Title: A Soil-Water Coupled Finite Element Analysis of Open-Cut Excavation for Soft Clay Deposit by an Elasto-Viscoplastic Model

Author(s): Higo, Yosuke; Oka, Fusao; Nakano, M.; Mukai, H.; Izumitani, T.; Takeda, S.; Amano, K.; Nagaya, J.

Issue Date: 2011

URL: http://hdl.handle.net/2433/173830

Type: Article

Textversion: publisher

Kyoto University
A Soil-Water Coupled Finite Element Analysis of Open-cut Excavation for Soft Clay Deposit by an Elasto-viscoplastic Model

Yosuke Higo (Presenting author)

Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, Japan

F.Oka, Department of Civil and Earth Resources Engineering, Kyoto University

M.Nakano, Nakanoshima Rapid Railway Co. Ltd.

H.Mukai and T.Izumitani, Keihan Electric Railway Co. Ltd.

S.Takeda and K.Amano, Taisei, Toda, Tekken, and Kumagai Gumi JV

J.Nagaya, Geo Research Institute

ABSTRACT:
A case study of open-cut excavation in soft clay deposit has been performed by a soil-water coupled finite element analysis with an elasto-viscoplastic model. As a part of the construction of the new subway line called Nakanoshima line in Osaka, large and deep excavation has been carried out by the open-cut excavation method with earth retaining wall through the thick alluvial Nakanoshima clay deposit. Nakanoshima clay is soft and sensitive and the thickness is about 10 meters. Since the construction site is located at the center of Osaka city and is surrounded by many civil structures, it was necessary to minimize the deformation of ground behind the earth retaining walls. One of the earth retaining wall is very close to the big buildings and the other is also very close to the revetment of river. The excavation has been successfully performed. In the present study, a case history of the excavation in the construction of subway station mentioned above is numerically back analyzed. In the analysis, a finite element method based on a Biot’s type of two phase mixture theory [1] is adopted and an elasto-viscoplastic model considering structural changes [2] is used. Comparison between numerical analysis results and the measured results shows that the simulations method can well reproduce the deformation of earth retaining wall by incorporating the proposed compensation method of measurement data. In addition, it is confirmed that the construction has been successfully executed without significant damage of earth retaining wall and the alluvial clay deposit. Furthermore, the effect of time-dependent behaviors of clay during the excavation such as creep and consolidation are discussed.

REFERENCES

A soil-water coupled finite element analysis of open-cut excavation for soft clay deposit by an elasto-viscoplastic model

Yosuke Higo Kyoto University

Coauthors of this study:

Oka F. Kyoto University
Nakano M. Nakanoshima Rapid Railway Co., Ltd.
Matsui H., Izumitani T. Keihan Electric Railway Co., Ltd.
Takeda S., Amano K. Taisei, Toda, Tekken and Kumagai Gumi, JV
Nagaya J. Geo-Research Institute

Introduction

“Nakanoshima Line”

- New subway line in Osaka
- Large and deep excavation has been carried out by the open-cut excavation method for the construction of stations

- Soil excavated is thick holocene Nakanoshima clay deposit: Soft and sensitive
- Construction site is located at the center of Osaka City: Surrounded by many civil structures

It was necessary to minimize the deformation of the ground behind the earth retaining walls
Scope & Objectives

Soil-water coupled FEM using an elasto-viscoplastic model

Biot’s type of two-phase mixture theory (Oka et al. 1994, Higo et al. 2006)

Elasto-viscoplastic model considering structural changes (Kamoto and Oka 2005)

A case history:
excavation for the construction of one subway station
is numerically back analyzed

Comparison of the results of the numerical analysis and the measurements

- The behavior of the retaining walls
- The performance of the excavation work

Elasto-viscoplastic model considering structural changes

Overstress type of viscoplastic flow rule

\[D_{\text{vis}} = C_{\text{vis}} \exp \left(\frac{\eta \ln \sigma^c m}{\eta_{m} \sigma^c_{m}} \right) \]

\[C_{\text{vis}} = a \delta_{11} \delta_{11} + b (\delta_{12} \delta_{21} + \delta_{21} \delta_{12}) \]

\[\sigma^c = 2b \quad C^c_{12} = 3a + 2b \]

- \(D^\text{vis} \): viscoplastic stretching tensor
- \(m \): viscoplastic parameters
- \(\eta \): relative stress ratio
- \(M \): dilatancy coefficient
- \(\sigma^c \): Terzaghi’s effective stress
- \(\sigma^c \): mean effective stress
- \(\delta_{ij} \): Kroncker’s delta

Hardening-softening rule due to structural changes

\[\sigma_{\text{m}} = \left(\sigma^\text{m} - \sigma^\text{m}_{\text{soften}} \right) \exp \left(-\beta \varepsilon \right) \]

\[\varepsilon = \int \sqrt{D^\text{vis} \cdot D^\text{vis}} \, dt \]

- \(\varepsilon \): void ratio
- \(\lambda \): swelling index
- \(\sigma^\text{m} \): structural parameter (amount of strain softening)
- \(\beta \): structural parameter (rate of softening)
- \(\sigma^\text{m}_{\text{soften}} \): initial value of \(\sigma^\text{m} \)
- \(\varepsilon^\text{v} \): viscoplastic volumetric strain
Cross Section and Soil Conditions

- Excavation Pit: Width 17.5 m, Depth 23.4 m
- Earth retaining wall: Soil Mixing Wall, Height 38 m
- Soft Holocene clay layer: Thickness of 20 m,
- Left-hand side of the excavation pit: Dojima River, 5.6 m away from the earth retaining wall
- Right-hand side of the excavation pit: Tall building stands 10 m behind the earth retaining wall
- Clay deposit under the building: Improved by the CJG method

Finite Element Mesh and Boundary Conditions

- Cohesive soils: elasto-viscoplastic solid elements, Other soils: elastic solid elements
- Earth retaining wall:
 Beam elements and elastic solid elements to model the steel and the soil cement
- Interface element:
 Thin layer element (0.05m)

Geomechanics Laboratory, Kyoto University
ISSMGE TC302 Symp., Osaka, July 14-15, 2011
Horizontal Deflection of Earth Retaining Wall (corrected)

Measurement (corrected) Simulation

Deflection of the numerical results is larger than that of the measurements. Deformation modes of the retaining walls are similar.

Geomechanics Laboratory, Kyoto University ISSMGE TC302 Symp., Osaka, July 14-15, 2011

Time history of the horizontal deflection (riverward side)

Thick lines: simulation, Thin lines: measurement

The retaining wall deforms even between the excavations due to pore water migration and creep.

Geomechanics Laboratory, Kyoto University ISSMGE TC302 Symp., Osaka, July 14-15, 2011