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Abstract

We deal with the NavierStokes equation with the generalized impermeability bound‐

ary conditions. We give basic information on these boundary conditions and we further

study dynamical properties of solutions, like stability, fast decay and similar. The used

norms are graph norms of powers of the Stokes operator S.
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1 Introduction

Let  $\Omega$\subset \mathbb{R}^{3} be a simply connected bounded domain with the boundary \partial $\Omega$ of the Hölder

class  C^{2+ $\beta$} for some  $\beta$>0 . Suppose that  0<T\leq+\infty . Put  Q_{T}= $\Omega$\times(0, T) . We deal with

the initialboundary value NavierStokes problem

\partial_{t}u+v\mathrm{c}\mathrm{u}\mathrm{r}1^{2}u+\mathrm{c}\mathrm{u}\mathrm{r}1u\times u+\nabla q=f in Q_{T} , (1.1)

\mathrm{d}\mathrm{i}\mathrm{v}u=0 in Q_{T} , (1.2)

u\cdot n=0, \mathrm{c}\mathrm{u}\mathrm{r}1u\cdot n=0, \mathrm{c}\mathrm{u}\mathrm{r}1^{2}u\cdot n=0 \mathrm{o}\mathrm{n}\partial $\Omega$\times(0, T) , (1.3)

u(0)=u_{0} in  $\Omega$ . (1.4)

We denote by  u the velocity, by q the sum p+\displaystyle \frac{1}{2}|u|^{2} where p is the pressure, v denotes the

kinematic coefficient of viscosity, f is a specific body force and n is the outer normal vector

on \partial $\Omega$.

The boundary conditions (1.3) were introduced in [2] and we call them the generalized
impermeability boundary conditions. We do not solve the question which boundary condition

is more or less appropriate in which situation. Various physical considerations indicate that

the answer is not simple and it depends on the actual smoothness of the wall which creates

the boundary of the flow field, on mechanical and geometrical properties of particles of the
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fluid and on the type of the considered flow. Our claim in this paper and in other papers

where we deal with the generalized impermeability boundary conditions (1.3) is to present
them as a logically correct alternative to the noslip boundary condition

u=0 \mathrm{o}\mathrm{n}\partial $\Omega$\times(0, T) (1.5)

or to Navier�s boundary condition

au+b\mathrm{c}\mathrm{u}\mathrm{r}1u\times n=0 \mathrm{o}\mathrm{n}\partial $\Omega$\times(0, T) (1.6)

and to show that the conditions (1.3) enable us to obtain at least the same qualitative results

as the conditions (1.5) or (1.6).
We define the weak problem corresponding to (1.1)(1.4) in Section 2 and we explain

that the third condition in (1.3), although not explicitly involved in the weak formulation,
naturally follows from the weak formulation and the first two conditions in (1.3) if a weak

solution is �smooth�. The physical meaning of the generalized impermeability boundary
conditions (1.3) is explained in subsection 2.2. In subsection 2.3, we show that the conditions

(1.3) naturally induce boundary conditions of the same type for vorticity and a Neumann‐

type boundary condition for pressure which is simpler than the same condition obtained in

the case of the noslip boundary condition (1.5) for velocity.
Section 3 is devoted to some properties of powers of the Stokes operator S (defined on a set

of functions satisfying the boundary conditions (1.3)). A theorem on stability of a solution

with respect to small perturbations of initial data and the acting body force is derived in

Section 4. The perturbations of the initial velocity are measured in the graph norm of

operator S^{1/4} . Finally, in Section 5, we prove a theorem which provides the existence of a

solution v of the problem (1.1)(1.4) whose norm \Vert S^{ $\alpha$}v(0)\Vert_{2} (with \displaystyle \frac{1}{4}< $\alpha$\leq\frac{1}{2} ) is arbitrarily
large and whose values v(t) (for t in a time interval whose distance from zero is arbitrarily
small) belong to an arbitrarily chosen open set U in the space D(S) (with \displaystyle \frac{3}{4}< $\gamma$<1 ).

We use the following notation:

\circ L_{ $\sigma$}^{2}( $\Omega$) is a closure of \{v\in C_{0}^{\infty}( $\Omega$)^{3};\mathrm{d}\mathrm{i}\mathrm{v}v=0\} in L^{2}( $\Omega$)^{3} . It is the Hilbert space of

divergencefree (in the sense of distributions) vector functions v in L^{2}( $\Omega$)^{3} such that

v\cdot n=0 on \partial $\Omega$ in the sense of traces. (Here we use the existence of a continuous operator
of traces from the space  L_{\mathrm{d}\mathrm{i}\mathrm{v}}^{2}( $\Omega$) :=\{v\in L^{2} \mathrm{d}\mathrm{i}\mathrm{v}v\in L^{2} to W^{-1/2,2}(\partial $\Omega$) which

assigns to each smooth function v from L_{\mathrm{d}\mathrm{i}\mathrm{v}}^{2}( $\Omega$) the normal component of v on \partial $\Omega$. )
0 The scalar product in L^{2}( $\Omega$)^{3} (and particularly also in L_{ $\sigma$}^{2} is denoted by ( .

, )_{2} and

the associated norm is \Vert. \Vert_{2}.

\mathrm{o}P_{ $\sigma$} is the orthogonal projection of L^{2}( $\Omega$)^{3} onto L_{ $\sigma$}^{2}

\mathrm{o}L_{ $\sigma$}^{2}( $\Omega$)^{\perp} is the orthogonal complement to L_{ $\sigma$}^{2}() in L^{2}( $\Omega$)^{3} . It coincides with \{\nabla $\varphi$; $\varphi$\in
 W^{1,2}( $\Omega$)\}.

\mathrm{o}\Vert. \Vert_{s} denotes the norm in L() and \Vert. \Vert_{k,s} is the norm in the Sobolev space W^{k,s}( $\Omega$) .

0 The norms of vectorvalued or tensorvalued functions are denoted in the same way as

the norms of scalar functions.

\mathrm{o}D^{1} is the set of functions u\in W^{1,2}( $\Omega$)^{3}\cap L_{ $\sigma$}^{2}() such that (curl u\cdot n ) |_{\partial $\Omega$}=0 in the sense

of traces. D^{1} is a closed subspace of W^{1,2}() .

\mathrm{o}D^{-1} is the dual to D^{1} . The duality between the elements of D^{-1} and D^{1} is denoted by
\langle .

, \}_{ $\Omega$} and the norm in D^{-1} is denoted by \Vert. \Vert_{-1,2}.
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\mathrm{o}A:= curl |_{D^{1}} (Thus the domain D(A) of operator A coincides with space D^{1}. )
\mathrm{o}D^{2} denotes the domain of the operator A^{2} . It is proved in [2] that D^{2} is a set of all

divergencefree functions from W^{2,2}( $\Omega$)^{3} that satisfy the boundary conditions (1.3). Note

that  A^{2}=\mathrm{c}\mathrm{u}\mathrm{r}1^{2}=-\triangle on  D^{2}.

\mathrm{o}S:=A^{2} (S represents one of possible concrete realizations of the Stokes operator.)
\mathrm{o}\mathbb{Z}^{*} denotes the set of all integer numbers without zero: \mathbb{Z}^{*}:= \{. . . , -2, -1, 1, 2, . . . \}.
\mathrm{o}C denotes a generic constant, i.e. a constant whose value may change from line to line. C

may depend on  $\Omega$, T or on other parameters, but it never depends on a concrete function.

On the other hand, numbered constants have fixed values throughout the whole paper.

The next lemma brings some results from [2].

Lemma 1.1 a) Space D^{1} can be characterized by the identities

D^{1} = P_{ $\sigma$}W_{0}^{1,2}( $\Omega$)^{3}
= { v=v_{0}+\nabla $\varphi$;v_{0}\in W_{0}^{1,2}( $\Omega$)^{3}, \triangle $\varphi$= −divv0 in  $\Omega$ and \partial $\varphi$/\partial n|_{\partial $\Omega$}=0 }.

b) Operator A is selfa djoint and has a compact resolvent in L_{ $\sigma$}^{2}() .

c) The spectrum of A consists of a countable set of eigenvalues. . . \leq$\lambda$_{-2}\leq$\lambda$_{-1}<$\lambda$_{1}\leq$\lambda$_{2}\leq
. . . which cluster both at -\infty  and+\infty and $\lambda$_{i}<0 fori<0, $\lambda$_{i}>0 fori>0 . Each of the

eigenvalues has a finite algebraic (=geometric) multiplicity. Corresponding eigenfunctions
. . .

, e_{-2}, e_{-1}, e_{1}, e_{2} ,
. . . can be chosen so that they form a complete orthonormal system in

space L_{ $\sigma$}^{2}() and a complete orthogonal system in D^{1} and in D^{2}.

d) The spaces D^{k}(k=1, 2) satisfy the identities

D^{k}=\displaystyle \{v=\sum_{i\in \mathbb{Z}^{*}}$\alpha$_{i}e_{i} ; \displaystyle \sum_{i\in \mathbb{Z}^{*}}$\alpha$_{i}^{2}$\lambda$_{i}^{2k}<+\infty\}
e) The norm \Vert. \Vert_{k,2} is equivalent with the norm \Vert A^{k}. \Vert_{2} in D^{k} fork=1 ,

2.

The selfadjointness of operator A was already earlier proved by Z. Yosida, Y. Giga [18]
and R. Picard [10]. The fact that 0 is not an eigenvalue of operator A is a consequence

of the assumption on the simple connectedness of domain  $\Omega$ . A series of further properties
of operator curl follows from articles of O. A. Ladyzhenskaya, V. A. Solonnikov and their

coworkers; let us cite e.g. [7].

2 NavierStokes equation with the generalized
impermeability boundary conditions (1.3)

2.1 The weak NavierStokes problem with boundary conditions (1.3)

Definition 2.1 Let  T>0, f\in L^{2}(0, T;D^{-1}) and u_{0}\in L_{ $\sigma$}^{2} We call a function  u\in

 L^{\infty}(0, T;L_{ $\sigma$}^{2}( $\Omega$))\cap L^{2}(0, T;D^{1}) a weak solution of the problem (1.1)(1.4) if

\displaystyle \int_{0}^{T}\int_{ $\Omega$}[-u\cdot\partial_{t} $\phi$+v Au \cdot A $\phi$+(Au\times u)\cdot $\phi$]\mathrm{d}x\mathrm{d}t-\int_{ $\Omega$}u_{0}\cdot $\phi$(0)\mathrm{d}x
= \displaystyle \int_{0}^{T}\langle f,  $\phi$\rangle_{ $\Omega$}\mathrm{d}t (2.1)
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for all  $\phi$\in C^{\infty}([0, T];D^{1}) such that  $\phi$(T)=0.

Obviously, a weak solution u satisfies the first two boundary conditions in (1.3) in the

sense of traces for a.a. t\in(0, T) . However, it is not apparent at the first sight that the weak

problem formulated in Definition 2.1 also in a certain sense involves the third boundary
condition in (1.3), i.e. the condition \mathrm{c}\mathrm{u}\mathrm{r}1^{2}u\cdot n=0 . Let us therefore explain it in a greater
detail. If u is a weak solution which, moreover, belongs to L^{2}(0, T;W^{2,2} and \partial_{t}u\in

 L^{2}(0, T;L_{ $\sigma$}^{2} then we can easily verify, using a standard procedure, that there exists a

scalar function q such that \nabla q\in L^{2}(Q_{T})^{3} and the pair (u, q) is a strong solution of equation
(1.1). Using this information and integrating by parts in the terms containing  u\cdot\partial_{t} $\phi$ and

Au \cdot  A $\phi$ in (2.1), we obtain:

\displaystyle \int_{0}^{T}\int_{\partial $\Omega$} Au \cdot ( $\phi$\times n)\mathrm{d}S\mathrm{d}t=0 . (2.2)

One can deduce from the characterization of D^{1}
,

see Lemma 1.1, that the test function  $\phi$
can be expressed in the form  $\phi$=$\phi$_{0}+\nabla $\varphi$ where  $\phi$_{0}\in C^{\infty}([0, T];W_{0}^{1,2} and  $\varphi$\in

 C^{\infty}([0, T];W^{2,2} Hence (2.2) implies that

0 = \displaystyle \int_{0}^{T}\int_{\partial $\Omega$} curl u\displaystyle \cdot(\nabla $\varphi$\times n)\mathrm{d}S\mathrm{d}t=-\int_{0}^{T}\int_{ $\Omega$}\mathrm{d}\mathrm{i}\mathrm{v} ( \nabla $\varphi$\times curl  u ) \mathrm{d}x\mathrm{d}t

= \displaystyle \int_{0}^{T}\int_{ $\Omega$}\nabla $\varphi$ . curlu dx \displaystyle \mathrm{d}t=\int_{0}^{T}\langle(\mathrm{c}\mathrm{u}\mathrm{r}1^{2}u\cdot n) ,  $\varphi$\rangle_{\partial $\Omega$}\mathrm{d}t

where \langle .

, \}_{\partial $\Omega$} denotes the duality between elements of W^{-1/2,2}(\partial $\Omega$) and W^{1/2,2}(\partial $\Omega$) . For

each t\in(0, T) ,
the set of traces on \partial $\Omega$ of all considerable functions  $\varphi$ is dense in  W^{1/2,2}(\partial $\Omega$) .

Thus, for \mathrm{a}.\mathrm{a}. t\in(0, T) ,
the condition \mathrm{c}\mathrm{u}\mathrm{r}1^{2}u\cdot n=0 is satisfied in the sense of equality in

W^{-1/2,2}(\partial $\Omega$) . This shows that each �smooth� weak solution satisfies the third condition in

(1.3) as a boundary condition which naturally follows from the weak formulation.

The existence of the weak solution of the problem (1.1)(1.4) can be proved e.g. by the

Galerkin method in the same way as in the case of the noslip boundary condition (1.5). The

Galerkin approximations can be constructed as linear combinations of the eigenfunctions of

operator A . Further qualitative results on the NavierStokes problem (1.1)(1.4) can be

found in [2], [8] and [9].

2.2 A note to the physical sense of boundary conditions (1.3)

Although the boundary conditions (1.3) seem to be substantially different from the �tradi‐

tional� noslip boundary condition (1.5) at the first sight, the difference is in fact only subtle.

It is known, and it is also explained in detail in [8], that the noslip boundary condition (1.5)
is equivalent with

u\cdot n=0, \mathrm{c}\mathrm{u}\mathrm{r}1u\cdot n=0, \displaystyle \frac{\partial u}{\partial n}\cdot n=0 \mathrm{o}\mathrm{n}\partial $\Omega$\times(0, T) (2.3)

for divergencefree vector fields u\in W^{1,2}( $\Omega$)^{3} . The first two conditions in (1.3) and in (2.3)
are identical and they express the zero flux of u and curl u through the boundary of  $\Omega$.

In the incompressible Newtonian fluid, the rate of deformation tensor \mathbb{D} (which equals the

symmetrized gradient of velocity) and the dynamic stress tensor \mathbb{T}_{\mathrm{d}} are related through the
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formula 2v\mathbb{D}=\mathbb{T}_{\mathrm{d}} . Thus, the third condition in (2.3) can be written in the form n\cdot \mathbb{T}_{\mathrm{d}}\cdot n=0
which means that the normal component of the viscous stress acting on \partial $\Omega$ equals zero.

On the other hand, since  v curlv =-\mathrm{D}\mathrm{i}\mathrm{v}\mathbb{T}_{\mathrm{d}} ,
the third condition in (1.3) says that

the normal component of the intensity of production of the viscous stress on \partial $\Omega$ equals
zero. Moreover, the term \mathrm{D}\mathrm{i}\mathrm{v}\mathbb{T}_{\mathrm{d}} represents the viscous force per unit volume in the general
equation of balance of momentum. Thus, the condition \mathrm{D}\mathrm{i}\mathrm{v}\mathbb{T}_{\mathrm{d}}\cdot n=0 can also be interpreted
as a requirement that the normal component of this force equals zero on \partial $\Omega$.

2.3 Boundary conditions for vorticity and pressure

Applying the operator curl to equation (1.1) and denoting  $\omega$= curl u
,

we obtain the

equation

\partial_{t} $\omega$+v\mathrm{c}\mathrm{u}\mathrm{r}1^{2} $\omega$+(u\cdot\nabla) $\omega$-( $\omega$\cdot\nabla)u= curl f (2.4)

in Q_{T} . Suppose that u is a �smooth� solution of the problem (1.1)(1.4) and equation (2.4)
is valid up to the boundary of  $\Omega$ . If  u is supposed to satisfy the noslip boundary condition

(1.5) then we can only derive that ( $\omega$\cdot n)|_{\partial $\Omega$}=0 ,
but neither the equation (2.4) nor condition

(1.5) enable us to obtain more information on the behavior of  $\omega$ on the boundary and to

formulate a wellposed problem for  $\omega$.

On the other hand, if u satisfies boundary conditions (1.3) then we can derive that

 $\omega$\cdot n=0, curl  $\omega$\cdot n=0, \displaystyle \mathrm{c}\mathrm{u}\mathrm{r}1^{2} $\omega$\cdot n=\frac{1}{v} curl f\cdot n (2.5)

on \partial $\Omega$\times(0, T) . Indeed, the first two conditions in (2.5) coincide with the second and the third

condition in (1.3). The third condition in (2.5) follows from the equation (2.4): multiplying
this equation by n on \partial $\Omega$\times(0, T) and using the identity (u\cdot\nabla) $\omega$-( $\omega$\cdot\nabla)u= curl ( $\omega$\times u) ,

we obtain

\displaystyle \mathrm{c}\mathrm{u}\mathrm{r}1^{2} $\omega$\cdot n=\frac{1}{v} [curl f\cdot n- curl ( $\omega$\times u)\cdot n] . (2.6)

Since  $\omega$ and  u are tangent to \partial $\Omega$ ,
their cross product is normal and its curl is again tangent.

Hence curl ( $\omega$\times u) n=0 on \partial $\Omega$\times(0, T) . The identity (2.6) now provides the third

condition in (2.5). One can observe that (2.5) are the boundary conditions of the same

type as (1.3), however not all the right hand sides are equal to zero. We do not discuss

properties of solutions with such boundary conditions in this text; a paper on this theme is

being prepared.
In order to derive a well posed problem for pressure p from the NavierStokes problem

(1.1)(1.4), it is better to write the NavierStokes equation (1.1) in the form

\partial_{t}u+v\mathrm{c}\mathrm{u}\mathrm{r}1^{2}u+(u\cdot\nabla)u+\nabla p=f . (2.7)

Applying operator divergence to equation (2.7), one can derive the well known Poisson

equation for the pressure: \triangle p=-(\partial_{i}u_{j})(\partial_{j}u_{i})+\mathrm{d}\mathrm{i}\mathrm{v}f . Multiplying formally equation (2.7)
by the normal vector n and considering it on the boundary of  $\Omega$

,
we obtain

\displaystyle \frac{\partial p}{\partial n} = f\cdot n-(u\cdot\nabla)u\cdot n=f\cdot n-u_{j}(\partial_{j}u_{i})n_{i}

= f\cdot n-u_{j}\partial_{j}(u_{i}n_{i})+u_{j}u_{i}(\partial_{j}n_{i})=f\cdot n+u_{j}u_{i}(\partial_{j}n_{i}) . (2.8)
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(The term u_{j}\partial_{j} (un) expresses the derivative of the product u\cdot n
,

which is equal to zero on

the boundary, in the direction tangential to the boundary, hence it equals zero.) (2.8) repre‐

sents the Neumann boundary condition for p . This condition is simpler than the condition

which we obtain if the velocity is supposed to satisfy the noslip boundary condition (1.5).
It is remarkable that the right hand side of (2.8) depends on the curvature of the boundary:
the term u_{j}u_{i}(\partial_{j}n_{i}) equals zero on those parts of \partial $\Omega$ where \partial $\Omega$ coincides with a plane.

3 Preliminary results on powers of the Stokes operator

We recall that our Stokes operator is  S=A^{2} . It follows from Lemma 1.1 that S is a positive
selfadjoint operator with a compact resolvent in L_{ $\sigma$}^{2} The eigenvalues of S coincide with

$\lambda$_{i}^{2}(i\in \mathbb{Z}^{*}) where $\lambda$_{i} are the eigenvalues of operator A.

We denote by D(S) (for  1< $\alpha$<+\infty ) the domain of the operator  S^{ $\alpha$} , equipped with

the norm \Vert S^{ $\alpha$}. \Vert_{2} . The space D(S) can be characterized as

D(S^{ $\alpha$})=\displaystyle \{v=\sum_{i\in \mathbb{Z}^{*}}$\beta$_{i}e_{i} ; \displaystyle \sum_{i\in \mathbb{Z}^{*}}$\beta$_{i}^{2}($\lambda$_{i}^{2})^{2 $\alpha$}<+\infty\} (3.1)

and if v has the form from this identity then the power Sv can be expressed:

S^{ $\alpha$}v=\displaystyle \sum_{i\in \mathbb{Z}^{*}}$\beta$_{i}($\lambda$_{i}^{2})^{ $\alpha$}e_{i} . (3.2)

By analogy with D. Henry [6], Exercise 5 in Sec. 1.4, one can prove the interpolation in‐

equality

\Vert S^{ $\alpha$}v\Vert_{2}\leq\Vert S^{$\alpha$_{1}}v\Vert^{\frac{$\alpha$_{2}- $\alpha$}{2 $\alpha$- $\alpha$}}\Vert S^{$\alpha$_{2}}v\Vert^{\frac{ $\alpha-\alpha$_{1}}{2 $\alpha$- $\alpha$}} . (3.3)

which holds for  0<$\alpha$_{1}< $\alpha$<$\alpha$_{2}<\infty and  v\in D(S^{$\alpha$_{2}}) . Furthermore, using Theorem 1.4.8

in [6], we obtain the compact imbedding D(S^{$\alpha$_{2}})\mapsto\mapsto D(S^{$\alpha$_{1}}) .

The �traditional� Stokes operator \overline{S}:=-P_{ $\sigma$}\triangle with the domain  D(\overline{S}) :=W^{2,2}( $\Omega$)^{3}\cap
 W_{0}^{1,2}( $\Omega$)^{3}\cap L_{ $\sigma$}^{2}() (see for instance the book by H. Sohr [16]) is different from our operator
S . Nevertheless, the following Lemma 3.1 and 3.2 (for S ) can basically be proved in a similar

way as Lemma 2.4.2 and 2.4.3 (for \overline{S} ) in [16]. So, we do not repeat the whole procedure
from [16], we only present and comment the main steps.

Lemma 3.1 Suppose that  $\alpha$\displaystyle \in[0, \frac{1}{2}] and q\in[2 , 6 ] are two real numbers which satisfyy 2 $\alpha$+

3/q=\displaystyle \frac{3}{2} . Then there exists a constant c_{1}>0 (depending only on  $\Omega$, q and  $\alpha$) such that for
all  v\in D(S^{ $\alpha$}) ,

we have

\Vert v\Vert_{q}\leq c_{1}\Vert S^{ $\alpha$}v\Vert_{2} . (3.4)

Lemma 3.2 Suppose that  $\alpha$\in [\displaystyle \frac{1}{2} ,
1 ] and q\in[2 , 6 ] are two real numbers which satisfyy 2 $\alpha$+

3/q=\displaystyle \frac{5}{2} . Then there exists a constant c_{2}>0 (depending only on  $\Omega$, q and  $\alpha$) such that for
all  v\in D(S^{ $\alpha$}) ,

we have

\Vert v\Vert_{1,q}\leq c_{2}\Vert S^{ $\alpha$}v\Vert_{2} . (3.5)
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Proof of Lemma 3.1 and 3.2. We proceed as in [16], with a slight modification due to

the different boundary conditions. The proofs of Lemma 2.4.2 and 2.4.3 in [16] are based on

this lemma:

Lemma 3.3 (E. Heinz [5]) Suppose that \mathcal{H}', \mathcal{H}'' are two Hilbert spaces with the norms

\Vert. \Vert . and \mathcal{A}' (respectively \mathcal{A} are two positive selfa djoint injective operators in \mathcal{H}'

(respectively in \mathcal{H} Suppose further that \mathcal{B} is a bounded linear operator from \mathcal{H}' into \mathcal{H}''
that maps D() into D() and

\leq c_{3}\Vert \mathcal{A}'v\Vert' for all v\in D(\mathcal{A}') .

Then for0\leq $\beta$\leq 1, \mathcal{B} maps D into D and

\Vert(\mathcal{A}'')^{ $\beta$}\mathcal{B}v\Vert''\leq c_{3}^{ $\beta$}\Vert \mathcal{B}\Vert_{\mathcal{H}\rightarrow \mathcal{H}}^{1- $\beta$},, \Vert(\mathcal{A}')^{ $\beta$}v\Vert' for all v\in D((\mathcal{A}')^{ $\beta$}) .

In the noslip case, the operator \mathcal{B} can be chosen as the extension by zero from  $\Omega$ onto

\mathbb{R}^{3}- $\Omega$ . Such an operator \mathcal{B} is a bounded linear operator from L_{ $\sigma$}^{2}() into L_{ $\sigma$}^{2}(\mathrm{R}) and it

maps the domain of \overline{S}^{1/2} into the domain of S_{\mathbb{R}^{3}}^{1/2} where S_{\mathbb{R}^{3}} denotes the Stokes operator in

L_{ $\sigma$}^{2}(\mathbb{R}^{3}) . One can arrive at the identities

\Vert S_{\mathbb{R}^{3}}^{1/2}Bv\Vert_{2;\mathbb{R}^{3}}=\Vert\nabla Bv\Vert_{2;\mathbb{R}^{3}}=\Vert\nabla v\Vert_{2}=\Vert\overline{S}^{1/2}v\Vert_{2} (3.6)

which hold for all v\in D(\overline{s}^{1/2}) ,
with \Vert. \Vert_{2;\mathbb{R}^{3}} being the norm in L^{2}(\mathbb{R}^{3})^{3} . Then the Heinz

lemma is applied with \mathcal{H}'=L_{ $\sigma$}^{2} \mathcal{A}'=\overline{S}^{1/2}, \mathcal{H}''=L_{ $\sigma$}^{2}(\mathbb{R}^{3}) , \mathcal{A}''=S_{\mathbb{R}^{3}}^{1/2}, \mathcal{B}=B and  $\beta$=2 $\alpha$.
One finally obtains the desired estimate.

With our boundary conditions (1.3), however, it is not generally true that if v\in D(S)
then the extension of v by zero belongs to D(S_{\mathbb{R}^{3}}^{1/2}) and also the square root S^{1/2} does not

satisfy the last equality in (3.6), as \overline{S}^{1/2} . This is why we use a general extension operator
E which is a bounded linear operator from L^{2}( $\Omega$)^{3} into L^{2}(\mathbb{R}^{3})^{3} and from W^{2,2}( $\Omega$)^{3} into

W^{2,2}(\mathbb{R}^{3})^{3} and which satisfies Ev |_{ $\Omega$}=v for all v\in L^{2}( $\Omega$)^{3} . (The existence of such an

operator is proved in [1], part IV, 4.29.) Using Lemma 1.1, part e) with k=2
,

we get

\Vert(-\triangle)Ev\Vert_{2;\mathbb{R}^{3}}\leq C\Vert Ev\Vert_{2,2;\mathbb{R}^{3}}\leq C\Vert v\Vert_{2,2}\leq C\Vert Sv\Vert_{2} for all v\in D(S)
where \Vert. \Vert_{2,2;\mathbb{R}^{3}} denotes the norm in W^{2,2}(\mathbb{R}^{3})^{3} . Therefore we may put \mathcal{B}=E and \mathcal{H}'=

L_{ $\sigma$}^{2} \mathcal{A}'=S, \mathcal{H}''=L^{2}(\mathbb{R}^{3})^{3}, \mathcal{A}''=-\triangle,  $\beta$=2 $\alpha$ and to apply the Heinz lemma. It yields

\Vert(-\triangle)^{ $\alpha$}Ev\Vert_{2;\mathbb{R}^{3}}\leq C\Vert S^{ $\alpha$}v\Vert_{2} for all v\in D(S^{ $\alpha$}) .

The proof of Lemma 3.1 can now be completed by means of this estimate, the estimate

\Vert Ev\Vert_{q}\leq C\Vert(-\triangle)^{ $\alpha$}Ev\Vert_{2;\mathbb{R}^{3}} (following from Lemma 3.3.1 in [16], p. 102) and the bounded‐

ness of operator E from L^{q}( $\Omega$)^{3} into L^{q}(\mathbb{R}^{3})^{3}.
Lemma 3.2 can be proved in a similar way. Using Lemma 1.1, item e), and the same

extension operator E
,

we can obtain

\Vert(I-\triangle)Ev\Vert_{2;\mathbb{R}^{3}}\leq C\Vert Ev\Vert_{2,2;\mathbb{R}^{3}}\leq C\Vert v\Vert_{2,2}\leq C\Vert Sv\Vert_{2}.
Then, applying again the Heinz lemma, we get

\Vert(I-\triangle)^{ $\alpha$}Ev\Vert_{2;\mathbb{R}^{3}}\leq C\Vert S^{ $\alpha$}v\Vert_{2}
for 0\leq $\alpha$\leq 1 and v\in D(S^{ $\alpha$}) . The estimate (3.5) now follows from this inequality and from

the inequalities

\Vert v\Vert_{1,q}\leq C\Vert Ev\Vert_{1,q;\mathbb{R}^{3}}\leq C\Vert(I-\triangle)^{ $\alpha$}Ev\Vert_{2;\mathbb{R}^{3}}.
(The last one is proved in [16], pp. 103104.) \square 
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4 Small perturbations of the initial velocity and of the

body force

Theorem 4.1 Suppose that u is a weak solution of the problem (1.1)‐(1.4) with the input
data u(0)=u_{0}\in D(S) and P_{ $\sigma$}f\in L^{2}(0, T;L_{ $\sigma$}^{2} which satisfies

\displaystyle \int_{0}^{T}(\Vert S^{3/4}u(t)\Vert_{2}^{2}+\Vert S^{1/2}u(t)\Vert_{2}^{4})\mathrm{d}t<\infty . (4.1)

Then to given  $\epsilon$>0 there exists  $\delta$>0 such that if v_{0}\in D(S) and P_{ $\sigma$}g\in L^{2}(0, T;L_{ $\sigma$}^{2}
are functions satisfy ing

\displaystyle \Vert S^{1/4}u_{0}-S^{1/4}v_{0}\Vert_{2}+\int_{0}^{T}\Vert P_{ $\sigma$}f(t)-P_{ $\sigma$}g(t)\Vert_{2}^{2}< $\delta$ (4.2)

then there exists a unique weak solution  v of the problem (1.1)‐(1.4) with the data v_{0} and g

(instead of u_{0} and f) on the time interval (0, T) ,
such that

\Vert S^{1/4}v(t)-S^{1/4}u(t)\Vert_{2}^{2}< $\epsilon$  for all t\in(0, T) , (4.3)

\displaystyle \int_{0}^{T}\Vert S^{3/4}v(s)-S^{3/4}u(s)\Vert_{2}^{2}\mathrm{d}s< $\epsilon$ . (4.4)

Remark 4.1 A similar result for the NavierStokes problem with the noslip boundary
condition (1.5) was proved by G. Ponce et. al. in [11]. However, our assumption (4.2)
is weaker because we measure the difference between the initial velocities  v_{0} and u_{0} in the

norm \Vert S^{1/4}. \Vert_{2} while the authors of [11] have used the norm \Vert. \Vert_{1,2} , equivalent with \Vert S^{1/2}. \Vert_{2}.

Remark 4.2 (on condition (4.1)) A strong solution of the problem (1.1)(1.4) on the inter‐

val (0, T) is usually supposed to belong to L^{\infty}(0, T;W^{1,2}( $\Omega$)^{3})\cap L^{2}(0, T;W^{2,2} and it

automatically satisfies (4.1). Thus, the condition (4.1) can be replaced by the assumption
that u is a strong solution.

In fact, inequality (4.1) follows from a weaker assumption, i.e. from the assumption that

u\in L^{\infty}(0, T;D(s^{1/4}))\cap L^{2}(0, T;D(S)) because then, using the interpolation inequality
(3.3) with  $\alpha$=\displaystyle \frac{1}{2}, $\alpha$_{1}=\displaystyle \frac{1}{4} and $\alpha$_{2}=\displaystyle \frac{3}{4} ,

we get

\displaystyle \int_{0}^{T}(\Vert S^{3/4}u(t)\Vert_{2}^{2}+\Vert S^{1/2}u(t)\Vert_{2}^{4})\mathrm{d}t\leq\int_{0}^{T}\Vert S^{3/4}u(t)\Vert_{2}^{2}(1+\Vert S^{1/4}u(t)\Vert_{2}^{2})\mathrm{d}t
\displaystyle \leq [1+\mathrm{e}\mathrm{s}\mathrm{s}\sup_{0<t<T}\Vert S^{1/4}u(t)\Vert_{2}^{2}]\int_{0}^{T}\Vert S^{3/4}u(t)\Vert_{2}^{2}\mathrm{d}t<\infty.

Condition (4.1) and Lemma 3.1 imply that solution u belongs to the anisotropic Lebesgue
space L^{r}(0, T;L (with r=4 and s=6 ) where the exponents r, s satisfy Serrin�s

condition 2/r+3/s\leq 1 . It can be deduced from known results on regularity of solutions to

the NavierStokes equation, see e.g. Y. Giga [4] and W. von Wahl [17], that such a solution

is regular, i.e. it has no singular points. The exact rate of regularity depends on regularity
of the body force f . Nevertheless, since P_{ $\sigma$}f\in L^{2}(0, T;L_{ $\sigma$}^{2} the condition (4.1) enables

us to deduce that a) if u_{0}\in D(S) then u is a strong solution of the problem (1.1)(1.4)
on the time interval (0, T) or b) if u_{0}\in D(S) then u is a strong solution of the problem
(1.1)(1.4) on each time interval of the type ( $\tau$, T) where 0< $\tau$<T.
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Proof of Theorem 4.1. We seek for solution v in the form v=u+w where w is a new

unknown function. This function should be a weak solution of the problem

\partial_{t}w+v curlw + curl u\times w+ curl w\times u

+ curl w \times w+\nabla q=g-f in Q_{T} , (4.5)

\mathrm{d}\mathrm{i}\mathrm{v}w=0 in Q_{T} , (4.6)

w\cdot n=0, \mathrm{c}\mathrm{u}\mathrm{r}1w\cdot n=0, \mathrm{c}\mathrm{u}\mathrm{r}1^{2}w\cdot n=0 \mathrm{o}\mathrm{n}\partial $\Omega$\times(0, T) , (4.7)

w(0)=v_{0}-u_{0} in  $\Omega$ . (4.8)

Applying formally the projection  P_{ $\sigma$} to equation (4.5), writing A instead of curl and using
the notation S=A^{2} ,

we can write the problem (4.5)(4.8) in the form of one operator

equation

\partial_{t}w+vSw+P_{ $\sigma$}[Au\times w]+P_{ $\sigma$} [Aw \times u]+P_{ $\sigma$} [Aw \times w]=P_{ $\sigma$}g-P_{ $\sigma$}f . (4.9)

The equation of continuity (4.6) and the first two boundary conditions (4.7) are now replaced
by the requirement that w(t) belongs to the domain of A for \mathrm{a}.\mathrm{a}. t\in(0, T) and the third

boundary condition in (4.7) is a natural boundary condition which is satisfied by w if w is

�smooth�. (See the explanation in subsection 2.1.)
The weak solution of equation (4.9) can be constructed in a standard way which basically

copies the proof of the existence of a weak solution of the NavierStokes initialboundary
value problem with the noslip boundary condition (1.5). The proof is described in detail

e.g. in the survey article by G. P. Galdi [3]. The Galerkin approximations w^{n} can be

constructed as linear combinations of the eigenfunctions e_{i}(i\in \mathbb{Z}^{*}) of operator A . The

crucial step is the derivation of their estimates. The estimates then enable us to deduce that

the sequence of approximations contains a subsequence whose limit w(= the strong limit in

L^{2}(0, T;L_{ $\sigma$}^{2} the weak limit in L^{2}(0, T;D^{1}) and the \mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-* limit in L^{\infty}(0, T;L_{ $\sigma$}^{2}
is a weak solution of the problem (4.5)(4.8) or of the operator equation (4.9). In order not

to complicate the proof, we shall formally derive the estimates directly from equation (4.9);
such estimates are usually called a priori estimates.

Multiplying equation (4.9) by s^{1/2_{w}} and integrating on  $\Omega$
,

we obtain

\displaystyle \frac{\mathrm{d}}{\mathrm{d}t}\frac{1}{2}\Vert S^{1/4}w\Vert_{2}^{2}+v\Vert S^{3/4}w\Vert_{2}^{2}\leq\int_{ $\Omega$}|\nabla u||w||S^{1/2}(w)|\mathrm{d}x+\int_{ $\Omega$}|\nabla w||u||S^{1/2}w|\mathrm{d}x
+\displaystyle \int_{ $\Omega$}|\nabla w||w||S^{1/2}w|\mathrm{d}x+\int_{ $\Omega$}|P_{ $\sigma$}g-P_{ $\sigma$}f||S^{1/2}w| dx . (4.10)

We will now estimate the integrals on the right hand side of (4.10). We shall use Lemma 3.1

and Lemma 3.3. We obtain

\displaystyle \int_{ $\Omega$}|\nabla u||w||S^{1/2}w|\mathrm{d}x\leq\Vert\nabla u\Vert_{3}\Vert w\Vert_{6}\Vert S^{1/2}w\Vert_{2}
\leq C\Vert S^{3/4}u\Vert_{2}\Vert S^{1/2}w\Vert_{2}^{2}\leq C\Vert S^{3/4}u\Vert_{2}\Vert S^{3/4}w\Vert_{2}\Vert S^{1/4}w\Vert_{2}

\displaystyle \leq \frac{v}{6}\Vert S^{3/4}w\Vert_{2}^{2}+C\Vert S^{1/4}w\Vert_{2}^{2}\Vert S^{3/4}u\Vert_{2}^{2} , (4.11)
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\displaystyle \int_{ $\Omega$}|\nabla w||u||S^{1/2}w|\mathrm{d}x\leq\Vert\nabla w\Vert_{3}\Vert u\Vert_{6}\Vert S^{1/2}w\Vert_{2}
\leq C\Vert S^{3/4}w\Vert_{2}\Vert S^{1/2}u\Vert_{2}\Vert S^{1/2}w\Vert_{2}\leq C\Vert S^{3/4}w\Vert_{2}^{3/2}\Vert S^{1/4}w\Vert_{2}^{1/2}\Vert S^{1/2}u\Vert_{2}

\displaystyle \leq \frac{v}{6}\Vert S^{3/4}w\Vert_{2}^{2}+C\Vert S^{1/4}w\Vert_{2}^{2}\Vert S^{1/2}u\Vert_{2}^{4} , (4.12)

\displaystyle \int_{ $\Omega$}|\nabla w||w||S^{1/2}w|\mathrm{d}x\leq\Vert\nabla w\Vert_{3}\Vert w\Vert_{6}\Vert S^{1/2}w\Vert_{2}
\leq C\Vert S^{3/4}w\Vert_{2}\Vert S^{1/2}w\Vert_{2}^{2}\leq C\Vert S^{3/4}w\Vert_{2}^{2}\Vert S^{1/4}w\Vert_{2} , (4.13)

\displaystyle \int_{ $\Omega$}|P_{ $\sigma$}g-P_{ $\sigma$}f||S^{1/2}w|\mathrm{d}x\leq\Vert P_{ $\sigma$}g-P_{ $\sigma$}f\Vert_{2}\Vert S^{1/2}w\Vert_{2}
\displaystyle \leq \frac{v}{6}\Vert S^{3/4}w\Vert_{2}^{2}+C\Vert P_{ $\sigma$}g-P_{ $\sigma$}f\Vert_{2}^{2} . (4.14)

We have also used the estimate \Vert s^{1/2}(w)\Vert_{2}\leq C\Vert s^{3/4}(w)\Vert_{2} in (4.14). Substituting now

(4.11)(4.14) into (4.10), we obtain

\displaystyle \frac{\mathrm{d}}{\mathrm{d}t}\frac{1}{2}\Vert S^{1/4}w\Vert_{2}^{2}+(\frac{v}{2}-C\Vert S^{1/4}w\Vert_{2})\Vert S^{3/4}w\Vert_{2}^{2}
\leq C(\Vert S^{3/4}u\Vert_{2}^{2}+\Vert S^{1/2}u\Vert_{2}^{4})\Vert S^{1/4}w\Vert_{2}^{2}+C\Vert P_{ $\sigma$}g-P_{ $\sigma$}f\Vert_{2}^{2} . (4.15)

\displaystyle \frac{\mathrm{d}}{\mathrm{d}t}\Vert S^{1/4}w\Vert_{2}^{2}+(v-c_{4}\Vert S^{1/4}w\Vert_{2})\Vert S^{3/4}w\Vert_{2}^{2}
\leq c_{5} $\zeta$(t)\Vert S^{1/4}w\Vert_{2}^{2}+c_{6} $\theta$(t) (4.16)

If we denote

 $\zeta$(t) = \Vert S^{3/4}u\Vert_{2}^{2}+\Vert S^{1/2}u\Vert_{2}^{4},

 $\theta$(t) = \Vert P_{ $\sigma$}g-P_{ $\sigma$}f\Vert_{2}^{2}

then (4.15) can be written in the form

where c_{4}-c_{6} are appropriate constants which depend only on  $\Omega$ and  v . The integral of  $\zeta$ on the

time interval (0, T) is less than or equal to c_{7} where c_{7} denotes the left hand side of (4.1). Let

us further compare function \Vert s^{1/4_{w(t)}}\Vert_{2}^{2} with function z(t) such that z(0)=\Vert s^{1/4}(w)(0)\Vert_{2}^{2}
and z satisfies the equation

z'(t)=c_{5} $\zeta$(t)z(t)+c_{6} $\theta$(t) . (4.17)

Integrating (4.17), we obtain that

z(t) = \displaystyle \exp[\int_{0}^{t}c_{5} $\zeta$( $\tau$)\mathrm{d} $\tau$]z(0)+\int_{0}^{t}\exp[\int_{s}^{t}c_{5} $\zeta$( $\tau$)\mathrm{d} $\tau$]c_{6} $\theta$(s)\mathrm{d}s
\displaystyle \leq \mathrm{e}^{c_{5}c_{7}}z(0)+c_{6}\mathrm{e}^{c_{5}c_{7}}\int_{0}^{t} $\theta$(s)\mathrm{d}s (4.18)

for all t\in(0, T) . Obviously, the comparison of (4.16) with (4.17) yields the inequality

\Vert S^{1/4}w(t)\Vert_{2}^{2}\leq z(t) (4.19)
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on each interval (0, T') such that

v-c_{4}\displaystyle \Vert S^{1/4}w(t)\Vert_{2}^{2}\geq\frac{v}{2} (4.20)

also holds for all t\in(0, T However, (4.18) and (4.19) imply that provided

\displaystyle \mathrm{e}^{c_{5}c_{7}}\Vert S^{1/4}w(0)\Vert_{2}^{2}+c_{6}\mathrm{e}^{c_{5}c_{7}}\int_{0}^{T} $\theta$(s)\mathrm{d}s\leq\frac{v}{2c_{4}} , (4.21)

(4.20) holds on the interval (0, T) and consequently,

\displaystyle \Vert S^{1/4}w(t)\Vert_{2}^{2}\leq z(t)\leq \mathrm{e}^{c_{5}c_{7}}z(0)+c_{6}\mathrm{e}^{c_{5}c_{7}}\int_{0}^{T} $\theta$(s)\mathrm{d}s (4.22)

also holds on the interval (0, T) . Finally, integrating (4.16) on the time interval (0, T) and

using (4.22), we obtain

\displaystyle \frac{v}{2}\int_{0}^{T}\Vert S^{3/4}w\Vert_{2}^{2}\mathrm{d}t\leq c_{5}(\int_{0}^{T} $\zeta$(t)\mathrm{d}t)(\mathrm{e}^{c_{5}c_{7}}z(0)+c_{6}\mathrm{e}^{c_{5}c_{7}}\int_{0}^{T} $\theta$(s)\mathrm{d}s)
+c_{6}\displaystyle \int_{0}^{T} $\theta$(t) dt . (4.23)

It can now be observed that if number  $\delta$ in (4.2) is so small that (4.21) holds then (4.22) and

(4.23) give the a priori estimates which are in fact satisfied by the Galerkin approximations.
However, as we have already mentioned, using an appropriate and standard limit procedure,
we can obtain the existence of a solution  w which satisfies the same estimates. Moreover,
given  $\epsilon$>0 ,

both the right hand sides of (4.22) and (4.23) can be achieved to be less than  $\epsilon$

if we choose  $\delta$>0 sufficiently small. Hence, writing w in the form v-u
,

we observe that

the difference v-u satisfies (4.3) and (4.4).
Using (4.22), (4.23) and the interpolation inequality (3.3), we obtain:

\displaystyle \int_{0}^{T}\Vert S^{1/2}w\Vert_{2}^{4}\mathrm{d}t\leq \mathrm{e}\mathrm{s}\mathrm{s}\sup_{0<t<T}\Vert S^{1/4}w(t)\Vert_{2}^{2}\int_{0}^{T}\Vert S^{3/4}w(t)\Vert_{2}^{2}\mathrm{d}t<\infty.
From this inequality, we can deduce that solution v also satisfies the inequality (4.1), which

was originally supposed to be satisfies by u.

As to the uniqueness of solution v
,

it is obviously guaranteed in the class of functions v

that satisfy (4.1) (with v instead of u), (4.3) and (4.4). (The opposite can easily be denied

by contradiction.) Using known results on uniqueness of solutions, we can even say that v is

unique in the class of functions which satisfy the energy inequality. However, the uniqueness
in the class of all possible weak solutions is an open problem. \square 

Theorem 4.1 provides information on stability of solution u with respect to small pertur‐
bations of the initial velocity in the norm \Vert S^{1/4}. \Vert_{2} and with respect to small perturbations
of the right hand side (projected onto L_{ $\sigma$}^{2} () by projection P_{ $\sigma$} ) in the norm of the space

L^{2}(0, T;L_{ $\sigma$}^{2} We usually speak on stability of a solution if we have information on be‐

havior of �near� solutions on an unbounded time interval, but this does not contradict with

our result because Theorem 4.1 is also true in the particular case when T=+\infty.
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5 Large perturbations of the initial velocity

In this section, we apply Theorem 4.1 and we derive results on solutions of the Navier‐

Stokes problem (1.1)(1.4) which represent a modification and generalization of theorems

from Scarpellini�s papers [12] and [13]. The modification consists in the fact that our Stokes

operator S is defined on a set of functions \mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\underline{\mathrm{f}}ying the boundary conditions (1.3), while

B. Scarpellini worked with the Stokes operator  S=-P_{ $\sigma$}\triangle defined on  D(\overline{S})=W^{2,2}( $\Omega$)^{3}\cap
 W_{0}^{1,2}( $\Omega$)^{3}\cap L_{ $\sigma$}^{2}() which we have already mentioned in Section 3. The generalization concerns

the values of exponents of the Stokes operator in our propositions and it will be further

explained.
In [12] and [13], assuming that f=0 ,

B. Scarpellini constructed a regular solution of the

NavierStokes equation on the time interval (0, +\infty) with an arbitrarily large initial velocity
(in the norm \Vert\overline{S}^{1/2}. \Vert_{2} ). Our Theorem 4.1 provides an opportunity to extend this result to

the case of the initial velocity arbitrarily large in the norm \Vert S^{ $\alpha$}. \Vert_{2} for some  $\alpha$ less than \displaystyle \frac{1}{2} :

Suppose that T=+\infty, f\equiv 0 and u\equiv 0 is a zero solution of (1.1)(1.4). Let  $\delta$>0 be the

number given by Theorem 4.1, corresponding e.g. to  $\epsilon$=1 . Suppose further that \displaystyle \frac{1}{4}< $\alpha$\leq\frac{1}{2}
and R>0 is an arbitrarily large real number. Due to the density of D(S) and D(S) in

D(s^{1/4}) ,
there exists v_{0}\in D(S) such that \Vert s^{1/4_{v_{0}}}\Vert_{2}< $\delta$ and \Vert S^{ $\alpha$}v_{0}\Vert_{2}>R . Theorem 4.1

now implies that there exists a unique solution v of the problem (1.1)(1.4) with the initial

velocity v_{0} and with the same body force g=f\equiv 0 which satisfies (4.3) and (4.4) on the

time interval (0, +\infty) . Moreover, the inclusion v_{0}\in D(S) and (4.4) guarantee that v is a

strong solution on (0, +\infty) .

Obviously, this result can further be generalized for the case of a nonzero (however
�small�) body force g : If v_{0} and P_{ $\sigma$}g satisfy (4.2) then due to Theorem 4.1, there exists a

unique solution of the problem (1.1)(1.4) (with the initial velocity v_{0} and the body force

g) which has the same properties as the solution v discussed above.

Our next goal in this section is to prove the following Theorem 5.1. The theorem shows

that there exists a solution v of the problem (1.1)(1.4) such that the norm \Vert S^{ $\alpha$}v(0)\Vert_{2} (with
\displaystyle \frac{1}{4}< $\alpha$\leq\frac{1}{2}) can be arbitrarily large and the norm \Vert S^{ $\gamma$}v(t)\Vert_{2} (with \displaystyle \frac{3}{4}< $\gamma$<1 ) can be

arbitrarily small for all t from a time interval which is arbitrarily close to zero. The theorem

in fact says something more: the solution v can be constructed so that all its values v(t) in

a certain time interval, whose distance from 0 is arbitrarily small, belong to an arbitrarily
chosen open set U in D(S^{ $\gamma$}) .

Theorem 5.1 Suppose that P_{ $\sigma$}f\in L^{2}(0, T_{1};L_{ $\sigma$}^{2} \displaystyle \frac{1}{4}< $\alpha$\leq\frac{1}{2}, \displaystyle \frac{3}{4}< $\gamma$<1 and U is a

nonempty open subset of D(S^{ $\gamma$}) . Suppose that two real numbers R>0 (arbitrarily large) and

 $\chi$\in(0, T_{1}) (arbitrarily small) are given. Then there exists v_{0}\in D(S) and a weak solution

v of the problem (1.1)‐(1.4) on the time interval (0, T_{1}) such that

\Vert S^{ $\alpha$}v_{0}\Vert_{2}\geq R (5.1)

and v(t)\in U at all instants of time  t\in (\displaystyle \frac{1}{2} $\chi$,  $\chi$) .

This theorem represents the main generalization in comparison with Scarpellini�s result

from [13] in the part which concerns the exponent  $\alpha$ in (5.1). (B. Scarpellini worked with

the fixed  $\alpha$=\displaystyle \frac{1}{2}. ) The second difference is that we consider the generalized impermeability
boundary conditions (1.3) while Scarpellini worked with the boundary condition (1.5). As

follows from the proof of Theorem 5.1, our approach is enabled by Theorem 4.1.
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Proof of Theorem 5.1. Let U be an open set in D(S) and u_{0}\in D(S)\cap U . Due to

Theorem 1 in [9], there exists T^{*}\in(0, T_{1}) and a strong solution u of the problem (1.1)-
(1.4) which is a continuous mapping from [0, T^{*} ) into D(S) . Thus, to every  $\mu$>0 there

exists T\in(0, T^{*}) such that the restriction of function u to the interval [0, T] is a continuous

mapping from [0, T] into D(S) and

B_{ $\mu$}^{ $\gamma$}(u(t))\subset U (5.2)

for every t\in[0, T] . ( B_{ $\mu$}^{ $\gamma$}(u(t)) is the ball in D(S) with the center at u(t) and radius  $\mu$. )
Let  $\epsilon$>0 be given. Due to Theorem 4.1, there exists  $\delta$>0 such that if

\Vert S^{1/4}v_{0}-S^{1/4}u_{0}\Vert_{2}< $\delta$

then there exists a weak solution  v of the problem (1.1)(1.4) on (0, T_{1}) with the initial

velocity v_{0} and with the same right hand side f such that v satisfies (4.3) and (4.4) on the

�reduced� time interval (0, T) . Since  $\alpha$>\displaystyle \frac{1}{4}, v_{0} can be chosen so that it satisfies (5.1). From

(4.4) we can deduce that in each open time interval in (0, T) whose length exceeds l there

exists  $\tau$ such that \Vert s^{3/4_{v( $\tau$)}}-s^{3/4_{u( $\tau$)}}\Vert_{2}^{2}< $\epsilon$/l . Hence

\displaystyle \Vert S^{1/2}v( $\tau$)-S^{1/2}u( $\tau$)\Vert_{2}^{4}\leq\Vert S^{1/4}v)( $\tau$)-S^{1/4}u( $\tau$)\Vert_{2}^{2}\Vert S^{3/4}v)( $\tau$)-S^{3/4}u( $\tau$)\Vert_{2}^{2}\leq\frac{$\epsilon$^{2}}{l}.
If the considered open time interval is (0, \displaystyle \frac{1}{2} $\chi$) then  0< $\tau$<\displaystyle \frac{1}{2} $\chi$ and

\displaystyle \Vert S^{1/2}v( $\tau$)-S^{1/2}u( $\tau$)\Vert_{2}\leq(\frac{2$\epsilon$^{2}}{ $\chi$})^{1/4} . (5.3)

Slightly modifying the proof of Theorem 1 in [9], we can now show that if  $\epsilon$>0 is chosen

sufficiently small then (5.3) implies that

\Vert S^{ $\gamma$}v(t)-S^{ $\gamma$}u(t)\Vert_{2}< $\mu$ for all \displaystyle \frac{1}{2} $\chi$<t< $\chi$ . (5.4)

Note that in the case of the noslip boundary condition (1.5), the same implication, i.e. that

(5.3) (for  $\epsilon$>0 small enough) implies (5.4), is a consequence of Proposition 3.4 in ([13].
The inclusion (5.2) (for all  t\in (\displaystyle \frac{1}{2} $\chi$,  $\chi$) ) now follows from (5.4). \square 

Remark 5.1 Choosing set U to be a sufficiently small neighborhood of zero (in the space

D(S^{ $\gamma$})) ,
Theorem 5.1 provides solution v which has the so called (big fall� at a very short

instant of time (0, \displaystyle \frac{1}{2} $\chi$) . If, in addition, we assume that the specific body force f is (�sufficiently
small� on the time interval ( $\chi$, +\infty) then solution v

,
due to its smallness at times  t\in (\displaystyle \frac{1}{2} $\chi$,  $\chi$) ,

can be prolonged as a strong solution onto the whole interval ( $\chi$, +\infty) .

Further interesting theorems on global in time strong solutions which initially have (big
falls� or on the other hand results restricting the �falls� of solutions of the NavierStokes

equations can be found in the preprints [14] and [15] by Z. Skalák.
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