitary
operators Ui(n) and Vj (n) on Hn with ‖[Ui (n), Vj (n)]‖ → 0 which witness a violation of the
conclusion of (1). We consider the C*-algebras M = ∏

B(Hn) and Q = ∏
B(Hn)/

⊕
B(Hn), with

the quotient map π : M → Q. Then, Ui = π ((Ui (n))∞n=1) and Vj = π ((Vj (n))∞n=1) are commuting
systems of unitary elements in Q, and the map ui �→ Ui, v j �→ Vj extends to a ∗-homomorphism
on C∗(Fd × Fd ). By the assumption (2), one may find a u.c.p. map ϕ : C∗(Fd × Fd ) → M such
that π (ϕ(ui)) = Ui and π (ϕ(v j )) = Vj . We expand ϕ as (ϕn)∞n=1 and see ‖Ui(n) − ϕn(ui)‖ → 0
and ‖Vj (n) − ϕn(v j )‖ → 0. Take N such that ‖Ui(N) − ϕN(ui)‖ < κ and ‖Vj (N ) − ϕN (v j )‖ < κ .
By Stinespring’s dilation theorem, there are a ∗-representation σ : C∗(Fd × Fd ) → B(H̃) and an
isometry W : HN → H̃ such that ϕN (x) = W ∗σ (x)W . Thus identifyingHN with WHN , one obtains
unitary operators Ũi = σ (ui ) and Ṽ j = σ (v j ) which satisfy the conclusion of the assertion (1) for
Ui(N) and Vj (N ). This is a contradiction to the hypothesis. �

The analogue of Lemma 5 also holds in the projective setting, and it can be proven using the
following dilation lemma.

Lemma 6. Let m ∈ N be fixed and (Ai (n))m
i=1 and (B j (n))m

j=1 be sequences of POVMs on
Hn such that limn‖[Ai(n), Bj(n)]‖ = 0. Then, there are sequences of projective POVMs (Pi (n))m

i=1
and (Q j (n))m

j=1 on �m+1
2 ⊗ �m+1

2 ⊗ Hn such that limn‖[Pi(n), Qj(n)]‖ = 0 and �n(Pi(n)) = Ai(n),
�n(Qj(n)) = Bj(n), and �n(Pi(n)Qj(n)) = Ai(n)Bj(n). Here �n denotes the compression to Cδ1

⊗ Cδ1 ⊗ Hn
∼= Hn .

Proof. Let X (n) = [A1(n)1/2 · · · Am(n)1/2] ∈ M1,m(B(Hn)), and consider the unitary element

U (n) =
[

X (n) 0√
1 − X (n)∗ X (n) −X (n)∗

]
∈ Mm+1(B(Hn)).

We denote by Ei(n) the orthogonal projection in Mm+1(B(Hn)) onto the ith coordinate, and define
P ′

i (n) = U (n)Ei (n)U (n)∗ for i = 1, . . . , m − 1 and P ′
m(n) = U (n)(Em(n) + Em+1(n))U (n)∗. Then,

(P ′
i (n))m

i=1 is a projective POVM on �m+1
2 ⊗ Hn whose (1, 1)-entry is (Ai (n))m

i=1. Similarly, one
obtains a projective POVM (Q′

j (n))m
j=1. Define σp,3 : B(�m+1

2 ⊗ Hn) → B(�m+1
2 ⊗ �m+1

2 ⊗ Hn) by
C ⊗ D �→ C ⊗ 1 ⊗ D if p = 1, and C ⊗ D �→ 1 ⊗ C ⊗ D if p = 2; and let Pi (n) = σ1,3(P ′

i (n)) and Q j (n)
= σ2,3(Q′

j (n)). Since limn‖[Ai(n), Bj(n)]‖ = 0, the entries of P ′
i (n) asymptotically commute with

those of Q′
j (n). It follows that limn‖[Pi(n), Qj(n)]‖ = 0. They also satisfy the other conditions. �

We are now ready for the proof of Theorem 4.

Proof. (2)⇒(3): Assume the assertion (2). Then, Lemma 3 implies that ‖α‖max = ‖α‖min

for every α ∈ Md+1(Mn(C)) and hence Kirchberg’s conjecture follows. Lemma 5 implies that
C∗(Fd × Fd ) has the LLP.

(3)⇒(2): Assume the assertion (3). Then, by Lemma 5, one has the Strong Kirchberg Conjecture
(II) for a possibly infinite-dimensional H̃. Since Kirchberg’s conjecture is assumed and C∗(Fd ×
Fd ) ∼= C∗Fd ⊗min C∗Fd is RFD, one can reduce H̃ to a finite-dimensional Hilbert space, up to a
perturbation. See Theorem 1.7.8 in Ref. 3. �
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