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Abstract

A conceptual model has been constructed for the problem of determining a critical
Reynolds number (Rc) for laminar-turbulent transition in pipe and channel flows. For
pipe flow, the minimum critical Reynolds number Rc(min) of approximately 2040 was
obtained. In order to prove the validity of the model, another verification is required.
Thus, for channel flow, results of previous investigations were studied, focusing on
experimental data on Rc, the entrance length, and the transition length. Consequently,
the model was confirmed and an experimental value of Re(min) in the neighborhood
of 1300 was found to exist, based on the channel height and average velocity. In this
study, for channel flow, we obtained Rc(min) of approximately 1230 when using JO =
101 grid points in the normal or y-direction, and 910 when JO = 51.

BD bellmouth diameter

D pipe diameter

h one-half of channel height

H channel height = 2h; enthalpy

i grid point in z-direction

10 maximum number of grid points in z-direction
J grid point in y-direction

JO maximum number of grid points in y-direction
K(X) excess pressure drop

KE increase in kinetic energy

Le dimensionless entrance length = 2/ /(H Re)
NWS normal wall strength

p dimensionless pressure = p'/(1/2 * pU?)

i pressure

De pressure at centerline

Puw pressure at wall

PW power done by NW S

Rc critical Reynolds number for transition
Rcl Rc from laminar to turbulent flow

Rc2 Rc from turbulent to laminar flow
Rc(min)  minimum Re

Re Reynolds number = UH /v

t dimensionless time = (U/H)t’



time

~+
1

u dimensionless x component of velocity = u’'/U
U average velocity in z-direction; internal energy
u’ x component of velocity

v dimensionless y component of velocity = v'/U
V velocity vector = (u,v); volume

v y component of velocity

x dimensionless coordinate along channel = «'/H
x coordinate along channel

!, entrance length

X dimensionless z-coordinate = 2'/(H Re) = x/Re
y dimensionless coordinate across channel = y'/H
Y coordinate across channel

v kinematic viscosity

W dimensionless stream function = ¢'/(UH)

)’ stream function

w dimensionless vorticity = (H/U)w'’

W' vorticity

1 Introduction

1.1 Background and objectives

In 1883, Reynolds first observed two different kinds of critical values (Rc) for laminar-
turbulent transition in pipe flows: (i) Rc = 12,830 determined by the color-dye method and
(ii) Re = 2030 determined by the pressure loss method [1, 2]. Thus, the Reynolds’s problem
is defined as the theoretical obtainment of Rc = 12,830 and Rc = 2030 for pipe flows.
The value of 2030 is called the minimum Rc, or Re(min). To date, attempts to solve this
problem have been undertaken using the stability theory with the Orr-Sommerfeld equation
and disturbances. However, Rc(min) of approximately 2000 has not yet been obtained. For
flow in the entrance region, Tatsumi [3] obtained Rc = 19,400 and Huang and Chen [4]
obtained Rc = 39,800 and 39,560 due to axisymmetric and non-axisymmetric disturbances,
respectively.

Reynolds observed that the transition for Rc of 12,830 occurs near the pipe inlet, or in the
entrance region. Generally, thus far, three major variables have been studied in the entrance
region [5a): (i) the velocity distribution at any section, (ii) the entrance length (Le), and
(iii) the pressure difference between any two sections and the excess pressure drop (K(o0)).
In dimensionless X coordinates, the results of the velocity distribution, Le, and K(oo) are
approximately constant regardless of Reynolds numbers (Re) when Re > 500 [6], i.e., these
variables are not functions of Re above 500. However, since the transition occurs in the
entrance region, we must find a variable which varies inversely with Re around Re(min). It
is found to be the normal wall strength (NW .S, see Eq. (15)).

On the basis of the above discussion and the results of many previous experimental
investigations, we developed a transition model (see next subsection) and obtained Rc(min)
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Figure 1: Velocity development in the entrance region.

= 2040 using the axial grid points JO = 101, and Rc(min) = 2630 at JO = 51 [7, 8.
The purpose of the present study is to obtain Re(min) numerically for channel flow, which
satisfies the experimental minimum value in the neighborhood of 1300, and thus to verify
the model of the occurrence of the transition.

Although many investigations were carried out for channel flow, there are few implicit
solutions available in the normal or y-direction [9, 10]. For the experimental Rec(min) value in
channel flow, Davies and White [11] observed a Rc(min) value of 1440 when using a straight
channel of rectangular cross section with the aspect ratio of 37 through 165. Rc(min) =
1440 was obtained in the fully developed region, while the Re(min) value in the entrance
region was not clear. Patel and Head [12] carried out experiments in a straight rectangular
channel 1/4 in. high and 12 in. wide in the fully developed region. The aspect ratio of 48
was considered sufficient to assume the flow to be two-dimensional. Patel and Head stated
that the value of approximately 1300 may be acceptable as the lower or minimum critical
value for channel flow.

On the other hand, the theoretical Rc(min) calculated using stability theory is about
7700 [13].

1.2 Transition model

The following outline of the model is considered for pipe flow. Similarly, this model is
applicable to channel flow since both flows are internal flow. Only critical values for Re(min)
are different between pipe and channel flows.

(1) Four laminar-turbulent transition types:

Figure 1 shows the entrance region between parallel plates at y = 4+h in two dimensions. At
the inlet x = 0, let us assume that the fluid enters the channel with a flat axial velocity profile
U across parallel plates, and that there is no velocity component in the y-direction. In the
entrance region, the velocity distribution progresses from uniform at the inlet to parabolic
downstream beyond Le. The region beyond Le is called the fully developed region. Reynolds
stated that there are two critical values for velocity in a pipe: one at which steady motion



Table 1: Four types of laminar-turbulent transition.

Transition type Entrance region Fully developed region
Laminar to turbulent Rel Re3
(color-dye method)
Turbulent to laminar Re2 Rca

(pressure loss method) (pressure loss method)
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Figure 2: Flow state for Rcl vs Figure 3: Flow state for Rc2 vs BD/D.
BD/D.

changes into eddies, and another at which eddies change into steady motion. We also recog-
nized two types of transition in the entrance region: Rcl is Rc for transition from laminar
to turbulent flow and Rc2 is another Re for transition from turbulent to laminar flow [14].
Accordingly, the laminar-turbulent transition is classified into four types according to the
distance from the inlet and Rc, as shown in Table 1. Reynolds’ color-dye method is appli-
cable for Rcl and his pressure loss method for Rc2 and Re4, although Re2 and Re4 might
be for the same transition phenomenon.

(2) Effects of entrance shape on Re:

Prandtl and Tietjens state that in order to obtain a high Rc, it is essential to round off the
entrance of the pipe [15]. Figures 2 and 3 show the experimental results for Rcl and Rc2,
respectively [14]. Values of Rel and Re2 increase as the contraction ratio of the bellmouth
(BD) to pipe diameter (D) increases. It is clear that each entrance shape has a maximum
value for Rcl and a minimum value for Rc2: Rcl(BD/D,maz) and Rc2(BD/D,min).
Rc1(BD/D > 2.33, max) approaches a constant of approximately 13,000, above which the
flow state is turbulent. Similarly, Rc2(BD/D > 2.33, min) approaches a constant of approx-
imately 5500, below which the flow state is laminar. Generally, Rc2(min) < Rcl(mazx) and
the two lines for Rel(mazx) and Re2(min) form a hysteresis curve like that in an electro-
magnetic field.

(3) Minimum critical value, Re(min):

From the experimental results [14], Rc(min) is obtained when the contraction ratio BD/D
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at the inlet is minimum or one, i.e., without any bellmouth entrance. Then, the values
of both Rcl(max) and Re2(min) become Rc(min) of approximately 2000. Concerning the
effects of the sharp corners of a straight channel on Re, Patel and Head stated that “initially
the channel was connected directly to the setting box and it was thought that the sharp
corners at the inlet would provide sufficiently disturbed conditions. However, to make quite
sure that the flow was fully turbulent, a 1/8 in. diameter wire was later fitted across the
inlet, and it was found that this did not alter the results in any way” [12]. For pipe flow,

BDI}%I—JRC(HHH) = Rc2(min) ~ Rcl(maz) ~ 2000. (1)

(4) Normal wall strength (NW.S):

NW S is defined as the radial component of the curl of vorticity multiplied by (2/Re) (see
Eq. (15)). Note that NW.S varies approximately inversely with Re and the boundary-layer
assumption neglects NW.S.

219 xw), 2)

NWS =
Re r=R

(5) Increase in kinetic energy (KFE):
The magnitude of the increase in kinetic energy in the entrance region is named K F/, although
its physical unit is power, not energy (see Eq. (43)). Note that K'F is a constant regardless
of Re, unlike NW S.
(6) The judgement condition for the occurrence of the transition depends on whether the
power (PW) done by NW S is higher or lower than the required acceleration power (K E)
for fully developed flow.

(i) When PW < KE, transition takes place.

(ii) When PW > KE, flow is stable.
(7) Internal flows:
When considering the transition, internal flows such as pipe flow and channel flow must be
separated from external flows, such as flow on a flat plate, since the external flows do not
reach any fully developed state. The laminar-turbulent transition is determined by whether
the flow reaches a fully developed state. For external flows, the transition occurs necessarily
after some distance from the inlet. For flow on a flat plate, Rivas and Shapiro [16] state that
the length Reynolds number of transition (Rx = Ux’/v) is of the order of 500,000.
(8) Natural calm conditions:
Transition occurs in the entrance region under the conditions of natural calm disturbances.
Artificial disturbances are not considered.

A few fundamental points, however, still remain unsolved in the model.
(1) It is insufficient for predicting the transition length, which is the distance between the
inlet and the point where the transition to turbulence occurs.
(2) It is insufficient for quantitatively explaining the periodical generation and decay of
“puffs and slugs” [17]. NW.S might be a force that controls the puffs and slugs.



2 Calculated results

2.1 Governing equations

First, let us consider dimensionless variables. All lengths and velocities in the problem are
normalized by the channel height H(= 2h) and the mean velocity U, respectively. The
pressure is normalized by (1/2)pU?, not pU?. The Reynolds number is based on the channel
height H and the mean velocity U. Note that x is used for calculation and X (= z/Re) for
presentation in figures and tables.

The equations that govern the incompressible laminar flow are the vorticity transport
equation,

Ow O Ow Wow 1 _,
ot * Oy Ox oxr Oy Rev “ 3)

and Poisson’s equation for the stream function:

Vi = —w. (4)
The relationships between the stream function and velocity are defined as
oY o
u = oy’ v= (5)

In a two-dimensional flow field, only the z component of vorticity, w,, is effective; thus, w
denotes w, in this study.

ov ou
=w, = |VXV], = — — — 6
The ¢ — w solution does not give any information regarding the pressure field. The
pressure can be calculated using the Navier-Stokes equations in a steady state [18a]; the

pressure distribution for the x derivative is

Op ou ou 2 o

i ¥ I - il

Ox <u(9x + U@y) * ReV o (")
and that for the y derivative is

op ov ov 2 _,

— = —2{u— — — :

Ay <u(9x + v@y) T Rev ! (®)

Since u and v are known at every point from Eq. (5), the derivatives on the right-hand sides
of Egs. (7) and (8) can be obtained. Hence, note that the results of Eq. (7) must satisfy the
results of Eq. (8). Thus, a smooth pressure distribution which satisfies both Eqgs. (7) and
(8) is calculated using Poisson’s equation [19],
ENEY — EhE)| )
T oy T oy

For the calculation of pressure distribution, it is important to make no assumptions.
Accordingly, the vorticity transport equation is first solved and then the pressure distribution
equation is solved without any assumptions made for pressure distribution. In this study,
initial values are given using Eq. (7), and then Eq. (9) is used to obtain better solutions.

Vip = —4
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2.2 Le and excess pressure drop K(oo)

The entrance length Le is defined by Eq. (10), as the length required for the centerline
velocity to reach 98%, 99%, and 99.9% of its fully developed value.

/
Le — e 10
‘ HRe (10)
For the fully developed flow where dp/dy = 0, the pressure gradient at the centerline [20)]
is given by
dp 24
_r _ == 11
dx Re (11)
The total pressure drop from the channel inlet is expressed as the sum of the pressure drop
that would occur if the flow were fully developed plus the excess pressure drop K(X) to
account for the developing region.

p(0) —p(X) = 24X + K(X) (12)

Generally, Le and K(co) at X > Le is calculated to verify the accuracy of the calculated
results by comparison with other previous results.

2.3 Normal wall strength (NW.S)

We consider what accelerates the fluid particles in the central core. The dimensionless N-S
equation in vector form [5b] is written as

ov p V2 1
SN S PLr )= . 1
T V xw grad(z—l- 2) R6V><w (13)
Since V = 0 at the wall, Eq. (13) at the wall decreases to
2
EV X w ot = — grad(p)l,_, - (14)

The normal component of Eq. (14) is called the normal wall strength (NWS), which is
expressed nondimensionally as

2
Re

2 Ow

N =
ws y=h Re Ox|,_

V x wl, > 0. (15)

The characteristics of NW S are as follows.

(i) It is clear from Eq. (15) that NW.S causes the pressure gradient in the y-direction; in
other words, the pressure gradient results from the curl of vorticity. NW.S and the pressure
gradient in the y-direction have the same magnitude at the wall, but are opposite in direction.
Therefore, the direction of NW.S is from the wall to the centerline.

(ii) NW S exists in the vicinity of the inlet where the vorticity gradient in the z-direction is
large. NW'S decreases inversely as Re increases.

(iii) When using the boundary-layer assumptions, NW S vanishes since the pressure gradient
normal to the plates is always neglected in the assumptions.
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Table 2: Mesh system, CPU times and PW.

Re 10/J0 T-step CPU PW
500b  1001/51 2,500,000 425h 33m | 0.7906
1000b  1001/51 3,400,000 450h 04m | 0.4905
2000b  1001/51 2,000,000 101h 46m | 0.2524
4000b  1001/51 2,900,000  408h 17m | 0.1610
700 201/101 1,400,000 518h 43m | 0.7824
1000c  1001/101 3,400,000 3,387h 28m | 0.6167
1500 201/101 1,200,000  495h 45m | 0.4582
2000 201/101 1,500,000  499h 50m | 0.3660

2.4 Numerical method

For an unsteady problem, the vorticity transport equation, Eq. (3), in finite difference form
can be solved in time using an explicit Gauss-Seidel iteration method. This computational
scheme involves the forward-time centered-space (FTCS) method. The rectangular mesh
system is listed in Table 2, where 10 and JO are the maximum numbers of mesh points in
the z- and y-directions, respectively. Table 2 also lists Re, the number of time steps needed
to reach the steady state (T-step), CPU times, and the power PW calculated from Eq. (38).

The calculation algorithm is shown in Fig. 4, where n is the number of time steps and
m is the iteration index. Steps 3, 4, and 8 are the Gauss-Seidel method. At the wall and
the centerline, a three-point, one-sided approximation for derivatives is used to maintain
second-order accuracy. The scheme thus has second-order accuracy in space variables, and
first-order accuracy in time.

The explicit form for the vorticity transport equation is written as

Wt — N oY Q" oY O i((??w" N 32w">' (16)
At dy Ox oxr 0Oy Re \ 0x? 0y?
The initial condition for the stream function is given by
Y(i,5) =G —-1DlAy, 1<:<10, 1<5<J0. (17)

Within the boundaries, the initial vorticity is obtained by solving Eq. (4). The velocities u
and v are set using Eq. (5) whenever the stream function is newly calculated.

The following are the boundary conditions where I1 =10-1,12=10-2, J1 = J0- 1,
and J2 = JO - 2.
(i) At the centerline: ¢;1 =0, w;; =0, 1<i<I1.
(ii) At the inlet: ¢4 ; = (j — 1)Ay, wy,; =0, 2< < JL
(iii) At the wall: ¢, ;o = J1Ay, 1< <11,
For vorticity, the boundary condition at no-slip walls is derived from Eq. (6). Using a
three-point, one-sided approximation for derivatives, we obtain

ou ~ _3Ui,JO - 4Ui,J1 + U;, 52 _ 4Ui,J1 — U g2

WinJo = 8_y y—h - 2/\y 2y

(18)



| 1) Set initial and boundary conditions |

| 2) Calculate w™* from w", Eq.(xx) |

| 3) Calculate 7t} from w™t! and 7+, Bq.(16) |

| 4) Calculate @™t} from 7Y Eq.(4) |

| 5) Check | wpth - W™ | < ¢ |
I
|

| 6) Check | 4™t - 4" | < e |

| 7) Set initial values for pressure, Eq.(7) |

| 8) Calculate better pressure, Eq.(9) |

| 9) Check | Ppiy - P | < €3 |
|

End

Figure 4: Flowchart for ¢ -w computer solution.

(iv) At the outlet, the linear extrapolation method is used: o ; = 2411 ; — V12,5, wio,; =
2wr1,; — wra,j-

Then, we calculate a pressure distribution. The initial conditions are given by Eq. (7).
The following are the boundary conditions for Poisson’s equation for pressure.
(i) For the pressure at the centerline, we use the three-point finite difference form; since
p/dy =0 aty =0, pi1= (4pi2 —pi3)/3 with 1 <i < ]0.
(ii) The pressure at the channel inlet is given as zero without the leading edge: p;; = 0, 1<
J < JL
(iii) The pressure at the wall is derived from Eq. (15). For the leading edge with i = 1 and
j = JO0, using the three-point approximation for w, the pressure gradient is expressed as

3Py jo—4Pipn+ P2 2 —ws jo+ 4dwa j0 — 3w o

2y Re 2Ax

. (19)




Table 3: Dimensionless entrance length Le.

Re 08%  99% 99.9% K ()

500b 0.0330 0.0421 0.0756 0.6496

1000b 0.0331 0.0421 0.0748 0.6506

2000b 0.0330 0.0421 0.0758 0.6512

4000b 0.0329 0.0420 0.0746 0.6493

1000c 0.0330 0.0424 0.0732 0.6655
Bodoia and Osterle [21] 0.034  0.044 0.076  0.676
Kiya et al. [22] 0.0348 0.0445 - 0.666

For the wall with 2 <4 < I1 and 57 = JO0,

3Pijo—A4Pin+ P 2 Witi,50 —Wi1o
2/y Re 2/x

(20)

(iv) For the outflow boundary conditions, the linear extrapolation method is used: Pjo; =
2Pn; — Py, 1<j5<J0.

In this study, the dimensionless X-direction grid space is constant: AX = Ax/Re =
0.0001. Accordingly, Az = 0.0001 * Re and the maximum X-distance is 0.0001 x ([0 —
1) = 0.1. The numerical calculations were carried out in 2002 on an NEC SX-4/128H4
supercomputer which has a peak performance of 2G-FLOPS/processor.

2.5 Calculated results

It is necessary to ascertain the accuracy of calculations. Table 3 lists the calculated values
for Le and K(oo). The calculated results of this study agree well with the results of the
previous investigations.

The transition occurs when X is less than 0.012-0.025 [23]. Accordingly, the pressure

drop Ap is calculated for X < 0.02, as shown in Figs. 5, 7, and 8, and for X < 0.1, as in Fig.
6. In Figs. 5 - 8, the black dots denote the pressure drop at the wall and the squares denote
that at the centerline. The pressure p is 0 at the inlet. Since p is negative downstream,
pressure drop Ap in the z-direction is positive: Ap = 0 —p. The main conclusions for p and
Ap are as follows.
(i) The values of Le and K (oc0o) are approximately the same as listed in Table 3 at Re > 500.
(ii) There are large differences between pressures at the wall and at the centerline across the
channel near the inlet. This difference becomes smaller as Re increases. Note again that the
boundary-layer assumptions ignore this difference.
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(iii) Hence, we consider the question: which is higher, pressure at the wall (p,,) or pressure
at the centerline (p.) in the y-direction? p, is larger than p, across the channel, indicating
that the pressure distribution is contrary to Bernoulli’s law, although the law does not apply
to viscous flow. The calculated results verify Eq. (15).

3 Evaluation of pressure drop in normal direction

3.1 Verification of lower pressure at wall
At the wall, the vorticity is approximated from Eq. (18) as

ou du; g1 — Ui g2
Wwijgo = — 5 N . 21)
dy y—h 2/\y (
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Near the wall, the x component of velocity, u, can be linearly approximated as

i i 1
Ui g1 = W = §ui,J2- (22)

From Egs. (21) and (22), the vorticity at the wall is simply approximated as

ou

w _ Ui
i,Jo — T [ ~
b ay

Ay > 0. (23)

y=h

Substituting Eq. (23) into Eq. (15) gives

op _ 2 O _ ii(_a_“)
Ay|,_, "~ Re Ox ot Redx™ y’| _,
2 0 u;n 2 U191 — Wi—1,J1
~ —_— 2 — — ! u < . 24
Re (%( Ny ) Re 2N x Ny 0 (24

Hence, since u;41,71 < ;1.1 in the entrance region, the normal pressure gradient at the
wall becomes negative.

On the other hand, in the fully developed region, since u;y1,1 = %;—1.51, the normal
pressure gradient at the wall becomes 0, so that the pressure distribution is uniform in the
y-direction, where the velocity distribution is given by

= —(1—-Z). 2
uly) = 30— 5 (25)
For the value of the vorticity at the wall, differentiating Eq. (25) with respect to y gives

ou 3. 2h 1
Wl = — a—yy:h = —5(—ﬁ) = 3+ = 6, (26)

where the dimensionless value of h is 0.5. Thus, the value of w decreases monotonically from
a large positive value at the leading edge to 6 in the fully developed region. Hence, the
positiveness of the vorticity in Eq. (23) is also verified.

3.2 Variation of enthalpy with pressure

Generally, power is defined as the inner product of force and velocity. If velocity u is in the
x-direction, the power (NW .S - u) vanishes since NW .S is perpendicular to u.

As shown in Figs. 5 - 8, however, there exist large pressure drops in the y-direction
resulting from NW.S. Hence, the amount of work done by NW S is considered using ther-
modynamics [24]. The variation of enthalpy H with pressure p, at a fixed temperature, can
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be obtained from the definition H = U + pV, where U is internal energy and V is volume.
For changes in H, we have

AH = AU + A(pV). (27)

For most solids and liquids, at a constant temperature, the total energy U does not change
markedly with pressure. Since the change in volume can be neglected in comparison with
the change in pressure, the change in enthalpy AH due to a change in pressure Ap can be
approximated by

Work done by NWS = AH ~ VAp (28)

Equation (28) can be applied to an incompressible flow as well. The unit of VAp is expressed
as

m 1 m ]
This unit, however, is equal to work in physics, and not to power such as the increase in

kinetic energy per second. Accordingly, we must consider the duration in which the work
given by Eq. (28) is done.

enerqy work
ower = =
b time time

3.3 Power PW done by NWS

The power done by NWS can be obtained by dividing the work by elapsed time. First,
consider the volume size V(i) which NW .S affects. For the shaded space between z(i) and
z(i + 1) in the rectangular mesh system shown in Fig. 9, it is assumed that NW.S has an
effect on the volume in the range from y(.J1) to y(j) in the y-direction. Since there are few
differences in pressure in the y-direction near the centerline, for simplicity, we assume j =
1, i.e., the effect of NW S ranges from the wall to the centerline. Consequently, the volume
size V(i) is simply expressed as

V(i) = (h— Ay)(Az)w, (29)

where w is the width of the channel plate when V' (4) is 3-D.
The pressure difference in the y-direction is approximated by the mean difference between
z(i) and x(i + 1),

1 1

Ap(i) = 5 {pm + Pi+1,1} -1 {pi,JO + pi1 + Piv1go + pi—f—l,Jl} (30)

Next, consider the elapsed time At during which NW S acts on the flow passing along
vorticities w; jo and w;+1 jo. The distance between x(i) and x(i + 1) is Az. The velocities
at two points (i, J1) and (i + 1, J1) are w;j; and w;4q s1, respectively. Accordingly, the
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Figure 9: Mesh system, Az = Ay.

elapsed time At*(i) may be given by dividing the axial grid space Az by the mean velocity
at j = J1.

JAN VAN
x ~ x (31)

1 .
§{Ui,J1 + ui-i—l,Jl} Uit1/2,71

At (i) =

However, if this At*(7) is the correct period, the following inconsistency will be encountered.
Two simple cases, (a) and (b), are taken as examples. In case (a), the mesh aspect ratio is
Ax =2y, as shown in Fig. 9, where V1 =V2 V14 V2=V, i=4d,i+1/2=4+1, and
i+1=14+2 The work W(a) and the power PW (a), for the shadowed space (V1 + V2)
between z(i) and x(i 4+ 1), respectively, are expressed as

Wi(a) = VAp, (32)
A .
PW(a) = VAAQEP _ (V p;Au;-H/Z,Jl' (33)
Uit1/2,J1

Then, if the mesh aspect ratio is Az = Ay, the work W (b) in V is calculated by adding
work in V1 and work in V2:

W(b) = V1iApl + V24Ap2 =~ VAp. (34)
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Figure 10: Balance of NW .S and pressure at wall.

Similarly, the power PW (b) in V is calculated by adding the powers in V1 and V2:

PW() = —p— + —px— & 3 8 & 2PW(a), (35)
Ui 41/2,J1 Ui 4-3/2,J1

where it is assumed that Apl &~ Ap2 ~ Ap and wyy1/2 51 & Uig1,51 = Wirgs/a 1. Since W(a)
and W (b) must be the same for the same volume V', PW must also be the same for the same
volume V. On comparing PW (a) and PW (b), however, PW (b) is twice as high as PW (a).
To avoid this inconsistency, the following elapsed time is required for a general mesh system
of Ao =nly (n=1,23,...)

AN 1 1
At(i) = Y = - ~ : (36)
) ) Ui, J1 Ui41,J1 P )
{Uz,Jl + uz+1,J1} 5 {A_y + Ay } 5 {Wz,JO + Wz—i—l,JO}

DN | =

where the vorticity at the wall is approximated by Eq. (23).

NW S causes the pressure gradient in the y-direction. Figure 10 shows the balance of
NW S and pressure at the contact surface of j = 0.5(J0 + J1). The elapsed time given by
Eq. (36) is based on the following assumptions.
(i) The no-slip condition at the wall means that the fluid particles are not translating;
however, they are undergoing rotation. It can be imagined that the wall consists of an array
of marbles which are rotating but remain at the same location at the wall J = J0 [15b].
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Figure 11: PW done by NWS for straight channel flow.

(ii) Rotation of a fluid particle at the wall yields a vortex and a vorticity. Then the curl
of vorticity yields NW .S, according to Eq. (15). The diameter of the vortex of the fluid
particle on the wall is Ay. Accordingly, NW .S is produced per vortex, or per Ay.

(iii) Since NWS is generated between adjacent vorticities, the effective distance in the z-
direction which NW S affects is Ay, not Ax. This statement is confirmed using Eq. (37) in
discrete form. Let Ax be n/\y, then

Ap_ 2 Aw_ 2 w¢+1—wi_ 2 Wil — Wy
Ay Relx Re Ax  Re nly

2 1
= Renby [{Wi’—l-n — Wirgn—1} T {Wirgn-1 — Wirgn-2} + -+
2 n{wig1 —wi} 2wy —wp
I — Wy ~ - = 37
Hun —w }} Re nly Re Ay (37)

where the vorticity gradient is assumed to be linear in a small space between z(i) and z(i+1),
Le., Wirtn — Wirgn—1 R Wirgn-1 — Wirgpn—2 &+ R Wil — Wi
Thus the total power PW done by NW S is obtained in dimensionless form (drop w) as
V(@) &pi) 1
pw = 2P g Ay ar S [2p + b

—{pi,jo + i1 + Piv1g0 + pi-‘rl,Jl}] X {Wi,JO + wi+1,J0} (38)

The calculated results of PW are listed in Table 2, and plotted against the Reynolds
number in Fig. 11, where the dots and asterisks denote the results for JO = 101 and JO =
51 grid points in the y-direction, respectively. It is clear from Fig. 11 that (i) PW decreases
as Re increases and (ii) at Re = 1300, the value of PW is approximately from 0.5 to 0.6.
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Therefore, we must find another variable which has values from 0.5 to 0.6 at Re = 1300.
Because we state the variable beforehand, it is the increase in kinetic energy per second, or
power, in the entrance region.

3.4 Increase in kinetic energy (KF)

In the entrance region, the velocity distribution changes from uniform at the inlet to parabolic
at the entrance length. The magnitude of the increase in kinetic energy is considered below.

At the inlet, the velocity profile is uniform: «(0,y) = U. Let w be the channel width.
For half the channel, the kinetic energy across the inlet is given by multiplying the flux by
its kinetic energy,

h Lo | 1 3
/ wdy - U - (=pU?) = =pU w/ dy = —phwU". (39)
0 2 2 0 2

At the entrance length, the velocity has a parabolic distribution and is expressed as

3 Y 2}
= 2ud1— (el 40
uty) = v {1-) (10)
From Eq. (40), the kinetic energy at the entrance length is calculated as
1 h73 Yy 2}]3 27 5
- U= (D2 dy = ZLphwlUB, A1
pr/o [2U{ ) y = ggphetl (41)

Accordingly, the increase in kinetic energy in the entrance region is obtained by subtract-
ing Eq. (39) from Eq. (41).

27 1 19
gphwU?’ - §phwU3 = 7—OphwU3 (42)

The dimensions of this increase in kinetic energy are

kg o m m? m m
29 OV pg = kg — &
m3 (sec) 9 e 9 sec sec
Note that this unit corresponds to power in physics, i.e., energy per second. We define the

dimensionless increase in kinetic energy per second, or acceleration power, K F, as

1
Kp = L—— = 5 = 05429, (43)
§phwU?’

This value of 0.5429 for channel flow is constant regardless of Re.
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3.5 Calculation of Rc(min)

The minimum critical Reynolds number Rc(min) is calculated via linear interpolation. In
the case of JO = 101, employing the values of PW for Re = 1000 and 1500,

Re(min) — 1000 1500 — 1000

— . 44
0.5429 — 0.6167 0.4582 — 0.6167 (44)
From Eq. (44), we obtain Rec(min) ~ 1230.
In the case of JO = 51, employing the values of PW for Re = 500 and 1000,
Re(min) —500 1000 — 500 (45)

0.5429 — 0.7906  0.4905 — 0.7906

From Eq. (45), we obtain Re(min) ~ 910.
Re(min) = 1230 is much closer to the experimental value of 1300 than the approximate
value of 7700 given by the stability theory.

4 Conclusions

From previous experiments performed under the conditions of natural disturbances, it is
clear that (i) the laminar-turbulent transition occurs in the entrance region and (ii) Re
takes a minimum value, Rc(min), when using a straight pipe or a straight channel, i.e., no
bellmouth is fitted at the inlet. On the basis of this knowledge, we proposed the laminar-
turbulent transition model. The following conclusions were obtained in the present study.
(1) The transition model was verified by determining Re(min) for channel flow. The calcu-
lated results of Re(min) were 1230 when using J0 = 101 grid points in the y-direction and
910 when JO = 51.
(2) In the entrance region, there exist two parameters, i.e., the increase in kinetic energy per
second (KF) and the power (PW) done by NW.S. For the dimensionless X (= 2’'/H Re)
coordinate, K'F is constant regardless of Re, but PW varies approximately inversely with
Re. The intersection point of two lines of the two parameters indicates the value of Re(min).
The proposed model is a hypothetical macromodel and does not represent the fine struc-
ture of turbulence well. The calculated values of Rc(min), however, were close to the ex-
perimental values for both pipe and channel flows. Therefore, we cannot ignore the model
and must further calculate Re(min) and Re2(BD/D,min) for flows in bellmouth entrances
using more refined meshes such as AX = 0.00001 to obtain the true values of Re(min) and
Rc2(BD/D,min). Moreover, we must further study the relationship between the pressure
difference in the y-direction and the excess pressure drop K(X); The pressure difference
decreases inversely with Re, while K(X) is constant regardless of Re for the X coordinate.
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