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We report the demonstration of the picosecond-pulse lasing in blue region from an optically pumped

gain-switched InGaN vertical-cavity-surface-emitting laser (VCSEL). Through 150-fs optical pulse

excitations at room temperature, multimode pulse lasing with a main mode at 436.5 nm from the

InGaN VCSEL was observed. The output pulse widths were measured to be as short as 9.8 ps for the

total lasing spectra and 6.0 ps for the main mode. Since the obtained short pulses were still not limited

by its photon lifetime of 0.7 ps or band-width of 0.8 nm, possible ways to generate even shorter pulses

have been examined. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766290]

Vertical-cavity surface-emitting lasers (VCSELs) have

significant advantages such as single-longitudinal-mode

operation, low laser threshold, circular output beam with low

divergence, short cavity lifetime due to short cavity length,

high intrinsic bandwidth, wafer-scale processing, and the

capability to form two-dimensional device arrays.1–5 These

advantages have made very attractive potential applications

of VCSELs for compact light sources in high-speed optical

communications, optical networks, and optical signal proc-

essing. Moreover, promising results have been reported

regarding high-speed operation including picoseconds short

pulses in optically pumped gain-switched GaAs and

InGaAsP VCSELs,1–4 and high-speed modulation with a

bandwidth of the order of 50-70 GHz in electrically gain-

switched InGaAs VCSELs.6,7

Owing to improvement of the crystal growth techniques

for high-quality nitrides, nitride-based VCSELs with the las-

ing wavelength in blue and green regions have attracted

increasing attention8–13 in fundamental research and applica-

tion as on-demand optical sources in high-resolution laser

printer and next generation of optical storages such as

the high-density and high-capacity 3-dimensional optical

storage.14,15 To decrease the device access time and improve

the efficiency, optical pulse sources are preferred that have

short pulse width, short delay time, and high peak power.

Consequently, studying short-pulse generations in blue

region is of great interest. So far, however, blue-short-pulse

generations and the dynamics in nitride-based VCSELs have

not yet been demonstrated, although the room-temperature

steady-state lasing in blue region from GaN and InGaN

VCSELs is established.8–13

In this paper, generation of 6.0-ps short pulses in 436.5-nm

blue region from an InGaN VCSEL by gain switching was

demonstrated. On the basis of the obtained pulse characteristics,

possible ways to generate even shorter pulses have been dis-

cussed. Subpicosecond impulsive optical pumping was used

here, to study physics of short-pulse generation by gain switch-

ing by avoiding the effects of the parasitic series resistances

of the dielectric distributed-Bragg reflectors (DBRs) and the

p-type layers in current injection.

The sample was fabricated by metal-organic chemical

vapor deposition. The growth procedure was reported

elsewhere.10,11 Figure 1 schematically shows the structure of

the InGaN VCSEL. The sample consists of a 1.7-lm bulk

GaN layer, a 200-nm Al0.07Ga0.93 N cladding layer, an active

region consisting of three sets of InGaN asymmetric quan-

tum wells (with thicknesses of 2.5, 3.0, 3.5 nm, respectively,

aiming to obtain a low lasing threshold10) and 5-nm GaN

spacer layers, a 115-nm GaN layer, a 150-nm Al0.07Ga0.93 N

layer, and a 5-nm GaN cap layer. The DBRs deposited on

both surfaces of the cavity are composed of 13.5 pairs of

Ta2O5/SiO2 layers. Low-threshold steady-state lasing per-

formance of the device was reported previously.10,11

The pulse lasing characteristics of the VCSEL were stud-

ied by fs impulsive optical excitation at 355 nm with a 0.5-mm

spot diameter. The 355-nm pulses were generated by the fourth

harmonic of the signal output from an optical parametric

amplifier (OPA) system pumped by 800-nm pulses from a

mode-locked Ti:sapphire regenerative amplifier (Spitfire,

Spectra-Physics), operating at 150-fs pulse duration and 1-kHz

repetition.

Blue output pulses of the VCSEL were characterized by

using an optical Kerr-gate method,16–18 where the 800-nm

pulses partially split from the regenerative amplifier output

controlled the on-off of the optical Kerr gate. The Kerr-gated

and time-integrated spectra were measured by a spectrometer

system with a liquid-nitrogen-cooled charge-coupled device.

The temporal resolution of the Kerr gate was 0.7 ps in the

present system, which was mainly determined by the relaxa-

tion time of polarization in the Kerr medium (toluene). Time

traces of amplified spontaneous emission (ASE) of the

VCSEL below lasing threshold were characterized with a

streak camera system with a temporal resolution of about

20 ps. To study steady-state lasing characteristics for refer-

ence, ns optical pumping was carried out at 355 nm, 25-ns

duration, and 30-kHz repetition with the third-harmonics of a

Q-switched YVO4 pulse laser.
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Figure 2(a) shows the time-integrated lasing spectrum of

the VCSEL measured at a pumping energy of 500 nJ/pulse,

which was 3.5 times higher than the threshold pumping

energy Pth¼ 140 nJ/pulse. A strong main lasing mode at

436.5 nm, a sub mode at 439.8 nm, and other weak modes at

around 441 nm were observed. Figure 2(b) shows an ASE

spectrum measured with the pumping energy of 60 nJ/ pulse,

which was below the lasing threshold. Figure 2(c) shows a

steady-state lasing spectrum measured under ns pumping at a

level of 3.5 times above the threshold Pth¼ 0.74 lJ/pulse,

where single mode lasing at a long wavelength of 455.2 nm

is found.

The pulsed lasing occurred on the lower energy side of

the ASE peak and showed blue-shifted multi-mode peaks

unlike the steady-state lasing. Multi-mode peaks are possibly

due to multiple transverse modes,19–21 caused by gain guid-

ing, sample inhomogeneity, and/or localized states, even if

the sample was designed as single longitudinal mode lasers.

Further researches on the origins of multiple modes are in

progress.

Figure 3(a) shows the pulse waveforms of the total las-

ing spectrum (dotted curve) and the main mode at 436.5 nm

(solid curve). The output pulse width (full width at half max-

imum (FWHM)) of the total lasing spectrum from 430 nm to

460 nm was 9.8 ps. Figure 3(b) shows a measured decay

curve (filled dots) of the ASE from the VCSEL below the

lasing threshold corresponding to the spectrum in Fig. 2(b).

A dashed curve shows the time trace of the pumping pulse,

where the 19-ps width represents the temporal resolution of

the streak camera. The ASE well below lasing threshold

starts almost immediately with the pumping pulse and the

decay of the ASE was single exponential with a decay time

of 255 ps, as shown by a solid fitting curve. The rapid rise

and the 255-ps long decay time of the ASE are very different

with the 9.8 ps pulse width with a delay after the above-

threshold pumping as shown in Fig. 2(a). The stark contrast

between these results clearly demonstrates that the 9.8 ps

short pulses in blue range were generated via gain-switching

operation of an InGaN VCSEL.

FIG. 2. Time-integrated spectra of the gain-switched VCSEL with (a)

above-threshold subpicosecond pulse excitation, (b) below-threshold subpi-

cosecond pulse excitation, and (c) above-threshold steady-state excitation.

FIG. 1. Schematic of the structure of the InGaN VCSEL and the experiment

configuration.

FIG. 3. (a) The waveforms of the total spectrum (dotted curve) and the main

mode (solid curve) at 436.5 nm. The 0.7 ps response (dashed curve) of the

pumping laser indicates the temporal resolution of the system. (b) Decay

curve of the amplified spontanous emission with below-threshold subpico-

second pulse excitation.
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Note that the spectrally resolved waveform of the main

mode at 436.5 nm shown by a solid curve in Fig. 3(a) was

even shorter and had a FWHM of 6.0 ps. This indicates that

6.0-ps short pulses can be obtained by additionally using a

narrowband-pass filter or by improving device structures to

allow lasing in only a single mode.

We now examine the 6.0-ps pulse width obtained at

436.5 nm. The 0.8-nm (spectral resolution is 0.3 nm) spectral

width of the main mode provides a frequency bandwidth of

1.3 THz. This gives the time-bandwidth product of 7.6,

which is far larger than the Fourier-transform-limited value

of 0.44 (Gaussian) or 0.31 (Sech2). This indicates that the

obtained 6.0-ps pulses are strongly chirped, while they are

generated via gain switching in a single mode. Such elon-

gated pulses with strong chirping are inherent to gain-

switched single-mode lasers, and could be further shortened

by chirp compensation and spectral filtering.22

We next compare the 6.0-ps pulse width with the photon

lifetime sp of the present device, which is evaluated to be 0.7

ps according to the relationship sp¼ (L/vg)/ln(1/R). Here,

vg¼ 1.0� 10�2 cm/ps is the group velocity in VCSEL,

L¼ 2.3 lm is the cavity length of the VCSEL, and R is the

mean reflectivity of the DBR layers and estimated to be

97%.11 The photon lifetime of 0.7 ps is shorter by a factor of

eight than the obtained pulse width of 6.0 ps. Thus, the 6.0-

ps short pulse is not photon-lifetime limited.

In such cases, the gain-switched pulses should be further

shortened, on the basis of our rate-equation analysis,23 by

increasing optical gain; for example, by increasing quantum-

well numbers and/or improving matching of quantum-well

designs to VCSEL structures.

In conclusion, picosecond pulses in blue region were

obtained at room temperature from a gain-switched InGaN

VCSEL through 150-fs impulsive optical excitations. Using

ultrafast time-resolved optical Kerr-gate measurements, multi-

mode pulse lasing with a main mode at 436.5 nm was observed

from the optically pumped InGaN VCSEL. The output pulse

widths were measured to be as short as 9.8 ps for the total lasing

spectra and 6.0 ps for the main mode. Since the obtained short

pulses were still neither photon-lifetime limited nor Fourier-

transform limited, further studies by improving laser structure

and/or using chirp compensation and spectral filtering should

generate even shorter pulses by gain switching. The generation

of picosecond pulses from the InGaN VCSEL demonstrated in

this study is expected to pave the way for the applications of

nitride-based VCSELs as short pulse blue light sources.
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