Title	THE NAVIER-STOKES FLOW FOR GLOBALLY LIPSCHITZ CONTINUOUS INITIAL DATA (Kyoto Conference on the Navier-Stokes Equations and their Applications)
Author(s)	HIEBER, MATTHIAS; RHANDI, ABDELAZIZ; SAWADA, OKIHIRO
Citation	数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu (2007), B1: 159-165
Issue Date	2007-03
URL	http://hdl.handle.net/2433/174047
Type	Departmental Bulletin Paper
Textversion	publisher

Kyoto University
THE NAVIER-STOKES FLOW FOR GLOBALLY LIPSCHITZ CONTINUOUS INITIAL DATA

MATTHIAS HIEBER, ABDELAZIZ RHANDI, AND OKIHIRO SAWADA

Abstract. Consider the Cauchy problem of the incompressible Navier-Stokes equations with initial velocity U_0 of the form $U_0(x) := u_0(x) - f(x)$, where f is a Lipschitz function and $u_0 \in L^p_\sigma(\mathbb{R}^n)$. It is shown that under these assumptions the equations of Navier-Stokes admit a unique local in time mild solution.

1. Introduction

We consider the flow of an incompressible, viscous fluid in the whole space \mathbb{R}^n, $n \geq 2$ described by the Cauchy problem for the system of the Navier-Stokes equations, i.e.,

\begin{equation}
\left\{
\begin{array}{ll}
U_t - \Delta U + (U, \nabla)U + \nabla P = F, & \text{in } \mathbb{R}^n \times (0, T),
\n\nabla \cdot U = 0, & \text{in } \mathbb{R}^n \times (0, T),
\nU|_{t=0} = U_0 & \text{in } \mathbb{R}^n.
\end{array}
\right.
\end{equation}

Here, $U = (U^1, \ldots, U^n)$ and P represent the unknown velocity and the unknown pressure of the fluid; U_0 is the given initial velocity, and F is a given external force term.

There is a vast literature on existence of solutions of (1.1) in \mathbb{R}^n, see e.g. [1, 7, 9, 12, 16, 19, 22]. All these results assume that the initial data decay as $|x| \to \infty$. In particular, when $F = 0$, it is well known that there exists a locally-in-time smooth solution to (1.1) provided the initial velocity U_0 belongs to $L^p_\sigma(\mathbb{R}^n)$ and $p \geq n$ (see e.g. [15, 19]).

On the other hand, there is strong interest in equation (1.1) for initial data which do not decay at infinity. For results in this direction, we refer to [5, 6, 13] and [8]. Also, H. Okamoto [24] showed that for certain concrete flow problems there exist exact solutions to (1.1) which have the property that u grows linearly as $|x| \to \infty$.

In this paper, we consider initial data of the form

\begin{equation}
U_0(x) = u_0(x) - f(x), \quad x \in \mathbb{R}^n,
\end{equation}

where $u_0 \in L^p(\mathbb{R}^n)^n$ satisfies $\nabla \cdot u_0 = 0$ and f fulfills the following three conditions:

(H1) $\nabla \cdot f = 0$,

(H2) $\Delta f \in L^p_\sigma$,

(H3) $\exists \Pi : \text{ scalar function s.t. } (f, \nabla)f + \nabla \Pi \in L^p_\sigma$.

The particular case where $f(x) = Mx$ was considered in [17]. Here M denotes a real $n \times n$ matrix having $\text{tr } M = 0$. It was shown that this case there exists a unique, local solution to (1.1). It was also shown that this solution is analytic in the spatial variables provided M is skew-symmetric. In this paper, we generalize the result of [17] to the case of Lipschitz continuous functions f satisfying (H1), (H2) and (H3).

For the time being consider again the case where $f(x) = Mx$. Then it is known that (1.1) admits many exact solutions, which are studied e.g. in [10, 21, 25]. In fact, let f be of the form

\[f(x) = Mx. \]
\[f(x) = Mx + V, \] where \(M = (m_{ij})_{i,j} \) is an \(n \times n \) real-valued constant matrix satisfying that \(\text{tr} M = 0 \) and such that \(M^2 \) is symmetric. Moreover, let \(V \) be a vector. Then \(\Delta f = 0 \) and

\[\text{tr} M = 0 \iff (H1) \quad \text{and} \quad M^2 \text{ is symmetric} \iff (H3). \]

In fact, take \(\Pi = \frac{1}{2}(M^2x, x) + (V, M^T x) \). Then \((U, P)\) given by \(U = -f \) and \(P = -\Pi \) solves (1.1) with \(F = 0 \) provided \(\Delta f = 0 \) and (H3) holds.

The particular case, where \(M = R \) describes pure rotation, was investigated by Hishida and by Babin, Mahalov and Nicolaenko. Indeed, Hishida constructed in [18] a local solution to the equation (1.3) written below in the \(L^2 \) context and provided \(u_0 \) belongs to a certain fractional power space. Babin, Mahalov and Nicolaenko [2, 3] proved the existence of a local solution and even a global solution to (1.1)-(1.2) provided the speed of rotation is fast enough. Further, the case \(f(x) = (ax_1, ax_2, -2ax_3) \) with some constant \(a \in \mathbb{R} \), was investigated by Giga and Kambe [14]. They studied the axisymmetric irrotational flow and the stability of the vortex.

In [26], the third author proved the existence of a local solution of (1.1)-(1.2), still for \(M = R \) provided \(u_0 \) belongs to the homogeneous Besov space \(\dot{B}^{0}_{2,1} \). Although \(\dot{B}^{0}_{2,1} \) is strictly smaller than \(L^{\infty} \), this space still contains the nondecaying function \(f(x) = \sin x \). He also showed the uniqueness of the solution for general matrices \(M \); see [27].

In the following consider the the substitutions \(u := U + f \) and \(\tilde{P} := P + \Pi \). Then the pair \((U, P)\) satisfies (1.1) in the classical sense, if and only if \((u, \tilde{P})\) satisfies

\begin{equation}
\begin{cases}
u_t - \Delta u + (u, \nabla)u - (f, \nabla)u - (u, \nabla)f + \nabla \tilde{P} = \tilde{F} & \text{in } \mathbb{R}^n \times (0, T), \\
\nabla \cdot u = 0 & \text{in } \mathbb{R}^n \times (0, T), \\
u(0) = u_0 & \text{with } \nabla \cdot u_0 = 0 \text{ in } \mathbb{R}^n.
\end{cases}
\end{equation}

Here \(\tilde{F} := F + \Delta f - (f, \nabla)f - \nabla \Pi \). Of course, if \((f, \Pi)\) is a stationary solution to (1.1) with \(F = F(x) \), then \(\tilde{F} \equiv 0 \). Our approach to equation (1.1) is based on equation (1.3).

2. Main Results

Let \(u_0 \in L^p(\mathbb{R}^n) \) for some \(p \) satisfying \(1 < p < \infty \). Moreover, let \(f \) be a vector-valued globally Lipschitz continuous function satisfying hypothesis (H1), (H2), (H3).

We then rewrite the first equation of (1.3) as the abstract equation

\begin{equation}
u' + Au + (u, \nabla)u - 2(u, \nabla)f + \nabla \tilde{P} = \tilde{F}.
\end{equation}

with \(A \) being an operator in \(L^p(\mathbb{R}^n) \) defined by

\begin{equation}
Au := -\Delta u - (f, \nabla)u + (u, \nabla)f.
\end{equation}

Equipped with the domain \(D(A) := \{ u \in W^{2,p}(\mathbb{R}^n) \cap L^p(\mathbb{R}^n); (f, \nabla)u \in L^p(\mathbb{R}^n) \} \), \(-A\) generates a \(C_0\)-semigroup \(\{ e^{-tA} \}_{t \geq 0} \) on \(L^p \) for \(1 < p < \infty \). This follows from the results in [20] and standard perturbation theory.

Applying the Helmholtz projection \(\mathbb{P} \) to (2.1), we may rewrite (1.3) as

\begin{equation}
\begin{cases}
u' + Au + \mathbb{P}(u, \nabla)u - 2\mathbb{P}(u, \nabla)f = \tilde{F} \\
u(0) = u_0.
\end{cases}
\end{equation}

Note that in our case the Helmholtz projection \(\mathbb{P} \) can be expressed explicitly by \(\mathbb{P} := (\delta_{ij} + R_i R_j)_{i,j} \), where \(\delta_{ij} \) stands for Kronecker’s delta, and \(R_i \) is the Riesz transform defined by \(R_i := \partial_i (\Delta)^{-1/2} \) for \(i = 1, \ldots, n \). Observe that \(A \) and \(\mathbb{P} \) commute in our case, since \(\nabla \cdot Au = 0 \) if \(\nabla \cdot u = 0 \). Since \(u, F \) and \(f \) are divergence-free, \(\mathbb{P}u = u \) as well as \(\mathbb{P}F = F \).
For $T > 0$ we call a function $u \in C([0, T); L^p_\sigma(\mathbb{R}^n))$ a **mild solution** of (2.3) if u satisfies the integral equation

\[(2.4)\]
\[
 u(t) = e^{-tA}u_0 - \int_0^t e^{-(t-s)A}\mathcal{P}(u(s), \nabla)u(s)ds + 2\int_0^t e^{-(t-s)A}\hat{F}(s)ds + \int_0^t e^{-(t-s)A}F(s)ds
\]

for $t \in (0, T)$, and $u(0) = u_0$.

We now state the our existence and uniqueness results for mild solutions of (2.3) in L^p spaces.

2.1. Theorem. Let $n \geq 2$, $T > 0$, $p \in [n, \infty)$ and $q \in [p, \infty)$. Let f be a vector-valued globally Lipschitz continuous function satisfying (H1), (H2) and (H3). Assume that $u_0 \in L^p_\sigma(\mathbb{R}^n)$, and that $F \in C(0, T; L^p_\sigma(\mathbb{R}^n))$. Then there exist $T_0 \in (0, T)$ and a unique mild solution u of (2.3) such that

\[(2.5)\]
\[
 [t \mapsto t^{\frac{n}{2}(\frac{1}{p}-\frac{1}{q})}u(t)] \in C([0, T_0); L^q_\sigma(\mathbb{R}^n))
\]

\[(2.6)\]
\[
 [t \mapsto t^\frac{n}{2}(\frac{1}{p}-\frac{1}{q})+\frac{1}{2}\nabla u(t)] \in C([0, T_0); L^q_\sigma(\mathbb{R}^n))
\]

2.2. Remark. (i) The semigroup \(\{e^{-tA}\}_{t \geq 0} \) is not analytic.

(ii) Consider the case $p = \infty$ and $u_0 \in L^\infty_\sigma(\mathbb{R}^n)$ or $u_0 \in BUC_\sigma$, i.e., u_0 do not decay at space infinity. In this case, one might expect to obtain the existence result for the mild solutions $u \in C([0, T_0); B_{\infty,1}^p(\mathbb{R}^n))$ satisfying (2.3) provided that $u_0 \in B_{\infty,1}^p(\mathbb{R}^n)$ and $\nabla \cdot u_0 = 0$. In [27], this is discussed for the case $f(x) = Mx$.

The proof of Theorem 2.1 is based on Kato’s iteration procedure. The key is to derive appropriate smoothing estimates for the semigroup and its gradient; see Proposition 3.3. Uniqueness follows by Gronwall’s inequality.

3. **Estimates for the semigroup**

In this section we prepare the linear estimates needed for the iteration scheme. Let f be a vector-valued globally Lipschitz continuous function satisfying (H1), (H2) and (H3).

We define the realization of the operator

\[(3.1)\]
\[
 \mathcal{L}u := -\Delta u - (f, \nabla)u, \quad x \in \mathbb{R}^n,
\]

in $L^p(\mathbb{R}^n)$ for $p \in (1, \infty)$ as follows. Set

\[
 Lu := \mathcal{L}u, \quad D(L) := \{u \in W^{2,p}(\mathbb{R}^n); (f, \nabla)u \in L^p(\mathbb{R}^n)\}.
\]

Then the following result was proved by Lunardi and Metafune [20].

3.1. Proposition. Let $1 < p < \infty$. Then the operator $-L$ generates a C_0-semigroup \(\{e^{-tL}\}_{t \geq 0} \) on $L^p(\mathbb{R}^n)$.

3.2. Remark. (i) The semigroup \(\{e^{-tL}\}_{t \geq 0} \) is not analytic; see [20].

(ii) The family \(\{e^{-tL}\}_{t \geq 0} \) is also a semigroup on $L^1(\mathbb{R}^n)$ and on $L^\infty(\mathbb{R}^n)$, which in the latter case is not strongly continuous.

(iii) If $f(x) = Mx$ where M is a constant matrix, the semigroup \(\{e^{-tL}\}_{t \geq 0} \) has an explicit representation given by

\[
 e^{-tL}\varphi(x) := \frac{1}{(4\pi)^{n/2}(\det Q_t)^{1/2}} \int_{\mathbb{R}^n} \varphi(e^{tM}x - y)e^{-\frac{1}{4}(Q_t(x-y),y)}dy, \quad x \in \mathbb{R}^n, \quad t > 0,
\]

where Q_t for $t > 0$ is given by $Q_t := \int_0^te^{sM}e^{sM^T}ds$.

For the iteration scheme described in the next section it is essential that the associated semigroup maps an L^p-function u with $\nabla \cdot u = 0$ into the space of L^p-functions which are divergence free. We therefore introduce the operator A by

$$Au := Lu + (u, \nabla)f,$$

where $u = (u^1, \ldots, u^n)$. Thus A is an $n \times n$ operator matrix given by

$$A = L \text{Id} + (\nabla f)$$

where Id denotes the identity matrix. Observe that

$$\nabla \cdot \{(f, \nabla)u - (u, \nabla)f\} = 0, \quad \text{provided } \nabla \cdot u = 0 \text{ and } \nabla \cdot f = 0.$$

Hence, we define the realization A of A in $L^p_0(\mathbb{R}^n)$ as

$$A_0 := Au, \quad D(A) := D(L)^n \cap L^p_0(\mathbb{R}^n).$$

By standard perturbation theory, $-A$ generates a C_0-semigroup $\{e^{-tA}\}_{t \geq 0}$ on L^p for all $p \in (1, \infty)$. In the case where $f(x) = Mx$, the semigroup $\{e^{-tA}\}_{t \geq 0}$ is given by

$$(e^{-tA}u)(x) := \frac{1}{(4\pi)^{n/2}(\det Q_t)^{1/2}}e^{-tM} \int_{\mathbb{R}^n} u(e^{tM}x-y)e^{-\frac{1}{4}(Q_t^{-1}y, y)}dy.$$

We cannot expect to have such a formula for the semigroup $\{e^{-tA}\}_{t \geq 0}$, in general. We are now state $L^p - L^q$ smoothing properties for the semigroup e^{-tA} as well as gradient estimates for e^{-tA}. Note that due to the non-analyticity of $\{e^{-tA}\}_{t \geq 0}$, gradient estimates for e^{-tA} do not follow from the general theory of semigroups (like the Stokes semigroup). Notice also that in the special case where $f(x) = x$, $L^p - L^q$ smoothing estimates as well as gradient estimates for e^{-tA} were obtained by Gallay and Wayne [11]. For $f(x) = Mx$, these estimates were obtained in [17]. For the general case, we rely on the recent results of Lunardi and Metafune [20] and Bertholdi and Lorenzi [4].

3.3. Proposition. [[20], Prop. 5.4], [[4], Thm. 4.7, Cor, 4.8]. Let $n \geq 2$, $1 < p < \infty$ and $p \leq q \leq \infty$.

a) Then there exist constants $C > 0$ and $\omega \in \mathbb{R}$ such that

$$\|e^{-tA}\varphi\|_q \leq Ce^{\omega t}t^{-\frac{3}{2}n}t^{\frac{n}{q}}\|\varphi\|_p, \quad t \geq 0, \quad \varphi \in L^p(\mathbb{R}^n),$$

$$\|\nabla e^{-tA}\varphi\|_p \leq Ce^{\omega t}t^{-\frac{n}{q}}\|\varphi\|_p, \quad t \geq 0, \quad \varphi \in L^p(\mathbb{R}^n).$$

b) There exist constants $C' > 0$ and $\omega' \in \mathbb{R}$ such that

$$\|\nabla^2 e^{-tA}\varphi\|_p \leq C'e^{\omega' t}t^{-1} \|\varphi\|_p, \quad t \geq 0, \quad \varphi \in L^p(\mathbb{R}^n).$$

c) Moreover, let $1 < p < q \leq \infty$ and $\varphi \in L^p(\mathbb{R}^n)$. Then

$$t^{\frac{n}{2}(1-\frac{1}{p})}\|e^{-tA}\varphi\|_q \rightarrow 0 \text{ as } t \rightarrow 0,$$

$$t^{\frac{n}{2}}\|\nabla e^{-tA}\varphi\|_p \rightarrow 0 \text{ as } t \rightarrow 0,$$

$$t^{\frac{n}{2}}\|\nabla^2 e^{-tA}\varphi\|_p \rightarrow 0 \text{ as } t \rightarrow 0.$$

4. Proof of the Main Result

For a given globally Lipschitz continuous function f satisfying (H1), (H2), (H3), consider the substitution $u(x, t) := U(x, t) + f(x)$ and $\mathcal{P}(x, t) := P(x, t) + \Pi(x)$. Then (U, P) is a solution of (1.1) in the classical sense if and only if (u, \mathcal{P}) satisfies (1.3). We thus consider in the following (1.3) and its abstract formulation in (2.3), or (2.4). We only show the proof for the case $p = n$; the case $p > n$ is similar.
Proof of Theorem 2.1. Let $n \geq 2$ and $u_0 \in L^\sigma_n(\mathbb{R}^n)$. Assume that $F \in C(0, \infty; L^\sigma_n(\mathbb{R}^n))$. Recall that $\tilde{F} = F + \Delta f - (f, \nabla)f - \nabla \cdot \tilde{F} = 0$. For $j \geq 1$ and $t > 0$ we define functions u_j successively by

(4.1) \[u_1(t) := e^{-tA}u_0 + \int_0^t e^{-(t-s)A} \tilde{F}(s)ds, \]

(4.2) \[u_{j+1}(t) := u_1(t) - \int_0^t e^{-(t-s)A} \mathbb{P}(u_j(s), \nabla)u_j(s)ds + 2 \int_0^t e^{-(t-s)A} \mathbb{P}(u_j(s), \nabla)f ds. \]

Since $\{e^{-tA}\}_{t \geq 0}$ acts on $L^p_n(\mathbb{R}^n)$ for $p \in (1, \infty)$, it follows from the definition of the Helmholtz projection that the functions u_j are divergence-free for all $t > 0$ and all j.

For $T \in (0,1]$ and $\delta \in (0,1)$ we define

\[K_0 := \sup_{0<t\leq T} t\frac{1-\delta}{2} \Vert e^{-tA}u_0 \Vert_{n/\delta} \quad \text{and} \quad K_0^0 := \sup_{0<t\leq T} t^{1/2} \Vert \nabla e^{-tA}u_0 \Vert_n. \]

By (3.7) and (3.8) in Proposition 3.3-(c), $K_0 \to 0$ and $K_0^0 \to 0$ as $T \to 0$. Similarly, we define $K_j := K_j(T)$ and $K_j^0 := K_j^0(T)$ for $j \geq 1$ by

\[K_j(T) := \sup_{0<t\leq T} t\frac{1-\delta}{2} \Vert u_j(t) \Vert_{n/\delta} \quad \text{and} \quad K_j^0(T) := \sup_{0<t\leq T} t^{1/2} \Vert \nabla u_j(t) \Vert_n. \]

Let us estimate K_1 and K_1'; by definition and the $L^p - L^n$ smoothing property (3.4), we have

\[K_1 = \sup_{0<t\leq T} t^{1/2} \Vert u_1(t) \Vert_{n/\delta} \]

\[\leq K_0 + C \sup_{0<t\leq T} t^{1/2} \int_0^t \Vert e^{-(t-s)A} \tilde{F}(s) \Vert_{n/\delta} ds \]

\[\leq K_0 + C \sup_{0<t\leq T} t^{1/2} \int_0^t (t-s)^{-\frac{1-\delta}{2}} \Vert \tilde{F}(s) \Vert_n ds \]

\[\leq K_0 + CT \left(\Vert \Delta f + (f, \nabla)f + \Pi \Vert_n + \Vert F \Vert_{L^\infty(0,T;L^n(\mathbb{R}^n))} \right). \]

Similarly,

\[K_1' \leq K_0' + CT \left(\Vert \Delta f + (f, \nabla)f + \Pi \Vert_n + \Vert F \Vert_{L^\infty(0,T;L^n(\mathbb{R}^n))} \right). \]

We thus have

(4.3) \[K_1, K_1' \to 0 \quad \text{as} \quad T \to 0. \]

Next, it follows from (4.2), the $L^p - L^n$ smoothing of the semigroup and from the boundedness of \mathbb{P} from $L^p(\mathbb{R}^n)$ into $L^\sigma_p(\mathbb{R}^n)$ that

\[\Vert u_{j+1}(t) \Vert_{n/\delta} \]

\[\leq \Vert u_1 \Vert_{n/\delta} + \int_0^t \Vert e^{-(t-s)A} \mathbb{P}(u_j(s), \nabla)u_j(s) \Vert_{n/\delta} ds + 2 \int_0^t \Vert e^{-(t-s)A} \mathbb{P}(u_j(s), \nabla)f \Vert_{n/\delta} ds \]

\[\leq t^{-\frac{1-\delta}{2}} K_1 + C \int_0^t (t-s)^{-\frac{1}{2}} \Vert (u_j(s), \nabla)u_j(s) \Vert_r ds + C \int_0^t \Vert u_j(s) \Vert_{n/\delta} ds, \]

where $r = \frac{n}{1+\delta}$. In order to estimate the second term on the right hand side of last inequality, we apply Hölder’s inequality to conclude that

\[\Vert (u_j(s), \nabla)u_j(s) \Vert_r \leq \Vert u_j(s) \Vert_{n/\delta} \Vert \nabla u_j(s) \Vert_n \leq K_j K_j' s^{-\frac{1-\delta}{2} - \frac{1}{2}}. \]

This implies

\[\Vert u_{j+1}(t) \Vert_{n/\delta} \leq t^{-\frac{1-\delta}{2}} K_1 + CK_j K_j' \int_0^t (t-s)^{-\frac{1}{2}} s^{1+\frac{\delta}{2}} ds + CK_j \int_0^t s^{-\frac{1-\delta}{2}} ds. \]

Multiplying with $t^{\frac{1-\delta}{2}}$ and taking $\sup_{0<t\leq T}$ on both sides, we obtain

\[K_{j+1} \leq K_1 + C_1 K_j K_j' + C_2 TK_j \]
with some constants C_1, C_2, independent of j and T.

Similarly, applying ∇ to (4.2) and estimating it with respect to the L^n-norm, it follows from (3.4) and (3.5) that

$$K'_j(T) \leq \min(\frac{1}{8C_6}, \frac{1}{8C_8})$$

for some constants C_3 and C_4. By (4.3), for any $\lambda > 0$ there exists $\tilde{T}_0 > 0$ such that $K_1, K'_1 \leq \lambda$ for all $T \leq \tilde{T}_0$. So, we fix $T_0 \leq \min(\frac{1}{8C_6}, \frac{1}{8C_8})$ provided $\lambda \leq \min(\frac{1}{8C_6}, \frac{1}{8C_8})$. We thus obtain bounds for $K_j(T)$ and $K'_j(T)$ for any $T \leq T_0$ uniformly in j provided that T_0 is small enough. Indeed, $\sup_j K_j, K'_j \leq 3\lambda$ for $T \leq \tilde{T}_0$.

The uniform bounds of K_j and K'_j imply that $t^{1-\frac{n}{2q}}\left\|u_j(t)\right\|_q$ as well as $t^{1-\frac{n}{2q}}\left\|\nabla u_j(t)\right\|_q$ are bounded for $q \in [n, \infty)$, $t \leq \tilde{T}_0$ and all $j \in \mathbb{N}$. The continuity of the above functions follows from similar calculations and (3.7).

We finally derive estimates for the differences $u_{j+1} - u_j$. Indeed, for all $j \geq 1$ put

$$L_j(T) := \sup_{0 \leq t \leq T} t^{1-\frac{n}{2q}}\left\|u_{j+1}(t) - u_j(t)\right\|_{n/8} \text{ and } L'_j(T) := \sup_{0 < t \leq T} t^{1/2}\left\|\nabla u_{j+1}(t) - \nabla u_j(t)\right\|_n.$$

Similarly as before, we have for all $j \geq 1$

$$L_j(T) \leq C_6\lambda(L_{j-1} + L'_{j-1}) + C_6TL_{j-1},$$

$$L'_j(T) \leq C_7\lambda(L_{j-1} + L'_{j-1}) + C_8TL_{j-1}.$$

with some positive constants C_5, C_6, C_7 and C_8. We now choose $T_0 \leq \tilde{T}_0$ small enough so that $T_0 \leq \min(\frac{1}{8C_6}, \frac{1}{8C_8})$ provided $4(C_6 + C_7)\lambda \leq 1$. Hence we have $(L_{j+1} + L'_{j+1})/(L_j + L'_{j}) \leq 1/2$ for all $j \geq 1$ and $T \leq T_0$. This implies that L_j and L'_j tend to zero as $j \to \infty$. It thus follows that the above sequences are Cauchy sequences and we conclude that there are unique limit functions

$$\{t \to t^{1-\frac{n}{2q}}u_j(t)\}_{j \geq 1} \subset C([0, T_0]; L^n_q), \quad \{t \to t^{1-\frac{n}{2q}}v_j(t)\}_{j \geq 1} \subset C([0, T_0]; L^q)$$

of the sequences $\{t^{1-\frac{n}{2q}}u_j(t)\}_{j \geq 1}$ (if necessary, we shall take its subsequence) and $\{t^{1-\frac{n}{2q}}\nabla u_j(t)\}_{j \geq 1}$. Finally, note that $v(t) = t^{1/2}\nabla u(t)$ and that u is a mild solution of (2.3) on $[0, T_0]$.

Uniqueness of mild solutions follows from standard Gronwall's inequality. This completes the proof of the first assertion of Theorem 2.1. \hfill \Box

References

[27] O. Sawada and T. Usui, Uniqueness of the solutions to the nonstationary Navier-Stokes equations with linearly growing initial data. (preprint).

Fachbereich Mathematik, Angewandte Analysis, Technische Universität Darmstadt, Schloßgartenstr. 7, D-64289 Darmstadt, Germany
E-mail address: hieber@mathematik.tu-darmstadt.de

Department of Mathematics, University of Marrakesh, B.P.: 2390, 40000 Marrakesh, Morocco
E-mail address: rhandi@ucam.ac.ma

Department of Mathematical Science, School of Science and Engineering, Waseda University, Okubo 3-4-1, 169-8555 Shinjuku, Japan
E-mail address: sawada@gm.math.waseda.ac.jp