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Abstract

The aim of this paper is to study a finite element numerical approximation of steady flows
of an incompressible viscoelastic Oldroyd-B fluid in curved pipes of arbitrary cross-section
and curvature ratio. Using rectangular toroidal coordinates, existence and uniqueness of
approximated solutions are proved as well as a priori error estimates, under a natural
restriction on the pipe curvature ratio.

1. Introduction

Fluids with complex microstructure such as inks, polymeric liquids, magma or bio-
logical fluids are such that the relation between the Cauchy stress and the strain
tensor is non-linear and are called non-Newtonian fluids. The departure from the
Navier-Stokes behavior manifests itself in a variety of ways [18]: non-Newtonian
viscosity (shear-thinning or shear-thickening), stress relaxation, non-linear creeping,
normal stresses and yield stress. Striking manifestations of the non-Newtonian
phenomena have been observed experimentally, such as the Weissenberg or rod-
-climbing effect, extrudate swell or vortex growth in a contraction flow (see the
monograph [7]).

In general terms, non-Newtonian viscoelastic fluids exhibit both viscous and elastic
properties and can be classified as fluids of differential type, rate type and integral
type ([18]). We refer to the monographs [6, 23, 26] for relevant issues related to
non-Newtonian fluids behavior and modeling. Models of rate type such as Maxwell
or Oldroyd-B fluids can predict stress relaxation and are used to describe flows in
polymer processing.

Over the past twenty years, a significant progress has been made in the mathemati-
cal analysis, numerical approximation and simulations of the equations of motion of
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non-Newtonian viscoelastic fluids. Usually, the constitutive equations lead to highly
non-linear systems of partial differential equations of a combined elliptic-hyperbolic
type (or parabolic-hyperbolic, for unsteady flows) closed with appropriate boundary
(or initial and boundary) conditions. The study of the behavior of their solutions
in different geometries requires the use of specific techniques of non-linear analysis,
such as fixed-point arguments associated to auxiliary linear sub-problems. We refer
to [11] for an introduction to existence results in viscoelastic flows and to [19] for
a description of some more recent mathematical developments in the area of non-
-Newtonian fluids.

The hyperbolic nature of the constitutive equations is responsible for many of the
difficulties associated with the numerical analysis and simulation of viscoelastic
flows. Some factors including singularities in the geometry, boundary layers in
the flow and the dominance of the non-linear terms in the equations, result in
numerical instabilities for high values of Weissenberg number (see [13, 15] and
references cited therein). A variety of alternative numerical methods have been
developed to overcome this difficulty, but many challenges still remain, in particular
for viscoelastic flows in complex geometries. The numerical schemes used for solving
these complex systems of PDEs must be based on a deep understanding of the mixed
mathematical structure of the equations (elliptic-hyperbolic in the steady case), in
order to prevent numerical instabilities on mathematically well-posed problems.
Steady fully developed viscous flows in curved pipes of circular, elliptical and annu-
lar cross-section of both Newtonian and non-Newtonian fluids, have been studied
theoretically by several authors (see e.g. [10], [12], [16], [20], [21], [24], [25]) follo-
wing the fundamental work of Dean [8] for Newtonian fluids in circular cross-section
pipes. The great interest in the study of curved pipe flows is in particular due to
its wide range of applications in engineering (e. g. hydraulic pipe systems related
to corrosion failure) or in biofluid dynamics.

Our purpose in this paper is to study a finite element numerical approximation
of steady flows of an incompressible viscoelastic Oldroyd-B fluid in curved pipes
of arbitrary cross-section and curvature ratio. The governing equations, written
in rectangular toroidal coordinates, are decoupled into a Stokes-like system and a
tensorial transport equation, that are studied separately as two auxiliary problems.
Existence and uniqueness of approximated solutions, as well as a priori error esti-
mates, are established for both the Stokes-like system, discretized with the classical
Hood-Taylor elements, and the transport equation, approximated by a disconti-
nuous Galerkin method. Using a fixed-point argument we finally prove, under
a natural restriction on the curvature ratio, the existence and uniqueness of an
approximated solution to the coupled problem and give the corresponding error
estimates.

In order to fix notation, the standard Sobolev spaces are denoted by W*P((Q)
(k€ IN and 1 < p < 00), and their norms by ||.|[yrr. We set WOP(Q) = LP(Q)
and ||.[lwo.» = .|| L2, and the norm in L is denoted ||.||co. For p =2 and k > 0, we
set WF2(Q) = H*(Q) and ||.||wr.2 = ||.||x. Moreover, we use the following weighted
norm |||l = [l .]jo, for any real number a.
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2. Governing Equations

We are concerned with steady flows of incompressible viscoelastic Oldroyd-B fluids
in a curved pipe Q C IR?, with arbitrary (sufficiently smooth) cross-section . For
these fluids, the extra-stress tensor is related to the kinematic variables through

v v
S+ A1 S=2u(Du+ X3 Du), (2.1)

where u is the velocity field, Du = %(Vu + Vu!) denotes the symmetric part
of the velocity gradient, u > 0 is the kinematic viscosity and A1, A (with 0 <
A2 < Ap) are viscoelastic constants, representing the relaxation and retardation
times, respectively, see e.g. [6, 18, 19, 23, 26]. The symbol V denotes the objective
derivative of Oldroyd type defined by

v
S=u-VS—-SVu-—(Vu)'s (2.2)

The Cauchy stress tensor is given by T = —pl+ S, where p represents the pressure.
The equations of conservation of momentum and mass hold in the domain €2,

pu-Vu+Vp=V- -S+f{ V-u=0, (2.3)

where p > 0 is the (constant) density of the fluid and f is an external force. Decom-
posing the extra-stress tensor S into the sum of its Newtonian part 74 = 2u§‘\—f Du
and its viscoelastic part T, we rewrite (2.1)-(2.3) as

—i—i Au+pu-Vu+Vp=£f4+V.T,
V-u=0, (2.4)

T4+ A 7= 2(1 - 22) Du

We consider the dimensionless form of this system by introducing the following
> ﬁ—fm f = %, T = z—f,, where the symbol ~

is attached to dimensional parameters (L represents a reference length and U a
characteristic velocity of the flow). We also set € = 1 — 22, and introduce the

quantities = ¥, u = §, p =

X0
Reynolds and Weissenberg numbers Re = %, We = A}ZQ, respectively. The

dimensioneless system takes the form
—(l—¢)Au+Reu-Vu+Vp=f+V.-,
V-u=0, (2.5)
T+ We(u- V1 —g(Vu, 7)) = 2¢ Du,

with g(Vu,7) = 7 Vu + (Vu)’ 7. This system is closed with a Dirichlet homoge-
neous boundary condition u = 0.
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3. Formulation in Rectangular Toroidal Coordinates

Due to the geometric characteristics of the curved pipe (see Fig. 1) it is conve-
nient to write system (2.5) in the rectangular toroidal coordinates (Z;) defined with
respect to the rectangular Cartesian coordinates (¥;) through the relations

Figure 1. A segment of the curved pipe with centerline radius R and cross-sectional
radius 7o

1 =13, To=\/U2 +72— R, Z3 = Rarctan % (3.1)

[y

The orthonormal basis corresponding to the (Z;) basis will be denoted by (e;). In
the rectangular toroidal coordinates system, planes of constant Z3 are perpendicu-
lar to the pipe centerline. We restrict our attention to curved pipes of constant but
arbitrary cross-section ¥ (with boundary 0%), namely the projection of the pipe
surface on planes of constant Z3 are independent of 3. Introducing

ro = sup |z, xizf—;, d=
zFexn

s

K

(6 € ]0,1] is the pipe curvature ratio) we see that the corresponding non-dimensi-
onal coordinates system is given by

/ 1 1
T1 = Y3, To =\yi +v5 — 3, z3 = 5 arctan .

By using standard arguments we can rewrite system (2.5) in the rectangular toroidal
coordinates, with the differential operators defined below (see Section 6: Appendix).
We consider the simpler case of fully developed flows, i.e. the components of the
velocity vector and of the stress tensor with respect to the new basis are independent
of the axial variable x5 (g—;‘; = %31 =0 4,5=1,2,3) and the axial component of

the pressure gradient 88_92 = p* is a constant. System (2.5) takes the form

—(l1—¢)Au+Reu-Vu+Vp=£f+V-1, in¥
V' (Bu) =0, iny
(3.2)
T+ Weu- V't =WeG(u,7) + 2¢ Du, inX
u=20 on 0%
where

Au=Au+ %g—m‘; — g—z (uges + uges) B = B(z2) =1+ bz,
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u~Vu:u~V’u+% (ususes — uies) , Vp=V'p+ %63,

V-r=V'1+ % (T12€1 + (722 — T33) €2 + 2723€3) ,

g(ua T) = g(v/uv T) + %

=1

2
Y . . 28 _

b

(uaTiz — u3Ti2) €;€3 + 3 (uaT33 — u3T32) €3es

Du=Du+ % (2ugeses — ug (eses + eze3)).

4. Numerical Approximation of the Problem

This section is devoted to the numerical approximation of the nonlinear problem
(3.2) using finite element methods. In order to simplify the estimates and without
loss of generality we consider Re = 0, corresponding to creeping flows. This system
is of mixed elliptic-hyperbolic type and will be decoupled into a Stokes-like problem
and a tensorial transport equation that will be studied separately. A fixed-point
argument will be used to prove the existence and uniqueness of the approximated
solutions as well as a priori error estimates.

4.1. Discrete Stokes-like system
We first consider the numerical approximation of the following Stokes-like system
2
—A'a — %g—m“z+ (%) (uges +uses) +Vp=£f in X,
V' (Bu) = in ¥, (4.1)
u=20 on 0%,
and derive sharp estimates with respect to the curvature ratio §. Notice that in the
particular case of § = 0, we recover the classical Stokes system.
Let us give a more suitable equivalent weak formulation of this problem. For fixed
§ we set XP = {¢ € H{(X) | V' - (B¢) = 0}. The space Xz is a Hilbert space and
its norm will be usually denoted by || - ||;. Its dual space is denoted by XIB the
associated norm by || - ||=1 and the duality pairing between Xz and X,,B by (-,-).
Observing that, for all u,v € H}(%),
(BV'w, V'v) = 2(BD"0, D'v) — (3V' - (B), V' - (5v)) + (Suz,v2),
we considere the bilinear form As defined by
As(u,v) =2(8D"a,D'v) + 2(%1@,1}2) + (%ug,vg). (4.2)
A weak solution of problem (4.1) is defined as follows
Definition 4.1. Let f € X,,B A pair (u,p) € H}(Z) x L3(X) is a weak
solution of (3.2) if,
As(a,v) — (p, V' - (Bv)) = <f, 6V>, for all v e H)(X),

(4.3)
(¢, V' (Bu)) =0, for all ¢ € LE(%).
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Using Poincaré and Korn inequalities we can easily prove

Proposition 4.1.  For every 6 € [0,1], the bilinear form Aj is continuous
and coercive in (H}(X))2.

Here we suppose that the vector field f has the form f = V- 7 + F, where 7 is a
given tensor and F a given vector and rewrite the weak formulation (4.3) as

{Ag(u, v) — (p, V' - (Bv)) + (1,8Dv) — (F,Bv) =0 for all v € H}(X) (4.4)

(¢, V'-(Bu)) =0 for all ¢ € L(D).
The natural Galerkin approximation of problem (4.4) is a mixed method associated
to the approximation of saddle point problems, in which we consider two bilinear
forms and two approximation spaces satisfying a compatibility condition. Let (7p)p

be a family of regular triangulations with non-degenerate triangles and define the
following finite element spaces

Xy ={va € C(X)NHY(E) | vi i € IP2(K), VK € T},

Qn={an € CE)NLY(D) | an i € IP1(K), VK € Tp},
Xg’h = {Vh e Xy | V/ . (ﬁVh) = 0}.

This pair of spaces (Xp,,Qn) corresponds to the so-called Hood-Taylor finite ele-
ment method, and verifies a compatibility condition known as the discrete LBB (or
inf-sup) condition (see e.g. [17]), which reads as follows:

|(Qh,v/'Vh)| *

3~*(independent of h) s.t. inf sup @ >
( ) n€Qr\{0} v, X, \ {0} th”Xthh”Qh

Due to the particular form of our problem, and assuming that § < v*, we have

inf |(Qh,v/ . (ﬂVh))| > A*

i up >y =4 (4.5)
n€QR\{0} v, X\ {0} ||Vh||Xh||qh||Qh
To problem (4.4), we associate the following approximated problem

Find (up,pp) in Xp X Qp such that:
As(ap,vi) — (pr, V' - (Bvh)) + (1, BDvy) — (F, Bvy) =0 for all v, € X,

(qn, V' - (Bup)) =0 for all gp € Q.
(4.6)
The next theorem deals with the existence and uniqueness of an approximated
solution to problem (4.6), as well as the corresponding estimates.

Theorem 4.1.  Let (1,F) € (L2(%))%2. If § < ~*, then system (4.6) ad-
mits a unique solution (up,pp), and there exists a positive constant C = C(X)
(independent of § and of h) such that following inequality

(As(anun) 2 < Ol 5172 + =tyers [F o)
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is satisfied. Moreover, if (u,p) is the solution of system (4.4), then the following
estimate holds

(As(u —up,u— uh))l/2

< Cl+ Gyimpre) |, ok (As(a = vau— i)+ C inf lp—anfo. (4.7)

inf
h€Xn
where C = C(X) is a positive constant independent of § and of h.

Proof. Due to Proposition 4.1, the bilinear form Aj is continuous and coer-
cive. Moreover, the inf-sup condition (4.5) is satisfied. Classical arguments ensure
the existence and uniqueness of a solution (uy, pr) to problem (4.6). Setting vi=uy,
in (4.6) and using the Poincaré and the Korn inequalities, we obtain

As(un, up) < ||7l| gz l| Dupll g2 + |[Fllo]| funllo

< Clirllgrrz (As(un, un)'? + C|[Fllo(J2E5 1 D"unl| /2 +

(14 6)12 § Na)illssor2)

< ClI7llgrrz + 7z [F o) (As (n, ) /2.

This gives the first estimate. The proof of estimate (4.7) is split into two steps.

Step 1. It is obvious that if (up,pr) is a solution to problem (4.6) and (u,p) is a
solution to problem (4.4) we have

As(up —u,vy) = —(p, V' (Bvh)) for allvy, € Xg 4.

Let wy, € X and set vy, = up, — wy, € Xg . The last identity together with the
continuity of the bilinear form As, gives

As(Va, vi) = As(up, —u, vy) + As(u — wp, vi)

<[(BY2 (p = qn), B2 V" - vi + 6672 Vig)| + | As(a — Wi, vi)|

< 2[lp = anlloUID"Vall g/2 + [ Vazllss-1/2)+

C(As(a— wp,u — wp))Y2 (As(vi, vi)) /2

< Clp = anllo + (As(u — wi, u — wp)/2) (As(vi, vi)) 2,
for all g5, € Qp, where C' = C(X). Therefore

(As (v, va))? < C((As(u = Wiy u = wi)) Y + [p = anllo),
and for all (wp,, q) € Xg,n X Qp, we have

(As(u = up,u — )2 < C((As(u = wi,u = wi))V + [lp = anllo).-

This yields the following estimate

(As(u—up,u—w,))? <C( inf  (As(u—wp,u—wp)?+ inf |[lp—qnllo),
wpEXg h an€Qn
(4.8)
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where C' = C(X) is a positive constant independent of ¢ and h.
Step 2. To derive the error bound, we estimate the right-hand side term in (4.8).

Let vj, be an element of Xj. The inf-sup condition (4.5) together with classical
arguments ensure existence of a unique z, € (Xg,,)* such that

(V- (Bzn),qn) = (V" (B(u = vh)), n),

and

lznll < 5751V - (B(u = vi))llo < 5755118 D(a = va)llo
< ﬁH,Bl/QHOO(Ag(u —vp,u— )2 < (1;‘16—_)15/2(./45@ —vp,u—vy))?

Therefore, we have

(As(zn,z1))? < W(Aa(u—vh,u—vh))lﬂ. (4.9)
On the other hand, if we set wj, = zj, + vy, then for all ¢, € Qp

(V' (Bwn),qn) = (V' (Bu = Vi) an) + (V' (BVa), an) = O,
and thus wy, € X . Furthermore, from (4.9) we get
(As(u—wp,u—wp)/2 < (1+ W)(Ag(u —vp,u—vy))V2

As vy, is arbitrary, this implies
1/2.

o lf  (As(u—wh,u—wi))'? < (L4 mgygyre) | inf (As(a—va,u=va))

Estimate (4.7) is then a direct consequence of the combination of the last inequality
with (4.8). O

Using standard arguments it is easy to prove the following estimate

Lemma 4.1.  Let v € [0,1] and let v € H*Y(X), for k = 1,2. There ewists
v, € Xy, satisfying

Ay (v —v4,¢) =0, for all ¢ € Xy, (4.10)
Moreover, there exists a constant C, independent of h and v such that

(A (v =Ty = )2 < O+ o) WV . (4.11)

Proof. Let V., be the solution of the following problem

AT, 0) = (—7A'Y — 725 4 (g0 + vges)¥) Vo € Xy,
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with 8, = 14 yx2. A straightforward integration by parts shows that (4.10) is
satisfied. Let w € X, and set ¢ = V., — w. Taking into account (4.10), we obtain

AV =V, v=9y)=A, V-V, v=-V,+9¢) = A (V-7 v—wW)

<20+ NV2D'(v =95l g2 D' (v = w) o+

[
3 .
77 =2 |V = 3)ill a2 (v = w)slo
< C(A (Vv =95, v =9 )2(ID'(v = w)llo + =7z IV — Wllo)-

Choosing w = II,v € X, the interpolant of v, and using standard interpolation
estimates, we deduce (4.11). O

If (u,p) is a regular solution of problem (4.6) we prove the following estimate.

Corollary 4.1.  Assume that the hypotheses of Theorem 4.1 are satisfied. If
(u,p) € H*1(X) x H¥(X) (k = 1,2), then the following estimate holds

(A5(u — Up, U — uh))1/2 < Chk((l + (7*_5)(11_5)1/2)(1 + (1_2)1/2)||u||k+1 + ||p||k),

where C = C(X) is a positive constant independent of § and of h.

Proof. This result is a direct consequence of Theorem 4.1, Lemma 4.1 and of
classical interpolation error estimates. 0

4.2. Discrete transport equation
In this section, we consider the tensorial steady transport equation
T+ We¢p-V'r=G in%, (4.12)

where ¢ is a vector field in X5, and where G is a tensor in L%(X).
We use a discontinuous Galerkin finite element method to approximate this trans-
port equation. Let T}, and T be the following discretization spaces

Ty ={mn € L*(%) | 7k € IP1, VK € Tp,}, T, = (T)>*3.

For an element K € Ty, let 9K denote its boundary. The inflow edge corresponding
to the element K is defined by

OK~(¢) = {x € 0K | ¢(x) -n(x) < 0},

where n is the unit outward normal vector. For x € 0K such that
¢(x) -n(x) # 0, we define the left hand and right hand limits 0~ and o™ as

o~ (x) = lim o(x+ ed(x)), ot (x) = lim o(x + ep(x)).

e—0— e—0t



10 N. ARADA, M. PIRES AND A. SEQUEIRA

Let By, be the trilinear form defined by

Bp(p,1,0) = (¢-V'7,0)h + %(V’ - )T, 0) — <7'+ — T_,O‘+> (4.13)

h,¢’

where (o, 7), = Z (0. 7)K, (0, T)hp = Z / o:T¢-ndsand ((0))p,¢ = (0)2{;
KeTy, KeThBK‘(d))

The discontinuous Galerkin method applied to problem (4.12) can be stated in the
following way:

Determine 75, = 7 € T, such that
(r,80) + WeBL(B¢,7,0) = (G, fo), forallo € Ty,. (4.14)

Proposition 4.2.  Let (¢,7) € Xj X T4, € = (€;5) is a 3 X 3 matriz such
that €;; € {0,1}, and set 1. = (7;5€;5). Then,

(7, 076) + We Bu(B, 7, 7) = el fuse + = ({7 = 7E))i g (4.15)

Proof. Integration by parts shows that
(B V'7e, T+ (B V' e, T)n + 5 (V' (B))7e, 7e) = (10,7 Yngo — (1,78 ) h g
and thus,
Br(Be,7,7) = = (B - V'7e, 7 — 5(V' (Bd))Te, 7o) + (77,70 — 75\ n 4
Therefore,
Bi(B¢,Te,Te) = (et — 77, 7T — 7T Vg = (Tt — Te_>>}21,5¢-
The conclusion follows by observing that (87, 7.) = ||7‘€||%1 /2 O

The following result states existence and uniqueness of solutions for the approxi-
mated problem (4.14).

Theorem 4.2.  Problem (4.14) admits a unique solution 1,. Moreover, the
following estimate holds
ITallgrre < 1Gllgr/a.

Proof. Existence of a unique solution to problem (4.14) is a consequence of
the Lax-Milgram Theorem and of Proposition 4.2. Setting o = 7, in (4.14), we
obtain

||7'h||%1/z < ||7'h||§1/2 + %“7’;— - 7'h_>>121,g¢ = (Ga/BTh) < ||G||ﬁ1/2||7-h||ﬁ1/2~ O

4.3. Setting of the approximated problem

Using notation already introduced, the approximate problem is defined as follows
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Find (up, pp, ) = (u,p, 7) € X X Qp, x T}, solution of

(1 —e)As(a,v) + (p, V' - (Bv)) = =(p*,v3) — (7, 8Dv), forallveX,
(¢, V'~ (Bu)) =0, forall g e Qn  (4.16)
(r,80) + WeBr(Bu,7,0) = (WeG(u,7) + 2¢Du, o), for all 0 € T,

Assuming that the discrete inf-sup condition (4.5) is satisfied, then system (4.16)
is equivalent to the following problem

Find (up,7) = (u,7) € Xg,5 x T}, solution of

(1-¢e)As(u,v) = —(p*,vs) — (7, 8Dv), for all v e Xgp
(r,B0)+ WeBp(fu,7,0) = (WeG(u,7) + 2¢Du,Bo), foraloeT,

4.17
Next theorem establishes the main results of this paper: existence of a u(niqug

solution to problem (4.17) and the corresponding error estimates.

Theorem 4.3.  Assume that the curvature ratio § satisfies § < ~*. Let
(4,p,7) € H3(X) x H3(X) x H2(X) be a strong solution of system (3.2) satisfying
lalls + 15l + ITll2 < K, let a and 6 be two positive constants satisfying
2 < 2ae < 14¢, 0 =1—(2a—1)e. There exist positive constants C*, C**,
C and hg independent of h, k, We, d, €, such that if

O min(C*, €0 C**)(1 — 9)
~ aWe(l+ (a—1)"1/2) 7

K

then for every h satisfying h < max(0?,/1—4,ho), problem (4.16)12 admits a
unique solution (Qp, Pn,Th) € Xgn X Qn X Th. Moreover, the following estimate
holds

(As(@ = g, 0 — @))%+ (|7 = Tall g2 < ONRY2,

2
where A = 9 max(( + a néa}lc/z)h}n/ax’ (1_(;1)(‘;/6_?)1/2 + (l?lwfs;il/z 4 1 89?“(/;6&).

To prove existence and uniqueness of solutions to problem (4.16), we consider the
following composite mapping

&, : XgpxTp — Xgpnx Ty

(¢, ¢) — (a,7)
defined through the coupled system

{Ag(u, v) =eAs(p,v) — (p*,v3) — (1,8Dv),

(4.18)
(1,B0) + WeBn(B,7,0) = (WeG(¢, ¢) +2eD¢, o).

Following [4] and [22] where a model of Oldroyd’s type has been studied in bounded
domains, we decompose the proof into three parts. We first prove that ®,, is well
defined and bounded on bounded sets. Next, we prove that there exists a ball
By, with center (@, 7), such that By, is nonempty and ®,,(Bp) C By,. Finally, we
conclude that ®,, is a contraction. These assertions will be respectively proved in
Lemma 5.1, Lemma 5.2 and Lemma 5.3.
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4.4. Useful estimates

The aim of this section is to prove some useful auxiliary results. We begin by
recalling some classical interpolation estimates. Let 7 € H2(X), and let 7 be its
orthogonal projection in L2(X), i.e. (1 —7,0) = 0, for all ¢ € Tj. Then the
following estimates hold

I = llo + hllr — 10 < Co B2[7]|a- (4.19)
Im = #lox +hiclr =7k < Coblirlon  forall KeZn  (4.20)
Ir o, < Coh®2e]l, 21

where Cj is a positive constant independent of A. In the next lemma, we consider the
nonlinear terms appearing in the transport equation, and prove some corresponding
estimates.

Lemma 4.2. Let (¢,¢9) € (HE(X))? (p,00) € (L2X))2, and let
o € Ty. Then, for all (v,7) € (WhH®(X)NH(X)) x L>®(X), we have

|(g(¢ 5 90) - g(¢0a 900)7/80')|
< CID'(¢ = ¢)llgrr (s o — Tllgrre + amgyrzI7lloo) ol grra+
wtiesy 1D (90 = V)l g2l — woll g lloll g+
3 3
C Y ima (@ = d0)illsg-1/2 (sasymzll 0 = Tllgrz + I7lloe) iy loisllgr/e+
3 3
w7 2oima (@0 = V)illsg-1r2lle — wollgirz 3y loisll g+

3 3
Clie = ollgrz(IV'Vllsolloligrre + 15 Zica IVilloo 35y loisllgrre),

where C' = C(X) is a positive constant independent of h and ¢.

Proof By using standard arguments, we obtain
1(G(¢, @) — G(do:%0), B)| < (G(d — ¢0,7) + G (v, — @), Bo) |+
[(G(¢ — do, 0 — T) + G(do — v, — ¢0), 50)|
< C(IV'(¢ = do)lolle — Tl g1z + V(¢ — V)llolle — wollgr2) lo ]| o+
C(IIV' (¢ = ¢o)llolITllco + IV VIlaolle = woll gir2) o]l grra+
CY s 16— 60)illsg-1r2 ey (lle = Tllgrs2lloislloo + [ Tlloolloisllg1r2) +
CY o (o —=V)illsp-1r2lle = pollge iz lloislloo+

3 _ 3
C Yo 1087 WVillsolle — wollgrre >oiy llosll grre-
(4.22)
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The result is proved combining the following inverse inequality

lollee < Fllollo < 7Sy llollg e, (4.23)
together with (4.22), the Poincaré and the Korn inequalities. |

In the next propositions, we study useful properties of the trilinear form 5;, defined
n (4.13).

Proposition 4.3.  Let (v,¢) € (H)(X))? and let T € H3(X). Then, for all
o € L2(X), the following estimate holds

’Bh(,@V,T, U) - Bh( 6¢7T7 U)’
< Cla=yym 1D’ (v = D)llgrz + (v = d)2llsp-1/2)I7ll2llol g2,

where C = C(X) is a positive constant independent of 0.

Proof. Since 7 is regular, we have (77 — 77,0} go=(T" — 77, 0)p,3v=0, and
we easily prove that

|Bh(ﬂV,T, U) - Bh(ﬂd)aT 7U)| < C(HV - ¢||L4||T||W1’4+
V" v = D)o + V2 = $2lls5-1/2) [ITllso )l g1/2
< Cliyz 1D'(v = D)llgrrz + (v = $)allsg-12) I 7ll2llorl] g1 2-
|

Proposition 4.4.  Let 7 € H2(X), T be its orthogonal projection in L2(X)
and let (¢p,0) € Xy, x Ty. Then for all v € H3(X), the following estimate holds

BB, 7 —7.0)| < Clegzhyms 106 — V)llguso + B[V ]12) 2] 7] o/t

Oz 1@ = V)2llsp-172 + B[ Vlls) BliTllzllol] g2+

T |1 D'(v = )50 B2 7o (o™ — o ))npot

3/2 1/2 _
O+ g557) 2V 132 17ll2 (o™ = o) nps,

where C = C(X) is a positive constant independent of h and §.

Proof. An integration by parts gives

Bn(B,7—7,0) = —(B¢-V'o, 7—7)p—3(V'-(B¢)o, T—T) — <(T—?)_,U_—J+>hﬁ¢.

(4.24)
Let v be the P; continuous interpolate of v on 7},. Since V'o is P, on each triangle
K, then Bvq-V'c is P on each K; 7 being the orthogonal projection of 7 on 7j,
in L2(X), it follows that (Bvo - V'o,7 — 7), = 0, and consequently,

|(B¢-V'o,m =T)n| = |(B(¢ — vo) - Vo, 7 = T)ul < Cllp — vollpal|BollwrapllT — Tllo

< C(ID'(¢ = v)llo + v = vol)lIBollwra nllr = Tllo-
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This inequality together with the following estimates

IV —=volls < Chllvlls,  [Bollwran < Ch™2 ||Bollo,
gives

(86 - V', 7 = F)ul < CUID' (¢ = v)llo + hl|vlls) B2 | 7ll2llo]] 522

5 (4.25)
< O 1D (6~ V)llguss + 02|} 7o o o

On the other hand, taking into account (4.19) and (4.23), we have
BV po.7 =) <C(IV'- (6 =V)ollolloe + V- Vil Belo)lT — 7o

< Claatsyz ID(6 = V)llgirz + IVIs)Im = Fllolloll g2 (4.26)

< Cla=p= 1D (6 = V)lgrsz + BPIIvs)ll2lloll gr/a-
Similar arguments show that
3|(¢2(r = 7),0)| < Cla=tymll(¢ = V)2llsp-1/2 + B2VII) I Tl2llollgrre.  (4.27)
Finally, observe that
(T =) 07 =0"), g6l S ClOILIT = Flr, (o™ — 0 Dnss. (4.28)
From (4.11), we have
[@lloo < [IVlloo + IV = Va=olloo + V=0 = ¢llo
< Vllso + v = Fy=ollwra + Ch™2 9520 — ¢|lx
< C(Ivlls + Col IVllwe.a) + 272 (| D' (Fy=0 = v)llo + [D'(v = ¢)ll0))
< O(Ivlls + gregyirapmre (1D (Fr0 = ¥)llguss + 1D/ (v = D)l gns2))

3/2
<C((1+ (1h5 =)V + WHD (v —9)llgrr2).

(4.29)
Due to (4.21), (4.28) and (4.29), it follows that
~\ — _ 3/2 _
(7 =7)707 =0 )no| <CU+ Gh552) v 152 B3/2 1712 (o™ = o)) ao+
aa Sy 1D'(v = 9)|[0 k32 72 (o™ — 0% )n g

(4.30)
The conclusion follows from (4.24), (4.25), (4.26), (4.27) and (4.30). O

5. Existence and Uniqueness of the Approximated Solutions

Let us prove the first assertion.
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Lemma 5.1. The mapping P, is well defined and is bounded on
bounded sets.

Proof. Due to Theorem 4.1, system (4.18); admits a unique solution u, and
(As(w, )2 < C(|7l| g2 + £(As(d, )2 + T5k7)- (5.1)

On the other hand, due to Theorem 4.2, problem (4.18)5 admits a unique solution
satisfying

I7llovs < WelGdr@llgu2 + 251 Dollgns2 < Ol e + ) (s, 6))2.
(5.2)
Taking into account (5.1) and (5.2), we finally get

(./45(11 u))1/2 < C((5+ (- 5)1/2 ”Qp”oo)('Aé((b ¢))1/2 + (1- 5)‘1/2) 0

Lemma 5.2.  Assume that the hypotheses of Theorem (4.3) are fulfilled and
0 < ~*. There exist positive constants C*, Cy, C and hg independent of h, k, We,
0, €, such that if the following condition holds
0C*(1 —9)
K < ,
~ 8aWe((a—1)"1/2 4 1)

(5.3)

then for every h satisfying h < max(6%,v/1 — 8, hg), the ball
By ={(u,0) = (v',u3,0) € X % T | As(0 —u/, @ — w') < \2h3,

As(z — ug, 03 — ug) < A2h3, |7 — 0|g1/2 < ANR3/?}
is nonempty. Moreover, ®,,(By) C By,.

Proof. From (4.11) and (4.19), we see that in order to ensure that (Us,7)
belongs to By, it is sufficient that

Co(1 + kh? < \R%/2, (5.4)

(1— 5)1/2)
which is clearly satisfied if h < hg = (Con(l)\j-((ll:gl 73y - Our aim now is to prove
that ®,, maps By, into itself. Let (¢,0) € By and let (u,7) be its image by ®,,.
The strong solution (@, p, 7) of problem (3.2) satisfies the consistancy relation:

(1=e)As(a,v) + (5, V' (Bv)) + (p", v3) + (7, 8Dv) = 0,

(5.5)
(7,0)+ WeBp(u,7,0) = (WeG(a,7) 4+ 2¢D1u, o),

for all (v,o0) € X, x Tp. Therefore, by substracting (5.5) from (4.18), we obtain
As(u—ua,v)=cAs(¢ —u,v)+ (F—7,8Dv) — (p, V' - (BV))
(5.6)

(T —7,0) + We(Bi(¢,7,0)) — Bu(u,7,0)) = (We(G(¢, ¢) — G(u, 7))+
2eD(¢ — 1), 0),
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for all (v,0) € Xgn x Tp. Let us begin with general considerations. Throughout
the sequel, we set u = us = 1 — Uy and 7 = 7 — 7. Taking into account (5.6),
the fact of 7 be ortogonal projection of 7 in L? and (4.10), for every vj, € Xg p, we
have

As(u,v) = As(—u,v) =eAs(¢—0,v) — (p— b, V'~ (Bv)) = (1,8Dv).  (5.7)
Similarly, (5.6)2 implies that for every o € T}, we have

(1,0) + WeBp(¢,1,0) = We(Bp(Q,7,0) — Bp(d,7,0) + Bp(¢, 7 —7,0))+ (53)
We(G(,9) — G(8,7),0) +26(D(¢ — ), o). '

Since the curvature ratio ¢ is non zero, some crossed-terms appear in the formulation
and the standard approach consisting of a global management of the variables
should be adapted. The idea is to decouple the problem by considering the first two
components of the velocity field (and the corresponding stress tensor components),
and next deal with the third component. In this order, the rest of the proof is split
into three steps.

Stepl. Setting v =u’ = (uy, up,0) € Xg in (5.7), we obtain
A5 o) = 2(| DB, + 2, 0) = —( = 22D'(6 — 0, BD'w')
8(33 — 2¢5(¢ — W2, u2) — (5 — p, V' - (Bu'))

S ||7'/ - 2€D/(¢ - l_l)/”ﬁl/ZH.D/u/Hﬁl/Q“F

(5.9)

1733 — 26 5(¢ — W2l g2zl 5512 + (B — B, V' - (Bu))],

where 7' is such that 7/, = 7;; for i,j = 1,2, and 7/, = 0 elsewhere. Standard
calculations show that

(P —p, V' - (Bu)]| < 2|p— llo(|1 D0 || gr/2 + uzl[55-1/2)
(5.10)
< Clp— pllo(As(u', u') /2 < CR?|pll2(As(u’, u')) /2.
Combining (5.9) and (5.10), we obtain

(2As(w',w)2 < (|7 = 26D (¢ — 0)'|[F1/2 + 733 — 22 5(¢ — @)a[32) /2 + Crb2.
(5.11)
On the other hand, straightforward calculations show that

17— 2¢D'(¢ — @)'|[31/2 + 733 — 22 5(& — @2llZ2 = 171512 + [I733]150 2+

262 As((¢ — 1), (¢ — 1)) —4e(B7, D'(¢p —0)') — 46 (133,92 — W2).  (5.12)
Setting o = (7' + 133 €ze3) in (5.8), and using Proposition 4.2, we deduce that

171522 + FET™ = 7507 5o + I7sslBae + BEU(TT = 7)) 0
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=0 + 2€(D/(¢ — l_l)/,,@Tl) + 2ed (7‘33, ¢2 — l_lg). (513)

where
© = We(B,(pu, 7, 7' + T35 €3e3) — Br(B¢, 7, 7' + 733 €3€3))+

We By (B¢, 7 — 7,7’ + 133 €3€3) + We (G(d, ) — G(u,7), B(7' 4 733 e3€3))
From (5.12) and (5.13), it follows that

7= 2eD/(6 — 01310 + 1733 — 2656 — Whall2 . = 262458/ — W, &/ — W)~

”7'1”%1/2 — We({(™ — T+)I>>}2z,ﬁ¢7-33||%1/2 - We({((r™ - T+)33>>}2z,6¢ —20.
(5.14)
Let us estimate ©. Due to Proposition 4.3, the following estimate holds

_ _ 3/2
|Bn(B0, 7,7 +733 eses) — Bu(B¢, 7, 7'+ 733 eze3) | < % (17"l 172+ 733l g1/2)-
(5.15)
Similarly, Proposition 4.4 leads to

_ ~ /
|B(59.7 — 7.7 + 33 ese3)| < € k2 (AT 4 k) (17 5172 + [zl gnsa)+

ORI o5+ BN (7 = T )aa)ngo + (77 = 75 Dnge)-  (5.16)

Finally, setting (¢o,7,0) = (4,7, 7’ + 735 €ze3), due to Lemma 4.2, we have

_ 3/2 4, 1/2
|(G(0.7)=G(6.9). B(r"+ 735 ese))| < O (G557 +4) (I llgvra F 7l r2).
(5.17)
Taking into account (5.15)-(5.17) and the Young inequalities, we obtain

O] < We h¥2B((((r~ = 74)Dngo + (7 — 7F)33))n.30) +
We h32A(|7' || g1/2 + || 733l g1/2)
< BE(( = mHNR go + (7 =733 50) +

U712+ Hllmsal e + (We ARY2)2 4+ We(BRY2)?.

(5.18)

where

A= Cy(n? + sl 2 BN g Oy (4 SRS (5.19)
and C1 = C1(X) > 0. Combining (5.14) and (5.18), we deduce that
I7 = 2eD"(¢ = 0)'[|31/2 + l|733 — 26 §(¢ — )25 2
<262 As(¢f — @, ¢’ — @) + 2(We AR®/? + Wel/? BR?/?)2.
Consequently, by taking into account (5.11), it follows that
(As(0/, )2 < e(As(¢) — ', ¢/ — @))% + (We A+ We'/? B)h3/2 + Cr h2

< (eX+ We A+ We'/? B + Cr hY/?)h3/?
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Finally, estimate (4.11) together with the fact that
(As(@’ =0, 0" = )2 < (As(0' — 05,0 — 65)) "2 + (As(u',0)V?,
gives
(As((a—u)’, (m—u)" )2 < O (L gy )Kh> 4 (At We A+ We'/? BYh3/2 (5.20)

Step2. Let « satistying 2e < 2ae < 1+ ¢. Setting v=(0,0,u3) in (5.7), we obtain

As(us, uz) Z 152
2

<Y limis — as g (¢ — Wallgrrel| 52l gurz + |72 + ae §(6 — W)s gz |[usll55-1/2+
i=1

(@ —1)e Znaml (¢ —1)s ||B1/2|| o

%1/2 + ||u3||§g—1/2 = €A5(¢ -, 113) - (7‘, ﬁDUS)

gz + 1(¢ — )3l 5-1/2]|uslls5-1/2).

Therefore,

(As(uz, uy))'/? < Z |7i3 — ae s |12 g2+ T3 + 045%(925 - ‘_1)3||%1/z)1/2+
(a — De(As((¢ — @)s, (¢ — 1)3))"/?

< (Z [7iz — ae (9(%7;?)3”%1/2 + [|723 + aa%((b - 1_1)3”%1/2)1/2 + (o — 1)5/\h3/2-

(5.21)
On the other hand, straightforward calculations show that
2 ) s
2 lI7ia — ae 5 (8 D)3l s + 723 + ac (@ — ¢)3)13.

(5.22)

= (ae)?A5((¢ — )3, (¢ — 1)3) + ||7'13||§1/z + 2||7'23||%1/2—

206 (X (i3, B 52 (T — ¢)3) — 8(73, (T — ¢)3)).

Setting 0 = (3 Z Tis €;e3 in (5.8), using Proposition 4.2 and multiplying the ob-

tamed equatlon by 2a, leads to

a2(2||7i3||§1/2 + We((753 — 7)) 55)
2

=1

=206 + 206D (Fis. B 52 (0 — ¢)3) — 6(7as, (8 — 9)3)). (5.23)
with ) =
6 = We Y (Bu(B6,7 — 7, 7is eies) + (G(¢, @) — G(1,7), Bris eses))+
7’2—_1
We > (Bu(B0, 7, 7i3 eies) — Br(Bo, 7, iz eje3)).

i=1



NUMERICAL APPROXIMATION OF VISCOELASTIC OLDROYD-B FLOWS IN CURVED PIPES 19

From (5.22) and (5.23), we deduce that

D liris — aeg-(0 = d)a|%i 2 + 23 + ac G0 — d)s% 2

= 200 + (ae)?As((¢ — @3, (¢ — W)3) + (1 — 20)||7'13||%1/2+
2

21— @)|723) 502 —aWe > (77 = 7)i3))7 s4- (5.24)
i=1
Arguments similar to those used in Step 1, and Young inequalities imply that
2

20|8] < (20— 1)[|m13[ 502 + 2(a = D7asllF/2 + aWed ({15 — 75N 7 o+
i=1

(3o + 37y (@ Wed)2 b3 + 20 We(B)? b, (5.25)
where A and B are given by (5.19). Combining (5.24), (5.25) and (5.21)

(As((— )3, (0 —1)3))/? < (20— 1)e ABY/2 + + (e A+ (20 We) '/ B) W32+

C(1+ =gy )Kh?. (5.26)

Step 3. From (5.20) and (5.26), we can see that the following conditions
(As((i— ), (@ — @))% < M2, (As((@— ), (3 — T)g))/2 < A2,

are satisfied provided that
e+ We A+ We'/2 B+ C((1 + g )rh/? <\, (5.27)

and
(2a—1)eA+ o= 1/2 WeA—|—(2aWe)1/zB—|—C'(1+ =5 1/2)/£h1/2 <A (5.28)

Observing that condition (5.28) is more restrictive than condition (5.27), we will
focus on it. First, notice that

WW6A+(2QW6)1/2B<C2 (a— 11/2 1— 5(/‘«3 +/€)\+)\2h1/2)
(5.29)
02 ((O{Mgeuz ( 3/2 +/€)\1/2 hl/z).

Assuming that the bound « satisfies (5.3) and that h? < max(#,1 — §), we easily
see that

Co oSy 1051 < HELD = (5.30)
Setting
o K)/2 2aWek
A = 5 max(Co(1 + 2ty Yhdone, ripoler 4 S2lalirn— 4 ¢, SGgaien)
we deduce that
eKS 1/2 K A 1/2
(1C§?(E/81K)1/2 + Cz(ﬁﬁ)uﬁ <gA % < LAV (5.31)
C(L+ by )w /> < 20k 12 < § (5.32)
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On the other hand, there exists a positive constant C3 such that

A< 05 50+ 2 (s + D+ G2 st/2), (533)
which gives
We 211/2 We 9
T A W < gty A0

Caa We

We)l/2
< ol 5 (1+ 2 (b + D+ G Rl/2)0

1—=9)17?

< 40*(1 ((a 17z +1)m+% 1/2)\g

< CLC* (1 + C* + (C*)/2)0.
(5.34)
Combining (5.29)-(5.34), we obtain

wihem A+ (2aWe)'? B+ C(1 + iy )wh!'/? <

< (3 +EEECF 4 (Cr+ C) CuC* (14 C* + (C)V/2))0A.
Finally, by choosing C* such that:

14 % C* + (Cy + O) C4C*(1 + C* 4 (CHV?) < 1,
it follows that
Cl+ = 5)1/2 —h_Vkh'/? @ 0“1")’?/2 A+ (2aWe)/? B < (1—(2a—1)e)\, (5.35)

and thus (5.28) is satisfied. Finally, to end the proof of our statement, we need to
bound ||7 — 7||o. Observing that

17 =7llo < 7 =Fllo + lI7llo < Cor h® + |70
Due to (5.13), (5.18)and (5.27), we have

177122 + I7s8[|%/2 < 4(We ARP/2)2 4 4(We'/? BR3/2)? + (4eA h3/2)?
(5.36)
< 8(5i

We A + 2B +e\)2h3 < 8(AR3/2)2,

Similarly, by combining (5.23) (5.25)and (5.28), we obtain

21/2 21/2

||713||%1/2 + 2”7'23”51/2 < 2 (aWe Ah3/?)? 4 4o We(Bh3/?)? 4 2(ae Ah/?)?

<2( We A + (2a We)'/2 B + ae \)h?

(Ot 1 1/2

<2(1 — (2a — 1) + aeg)(Ah3/2)2 < 2(\h3/2)2,
(5.37)
From inequalities (5.36) and (5.37), we get

17 = Flg < ITllgrre + 17 = Tllgr < (10)/2 XR3/2 4 Cor ?

< (102 X B3/2 4 Cor hifa B2 < ((10)/2 4+ E)NRS/2 < AN BP/2,

This completes the proof. 0
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Lemma 5.3.  Assume that assumptions of Lemma 5.2 are fulfilled.
There exists a constant C** independent of k, A\, €, §, We, such that if

O 92e(1 — 5)
T aWe(l+ (1—a)-1/2)

(5.38)
then the mapping P, is a contraction into By,.

Proof.  Let (¢o,¢0), (¢1,01) be in Bp, (ug,7), (u1,71) be their respective
images by ®,,, and set u =u; —ug, ¢ =1 — pg, T =71 — To,0 = 1 — po. Taking
into account the definition of ®,,, for all (v,o) € X5 x T}, we have

As(u,v) = e As(p,v) — (1, 8Dv),
(7, Bo)+ We(Br(B¢, T1,0)—=Bu(Boo, 70, 7)) = (We(G(¢1, 1) —G(¢o, p0))+2e D¢, Bo).

Stepl. Arguing as in the proof of the previous lemma, selecting v = u’ and o =
B(7 + 133 ezes3), we obtain
Q2As (', 02 < (|7 = 26D’ 202 + |I7s5 — 26501 %,2) "2, (5.39)

17152 + 173301502 + BT = 77) 07 590 + B LT = 77)330)7 560
=2¢(8 D¢, 7' + 733 e3e3) + O, (5.40)
where © is given by
© = We(B¢ - V'ri, 7' + Ts3ese3) + BE(V' - (B¢) 11, 7' + T33 €3€3)+
We((ri" — 7, (7" + 733 e3e3) Iy — (1 — 71, (7' + 33 €3€3) ") 1,30 ) +
We (G(d1,¢1) — G(do, ¥o), B(T" + T33 €3e€3)).

Moreover, we have
I = 22D'6' B + lirss— 2686200 = 17" + sl o
282 As5(¢, @) — 4e(B 7', D'¢') — 48 (133, P2)-
From identities (5.40) and (5.41), we deduce that

I =22 D300 + limaa = 2500302 = 22 A45(6',6') = 1730

(5.41)

We(((TF = 77N 5g0 — 13301502 — Wel((TF = 77)33))7 5o, — 20
<28 A5(¢',6") — 1711512 — 73801512 — 26
This estimate together with the following relation

2lx| < [xP(ly1l* + ly2/2) " + Iy1l* + ly2/l,

gives
(I = 26D/ 310 + li7as — 2 nl[31,0)12

< e(2As(@, N2 10117 152 + 33l F,2) 712
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Combining (5.39) with the last inequality, we get
(s, )72 < e(As(d, 0NV + 10 (172 + 730l ) V2 (5.42)
On the other hand, from (5.40)
1/2 _
(75172 + 733l Zes2) < e(2A5(¢',¢) % + 10117 I32/2 + lI73305,2) 772

Multiplying the last inequality by ﬁ and using (5.42), leads to

(As(u', )/ +23/2 (||7'/||51/z + ||7'33||51/2)

< (A 6NV + g7 O 152 + lmssllZa ) 2.

(5.43)

Let us bound ©. Setting (v,7,0) = (4,7, 7' + 733 €3e3) in Lemma 4.2, we obtain

(G(¢1,91) — G(do. p0), B (7" + T3 €383))| < 55 (1D Sl g lo1 — 7l i+
1D’ (60 = W)l g1z [[¢llgr2) (1713172 + 178l gr/2)+
=S5z 1D ¢llgr2 [l oo (171512 + 7s3 ]l ns2)+
ClIV"alloollill g1/ (17| g1/2 + 17331l 1/2)+
w7 Loz | illss-1/2 01 — 7l gusallas|gr2+
w7 Soms (80 — Willsg-1/2 [0l g2 73 g/ +
C( iz 19illsp-172 1700 + 25118l collll g1/2) 17331 512

C PARY YA
< CEEAD) (1D Bl 3172 + S5y (il grsa) 77| g1+

c 1z

2l grsa (17| gr/2 + 17331l g1s2)-
(5.44)

On the other hand, due to Lemma 3 in [14], we know that there exists a constant

C independent of h such that

||7'33||51/2) +

[(ri" =71 (7' + T3 e3e3) Tn g —(1i — 71, (7' + 733 €3€3) ") h B0 |

< Cl¢lle.r, [18(7" + 733 €3€3)[| Loy, [l[Ta]l[Lr rs

where p, ¢, are positive numbers satisfying 2 5+ 5 + % = 1 and where [-] denotes
the jump across I'y,. From classical inverse inequalities, for ¢ > 2

|1B(r" + 33 ee3)[| L., < OB B(7) + 733 e3e3) || o < Chs 2|7/ + 733 ese]| g/

Let 19 be the P; interpolate of 7. For r > 2, we have

Irlllzrr = 1 = 7olllzrrn < Ch==Y|71 — 7olo.
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By combining these estimates and choosing p = 6, we deduce that
(i =11 (7" + sz ez es) P npp — (1 — 71, (7 + T3z eses) Pngo
< Ch=F |l Loy ll7’ + 733 eseslgr/z (I — 7llo + |17 — 7olo)

< ChE||¢] Lo (I g2 + Imsallgra)ITll2+

—(10’3 7z 16l o) (171l g7 + ll7ssll gr/2) 17 — 7oll ga/e

< CW3 | D' gllo (17" ll s + Imssllgr )17 o+

(1Ch5 13/2 ||D/¢|| (HT/”ﬁl/2 + ||7'33||51/2)||7' - 7'0||31/2

< g (ke h2 1 ) 1Dl gusa (7 grsn + (1l e

/\

< C”LG D¢l grra (17"l g1r2 + [ 733l g1/2)-
(5.45)
Let us estimate the last term. Classical arguments show that

|(B¢- V' 11,7 + 33 e3e3) + 3(V' - (Bd)T1, 7" + T33 e3e3)’
< |(B¢- V(11 —7), 7 + 133 €383)| + 2| ~(B) (1 —7), 7' + T3z €3e3) |+
|(,8¢> V7,7 + 133 ese3)| + 3|(V - (BO)T, 7/ + 733 e3e3)|
< Cligllollmy = Fllanll7 I g/2 + lI7ssll grrz)+
31V (B ol = Tllo(l17 loo + lI733]l0)+
Clllac) I7llwra (7l gr/z + 733l grr2)+
CUIV - dllo+ 2l Facll (v + sl )
< Cllgllolry — Tl lgva + sl +
S 1D g2l = g (17 + 1)+
anﬁzﬂwﬂ/z”ﬁ = Tl gz (|7 loo + 1733l 00 )+
a- 5)1/2 1Dl grr2 (7" | grr2 + 733l gr/2)+ (5.46)
Ckl|p2llsg-1/2 (17" || g2 + [ 33]| g1/2)-
Using the inverse inequality |71 — 7|1, < $[|71 — 7o, We get
71— Fllins < £lm = Fllo + Crh < €|my — 7llo + Crh

(5.47)

171 — Tl g2 + Crb < ChM3( + kh1/2).

C
< h(1—6)1/2| a- 5 1/2

Similarly, we have

Illoc < 16lwre < 55 11D"Gllo < srmp=gyr= 106l g2, (5.48)
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Combining (4.23) and (5.46)-(5.48), we deduce that
(B - V'T, 7" + 733 ezes) + 2(V' - (BH)T, 7' + 733 €3e3)]

/6
< ST (1D || guja + || b2l sp-1r2) (17 grs2 + I7s3] g172)-
(5.49)
Due to (5.44), (5.45), (5.49), we get

1017132 + [l 7331151,2) /2

. 1/6 3
< G (s + BRI (|1 DBl grro + Sy [6ilsg-12 + el gura)

CWeldN) (As(¢, ') 1/2 + (As(ds, 63))72 + [ll|gr2)-
Hence, by taking into account (5.43), we finally obtain

(As (', )V 4 572 (171502 + Im3sl152) 2 < H2(As(¢', 6)) 2+

CLWE (As(¢, )12 + (As(¢s,89)) 72 + [0 rs2)- (5.50)

Step2. Arguing as in the previous step, we select v = uges. Then,

(As(uz, u3))"/? < (o = D)e(As(¢3, ¢3)) /> +

IN

2 s 1a 12 (5.51)
('221”7—23 —0453303” 12+ ||7—23+a5§¢3“31/2) .
1=
Selecting o = Z(Tl)zge,eg in (5.8), using Proposition 4.2 and multiplying the

obtained equatlon by 2a

2 2
« 2(2”7}‘3”%1/24' W€<<T_—T+)i3>>;2lﬁ¢0) = 2a @+2a€( Z(Tig, ﬁ %¢3)—5(7‘23, ¢3))
i=1 i=1
with (5:52)
. 2
© = We >~ (Br(B¢, 11, Tis eie3)— Bp(Bdo, 71, Tiz €;€3))+
=1
2
We >~ (G(¢1, 1) — G(¢o, o), fTiz e;e3).
=1
Moreover, we have
2
Z:l ||Ti3_ 05%9253”%1/2 + ||7'23 + ae%ﬁb?:“%l/z = ”7'13”%;1/2 + 2” 7’23”%1/2‘1‘
=
(5.53)

2
(ae)®As(¢s, ¢3) — 2045(21(72‘37 B 52-¢3) — 0(723, 3))-
1=
From (5.52) and (5.53), we deduce that
2
Zl ||7'i3 - a5%¢3“§1/2 + ||7'23 + 045%¢3||§1/2
1=

< —20:0, + (a2)2As($3. 63) + (1 — 20) | m13]1 %12 + 2(1 — )| 7s][Z -
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The last estimate together with the following relations

2afx| < a2|X|2((2a = Dly1? +2(a = 1)ly2*) 7! + 2a = Dly1|* + 2( = 1)y

<3 1) %[ (ly1l* + [y2[*) 7" + (20 = Dly1|* +2(a — Dly2/,

gives

2
(2 ll7ia —aep2-¢3lfus + 1723 + acGsl30) "2
- (5.54)
~ 2
< as(As(3,93)'"* + gy (2 18"/ 7is3) 712,
i=1

Combining (5.51) and (5.54)
2
(As(atg )2 < (1= 0)( A0 00))" + 250 (3 [rall) % (559

where § =1 — (2« — 1)e. On the other hand, from (5.52), we have

2 2
(3l lZ2)72 < (24595, 65)) /2 + OIS 17 121,2) /2. (5.56)

i=1 i=1

Arguing as in the previous step, we can prove that
2
=~ — C We(k+A
IGI(ZZ1 I7iall2,/2)"1/2 < SEEEERN (As(¢', ¢)) 2 + (As (b3, 03) Y2 + [l gs2).

Consequently, multiplying (5.56) by 2;\555 and using (5.55), we obtain

(As(uz, uz))'/? + 5 (Zi) I7isllZ22)t% < (1= §)(As (s, 63)) "+

LN (e + ) (As( )2 + (g3, 63) %)+ 07)

C We(r+X o
169?_ )(23?25 + (z(a_1))1/z)||90||ﬁ1/2'

Step 3. Straightforward calculations together with (5.50), (5.57), and the fact that
e < 8 < 1, show that

(As (', 02 + (As (us, 13)) + g7 (1711502 + 73301 502) 2+

(% Il ) < (1= B 92 + (As(s, ) 72)+

COENWe (1 o) (As(@, )Y + (As(ds, 65)' /%) +

c ) We
(L 4 52 (1912 + lleasllZe2) 2+

~ 2
C ) We
SR ) (3 el ),

(5.58)
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where C' = C(). On the other hand, taking into account conditions (5.33) and

(5.38), we can see that

o 1/2
A< CH(L+ $E (1 + e + G s1/?)

< CR(1L+C 4 (C)1?) < O e B =Py (14 O + (C)1/2).

Hence,
C(Hl—i-_)\é) We( + = 1)1/2) < co C**(l + O** (C**)I/Z) (559)
The constant C** is then chosen in such a way that the following condition
CO™(1+C* + (C™)V/?) < L. (5.60)

is satisfied. Therefore, by combining (5.58)-(5.60), we can easily see
(As(u', w))M2 + (As (ug, u3) P4 g (171500 + I73301502) 2+

(2 [l ) < (1= AL 02 + (As(Ga,00) 72)+

2
g((”ﬂalllzl/z + ||9033||%1/2)1/2 + (Z; ||90i3||%1/2)1/2)
< (1= D{(As(, )2 + (As(3, (83)2)+

2
W((”@/”%uz + ||9033||%1/2)1/2 + (; ”901‘3”%1/2)1/2)}7

which ensures that ®,, is a contraction, and completes the proof. O

6. Appendix: Rectangular Toroidal Coordinates

Using the rectangular toroidal coordinates defined by (3.1) we get (omiting ~ to
simplify the notation):
1. The gradient operator

e Gradient of a scalar function ¢
[V¢]_ela¢+62_¢_+635_¢_ v¢+63%3_¢
e Gradient of a vector function ¢ = (¢1, ¢2, ¢3)
0¢

(9d>1 8¢2 —_—2
0z, Bxy Oxy
2] 09

Vel = | o= 2 o
12@1(2@_@) 1 <8¢a+¢_>
B Oxz B \ Oxs R ) B \ 0z3 R

3
E 8 6361

i=1

=V'op+ R%g (p2e3es — psezey) +

=

e The strain tensor

Dg] = 1 (IVe] +[v9]")

3
=D'¢p+ ﬁ (2¢2e3e3 — ¢3 (ezen + eze3)) %3 Z t (ese; +ejes3),
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2. The divergence operator

e The divergence of a Vector w = (w1, w2, ws)
) ) 10wy _ 1 19
Vo=t + 52t 8t som =5V (Bw)+ 550

o The divergence of a tensor 7 = (7; ;)i j=1,2,3

2 3
a7y .
V-71]= (j= T+ e + 7g (Tsoes — Tazen) + 5 > S,

3
= % V' (B7T)] + R%g (T32e3 — T33€2) + % 21 %23; e;.
3. The Laplacian operator

e The Laplacian of a scalar function ¢
1 08¢ _ 1 0¢ 1 0?
[Ag] = G28 + axz + ,@2%(@ + 7505, = D'+ R5Te, T o
e The Laplacian of a vector function ¢ = (¢1, d2, P3)
2
[Ad] = N'¢+ 1552 — gy (6202 + dzes) + g g+

2 9¢pa ,  _ O¢3
Rp? (Bmge'?’ O3 2)

4. The convective operator

e For the vector fields v = (vq, vo,v3) and w = (w1, ws, w3)

B P}
v1 8301 +v2ger + B oar

a a 1
[v -Vw]= | n 3‘;’2 +v2gat + G52 — Rasws

el el 1
v1 8 40y G 4 5008 4 sy

! U3
=v-Vw+ & 75 (wgeg—cugeg)—l—iams
e For the vector v = (v1,v9,v3) and the tensor T = (71, 72, 73)

v V7l =v- -V + %%,

/ e}
[V V7o =v-V'rs — g3 + $ 52,

v3 87‘13

[V.VT]13:V.VIT13+R/8T12+ 8 Ozs

/ o
[V - V7)o =v-V'ry — RﬁT31+ Vil

V3 87—22

[V.VT]QQ :V-v/7‘22 — 1'%—36(7'23-’-7'32)4- B 0xs

[V.VT]23:V-V/T23+ RB (7’22 T33)+U?3887;;,

[V . VT]31 =v-V'm + RBTZl + & 88;3;,
[V . VT]32 =V - V/7'32 + %ﬁ_ (T22 — 7'33) =+ %%}3,
[V V733 :V‘V/7'33+%35(7'23+7-32)+%1%§

27

Acknowledgements: This work has been partially supported by the grant
SFRH/BPD/3506/2000 of Fundacao para a Ciéncia e a Tecnologia (N. Arada), by



28

N. ARADA, M. PIRES AND A. SEQUEIRA

the Center for Mathematics and its Applications (CEMAT) through FCT’s Funding
Program, and the Projects POCTI/MAT/41898/2001 and HPRN-CT-2002-00270.

(1
2]
(3]

(4]

(5]
(6]

References

N. Arada, M. Pires and A. Sequeira, Viscosity effects on generalized Newtonian flows in
curved pipes, Computers and Mathematics with Applications, to appear.

N. Arada, M. Pires and A. Sequeira, Numerical simulations of shear-thinning Oldroyd-B
fluids in curved pipes, TASME Transactions, issue 6, Vol 2 (2005) 948-959.

N. Arada, M. Pires and A. Sequeira, Secondary flows of shear-thinning generalized Newtonian
fluids, Proceedings of WSEAS - Fluids’05 , CDRom (2005) 118-123.

J. Baranger and D. Sandri, Finite element approximation of viscoelastic fluid flow: Existence
of approximate solutions and error bounds I- Discontinuous constraints, Numer. Math. (1992)
63, 13-27.

S. A. Berger, L. Talbot and L.-S. Yao, Flow in curved pipes, Ann. Rev. Fluid Mech., 15,
(1983) 461-512.

R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, John Wiley
& Sons, New York (1987).

D. V. Boger and K. Walters, Rheological Phenomena in Focus, Rheology Series, 4, Elsevier,
New York (1993).

W. R. Dean, The streamline motion of fluid in curved pipe, Philos. Mag., 30 (1928) 673.

J. Eustice, Flow of water in curved pipes, Proc. R. Soc. Lond. A, 84, (1910), 107-118.

Y. Fan, R. I. Tanner and N. Phan-Thien, Fully developed viscous and viscoelastic flows in
curved pipes, J. Fluid Mech., 440 (2001) 327-357.

C. Guillopé, J. C. Saut, Mathematical problems arising in differentiel models for viscoelastic
fluids, In: J. F. Rodrigues and A. Sequeira (eds), Mathematical Topics in Fluid Mechanics,
Longman, Halow (1992) 64-92.

H. Ito, Flow in curved pipes, JSME Int. J., 30 (1987) 543-552.

R. Keunings, A Survey of Computational Rheology, In: Proceedings of the XIII International
Congress on Rheology (D. M. Binding et al. ed.), British Soc. Rheol., 1 (2000) 7-14.

K. Najib, D. Sandri, On a decoupled algorithm for solving a finite element problem for the
approximation of viscoelastic fluid flow, Numer. Math., 72 (1995) 223-238.

R. Owens and T.N. Phillips, Computational Rheology, Imperial College Press, London
(2002).

M. Pires, Mathematical and Numerical Analysis of Non-Newtonian Fluids in Curved Pipes,
PhD thesis, IST, Lisbon (2005).

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations,
Springer-Verlag (1994).

K. R. Rajagopal, Mechanics of non-Newtonian Fluids, Galdi, G.P. and J. Necas (eds), Recent
Developments in Theoretical Fluid Mechanics, Pitman Research Notes in Mathematics, 291,
Longman Scientific an Technical (1993) 129-162.

M. Renardy, Mathematical Analysis of Viscoelastic Flows, SIAM (2000).

A. M. Robertson, On viscous flow in curved pipes of non-uniform cross-section, Inter. J.
Numer. Meth. Fluid., 22 (1996) 771-798.

A. M. Robertson and S. J. Muller, Flow of Oldroyd-B fluids in curved pipes of circular and
annular cross-section, Int. J. Non-Linear Mechanics, 31 (1996) 1-20.

D. Sandri, Finite element approximation of viscoelastic fluid flow: existence of approximate
solutions and error bound. Continuous approximation of the stress, SIAM J. Numer. Anal.
31 (1994) 362-377.

W. R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon Press, New York (1978).
W. Y. Soh and S. A. Berger, Fully developed flow in a curved pipe of arbitrary curvature
ratio, Int. J. Numer. Meth. Fluid., 7 (1987) 733-755.

H. C. Topakoglu and M. A. Ebadian, On the steady laminar flow of an incompressible viscous
fluid in a curved pipe of elliptical cross-section, J.Fluid Mech., 158 (1985) 329-340.

C. Truesdell and W. Noll, The non-linear field theories of mechanics, Encyclopedia of Physics,
(ed. S.Flugge), vol.II1/3, Springer-Verlag (1965).



