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Abstract

The Navier‐Stokes equations modified with absorption terms under

slip boundary conditions are investigated in a cylinder  $\Omega$\times(0, T)\subset \mathbb{R}^{N}\times
\mathbb{R}^{+} . On the boundary \partial $\Omega$

,
we assume there is no‐penetration of fluid flow

and the slip is considered with or without friction. We present several

results concerning a localization in time effect for different absorption
terms. This property is established by using a suitable energy method

and is independent if the slip on boundary occurs with friction or not. We

prove, also, existence and uniqueness results for the related mathematical

model.
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1 Introduction

During the recent past the most studied boundary condition was the no‐slip
condition, i.e.,

\mathrm{u}(\mathrm{x}, t)=0 \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, T) . (1.1)
This condition is a mathematical expression for the adherence of the fluid to

the boundary of the flow domain. In Section 3 we will precise the notation we

are using. For the time being, it suffices to know that \partial $\Omega$ denotes the boundary
of a spatial domain  $\Omega$ and (0, T) is a time interval. The acceptance of the

no‐slip boundary condition as the correct physical model in fluid flows, goes
back to the work of G.G. Stokes in 1845. However, the experiments by J.C.

Maxwell in 1879, in the kinetic theory of gases, very soon pointed out that this

condition does not explain well all the physical phenomena (see Serrin [29, pp.

240‐241] and the references therein). Nowadays, the acceptance of the no‐slip
boundary condition, for fluid flows with moderate velocities and pressures, is

justified by direct observations and comparisons between numerical simulations

and experimental results (see John and Liakos [21, p. 713] and the references

therein).
In the last years there have been an increase of interest in studying fluid

problems with slip boundary conditions. It is known the slip condition applies
mainly to free surfaces in free boundary problems such as the coating problem
(see, e.g. ,

Friedman and Velázquez [19]), which are modeled as being stress free,
i.e.

\mathrm{t}\cdot $\tau$=0 on \partial $\Omega$\times(0, T) ; (1.2)
where \mathrm{t}=\mathrm{n}\cdot \mathrm{S} is the stress vector and  $\tau$ is a tangential vector to the boundary
\partial $\Omega$ . But, the new interest in the slip condition came essentially from the large
eddy simulation, one of the most promising approaches for modeling turbulence.

To describe many phenomena which can be observed in nature, the slip bound‐

ary conditions are more appropriated. For instance, hurricanes and tornadoes,
do slip along the ground, lose energy as they slip and do not penetrate the

ground (see John and Liakos [21, p. 714 In spite of the mathematical con‐

venience to treat boundary value problems with no‐slip boundary conditions,
there are also some mathematical aspects which show the inadequacy of the no‐

slip condition. For instance, in Le Roux [25, pp. 310‐311], is addressed one of

these aspects, when one considers the problem with nonhomogeneous Dirichlet

boundary conditions. There, is pointed out that the uniqueness for that prob‐
lem is guaranteed only in the case of an impermeable boundary. This implies
that additional boundary conditions are necessary to ensure the well‐posedness
of the problem.

Although its recent interest, Navier‐Stokes equations with slip boundary
conditions have already been studied analytically by many authors. Solonnikov
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and Ščadilov have proved in [30] the existence of a generalized solution, as well

its smoothness, for a linearized stationary system which on a part of the bound‐

ary satisfies a slip boundary condition. The time dependent incompressible
Navier‐Stokes equations was investigated, respectively, in Sobolev‐Sobolevsky
and Hölder function spaces by Tani et al. [31, 20]. With respect to the 2‐D

case, there are some works concerning the inviscid limit of the Navier‐Stokes

equations. Clopeau et al. have proved in [14] the existence of regular solutions

with bounded vorticity for the  2\mathrm{D} evolutive system with a slip boundary condi‐

tion on a part of the boundary. Coron has proved earlier in [15] the same, but

with smooth compatible data. Lopes Filho et al. [18] and Kelliher [22] have

extended the results of Clopeau et al. [14], and Berselli and Romito [12], by
using rather elementary tools, have proved existence and uniqueness of weak

solutions.

Historically slip boundary conditions were proposed by C.L. Navier in 1827

(see Serrin [29, p.240]) in the following form:

\mathrm{u}\cdot $\tau$=k\mathrm{t}\cdot $\tau$ on \partial $\Omega$\times(0, T) ; (1.3)

where k is a given negative‐valued function. Note that this condition alone is a

mathematical expression of slip with friction (k<0) . Specifically, slip occurs in

the opposite direction as the resistive force the wall exerts on the fluid. However,
Navier condition is absent to what happens through the boundary. For instance,
there can exist cross of fluid through the boundary or, simply, it may happens
that there is no penetration. That is the reason why in the literature (1.3)
is considered as a partial slip boundary condition. Since the works of J.C.

Maxwell in 1879, various slip conditions have been proposed in place of the

no‐slip boundary condition, the most important being

\mathrm{u}\cdot \mathrm{n}=0 and \mathrm{u}\cdot $\tau$=$\beta$^{-1}\mathrm{t}\cdot $\tau$ on \partial $\Omega$\times(0, T) ; (1.4)

where \mathrm{n} and  $\tau$ denote, respectively, unit normal and tangential vectors to the

boundary \partial $\Omega$
,

and here  $\beta$ is a coefficient with no defined sign (as in Serrin [29,
p.240]). The case  $\beta$^{-1}<0 corresponds to the most studied case in the literature,
slip with friction. But, in this work, we will consider also $\beta$^{-1}>0 ,

the case

which the boundary walls accelerate the fluid. The limit  $\beta$\rightarrow 0 leads to free

slip boundary conditions (1.2), while the limit  $\beta$\rightarrow\infty recovers the no‐slip
boundary conditions (1.1). In some situations the parameter  $\beta$ can be explicitly
calculated in terms of the Reynolds number and of a spatial scale length (see
John and Liakos [21] and the references therein). Mathematically, (1.4)1 is an

expression for the no‐penetration of fluid on the boundary and (1.4)2 for flow

with resistance, friction or not.

2 Statement of the problem

We consider the mathematical problem of an incompressible viscous fluid in a

cylinder  Q_{T} := $\Omega$\times(0, T)\subset \mathbb{R}^{N}\times \mathbb{R}^{+} ,
where  $\Omega$ is a bounded domain with

3



a locally Lipschitz boundary \partial $\Omega$ . Here, we will consider the dimensions of

physical interest  N=2 and N=3 . However, the main results of this article,
established in Section 5, are valid for any dimension N\geq 2 . From the principle
of conservation of mass for an incompressible fluid and from the principle of

conservation of momentum, we obtain the Navier‐Stokes equations:

\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{u} =0 in Q_{T} ; (2.5)

\mathrm{u}_{t}+(\mathrm{u}\cdot\nabla)\mathrm{u}=\mathrm{f}+\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{S} in Q_{T} ; (2.6)

where the stress tensor \mathrm{S} obeys the Stokes law:

\displaystyle \mathrm{S}=-p\mathrm{I}+2v\mathrm{D}, \mathrm{D}=\frac{1}{2}(\nabla \mathrm{u}+\nabla \mathrm{u}^{T}) (2.7)

In these equations, \mathrm{u} is the velocity, \mathrm{D} is the rate of the strain tensor, I is the

unit tensor, p is the pressure divided by the constant density of the fluid, v is

the constant kinematics viscosity, and \mathrm{f} is a forces field. Solutions of (2.5)-(2.7)
are assumed to satisfy the initial condition:

\mathrm{u}(\mathrm{x}, 0)=\mathrm{u}_{0}(\mathrm{x}) \mathrm{i}\mathrm{n}  $\Omega$ . (2.8)

We assume the problem is supplemented with the following slip boundary con‐

ditions:

\mathrm{u}\cdot \mathrm{n}=0 and \mathrm{u}\cdot $\tau$=$\beta$^{-1}\mathrm{t}\cdot $\tau$ on \partial $\Omega$\times(0, T) ; (2.9)

where \mathrm{t}=\mathrm{n}\cdot \mathrm{S} is the stress vector and $\beta$^{-1} is a proportional factor (as in

Serrin [29, p. 240 Note that \mathrm{u}\cdot $\tau$=$\beta$^{-1}\mathrm{t}\cdot $\tau$ can be written as \mathrm{u}\cdot $\tau$=

 $\beta$^{-1}\mathrm{n}\cdot \mathrm{S}\cdot $\tau$ ,
or \mathrm{u}\cdot $\tau$=$\beta$^{-1} (Sn)  $\tau$ . Mathematically, (2.9)2 expresses the fact

that, on the boundary, tangential velocities are proportional to the tangential
stresses.

The new contribution of this work is the consideration, in the momentum

equation (2.6), of a forces field \mathrm{f} such that

-\mathrm{f}(\mathrm{x}, t, \mathrm{u})\cdot \mathrm{u}\geq C_{\mathrm{f}}|\mathrm{u}|^{ $\sigma$} \forall \mathrm{u}\in \mathbb{R}^{2},  $\sigma$\in(1,2) , (2.10)

for some positive constant C_{\mathrm{f}} . Note that such forces field depends, in a sublinear

way, on the own velocity \mathrm{u} and, physically, maybe considered as a feedback field.

The motivation for this forces field is purely mathematical and goes back to the

works of Benilan et al. [8], Diaz and Herrero [11], and Bernis [9, 10]. There,
was studied the importance of the absorption term |\mathrm{u}|^{ $\sigma$-2}\mathrm{u} to prove qualitative
properties related with compact supported solutions, or solutions which exhibit

finite speed of propagations, or which extinct in time. Theses properties were

there proved with the equivalent assumption of  $\sigma$\in(1,2) . Therefore, in a certain

sense, we are doing nothing but to introduce, in the left‐hand of momentum

equation (2.6), the absorption term |\mathrm{u}|^{ $\sigma$-2}\mathrm{u} . We notice that we already have

considered similar forces field in a variety of fluid mechanics problems with

no‐slip boundary conditions in [2]-[7].
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3 Mathematical framework

Notation. The notation used throughout this text is largely standard in

Mathematical Fluid Mechanics ‐ see, e.g., Galdi [16, 17], Layzhenskaya [23],
or Temam [33]. We distinguish vectors from scalars by using boldface letters.

For functions and function spaces we will use this distinction as well. The sym‐

bol C will denote a generic constant‐ almost the time a positive constant, whose

value will not be specified; it can change from one inequality to another. The

dependence of C on other constants or parameters will always be clear from the

exposition. Sometimes we will use letter subscripts to relate a constant with

the result from where it derives. In this article, the notation  $\Omega$ stands always
for a domain, i. e., a connected open subset of \mathbb{R}^{N}

,
whose compact boundary is

denoted by \partial $\Omega$ . The letters \mathrm{n} and  $\tau$ denote unit normal and tangent vectors

to the boundary \partial $\Omega$ . The boundary \partial $\Omega$ is assumed to be smooth enough such

that \mathrm{n} and  $\tau$ exist a.e. on \partial $\Omega$- for instance, C^{1}.

Function spaces. Let  1\leq p\leq\infty . We shall use the classical Lebesgue spaces

 L^{p}( $\Omega$) ,
whose norm is denoted by \Vert \Vert_{L^{p}( $\Omega$)} . For any nonnegative k, H^{k}( $\Omega$)

denotes the Sobolev space W^{k,2}( $\Omega$) ,
and its norm we simbolize by \Vert \Vert_{H^{k}( $\Omega$)}.

For m\geq 1 the associated trace spaces are denoted by W^{q,m-1/q}(\partial $\Omega$) ,
with

 1\leq q<\infty ,
and  H^{m-1/2}(\partial $\Omega$) . Given T>0 and a Banach space X, L^{p}(0, T;X)

and H^{k}(0, T;X) ,
k is any nonnegative number, denote the usual Lebesgue and

Sobolev spaces used in evolutive problems, with norm denoted by \Vert\cdot\Vert_{L^{p}(0,T,X)}
and \Vert \Vert_{H^{k}(0,T,X)} . The corresponding spaces of vector‐valued functions are

denoted by boldface letters. All these spaces are Banach spaces and the Hilbert

framework corresponds to p=2 . The H^{k} Sobolev spaces already correspond
to p=2 and therefore are Hilbert spaces. For a detailed exposition of these

spaces, we address the reader, for instance, to the monograph by Adams [1].

For the mathematical setting of our the problem, we define the following function

spaces:

\mathrm{H}= { \mathrm{v}\in \mathrm{L}^{2}( $\Omega$) : \mathrm{d}\mathrm{i}\mathrm{v}\mathrm{v} =0 and \mathrm{v}\cdot \mathrm{n}=0 on \partial $\Omega$ },

\mathrm{V}= { \mathrm{v}\in \mathrm{H}^{1}( $\Omega$) : \mathrm{d}\mathrm{i}\mathrm{v}\mathrm{v} =0 and \mathrm{v}\cdot \mathrm{n}=0 on \partial $\Omega$ },

\mathcal{W}= { \mathrm{v}\in \mathrm{V}\cap \mathrm{H}^{2}( $\Omega$):\mathrm{v} satisfies to (2.9)}.

The space \mathcal{W} is endowed with the \mathrm{H}^{1}( $\Omega$) norm, \mathrm{H} is endowed with the \mathrm{L}^{2}( $\Omega$)
inner product and norm, and V is endowed with the inner product (u, v)_{\mathrm{V}}=
\displaystyle \sum_{i=1}^{N} (\displaystyle \frac{\partial u}{\partial x_{x'}}, \frac{\partial v}{\partial x_{x'}}) and with the associated norm. From (3.12) below, we see that

this norm is equivalent to the \mathrm{H}^{1}( $\Omega$) norm.

Auxiliary results. Throughout this text we will make reference, at least once,

to the following inequalities (see Antontsev et al. [7, Appendix
(1) Algebraic inequality‐ for every  $\alpha$,  $\beta$\in \mathbb{R} and every A, B\geq 0,

A^{ $\alpha$}B^{ $\beta$}\leq(A+B)^{ $\alpha$+ $\beta$} ; (3.11)
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(2) Young�s inequality‐ for every a, b\geq 0,  $\epsilon$>0 and 1<p,  q<\infty such that

 1/p+1/q=1,
ab\leq $\epsilon$ a^{p}+C( $\epsilon$)b^{q}

If p=q=2 ,
this is known as Cauchy�s inequality.

(3) Hölder�s inequality ‐ for every u\in L^{p}( $\Omega$) , v\in L^{q}( $\Omega$) ,
with 1\leq p,  q\leq\infty

such that  1/p+1/q=1,

\displaystyle \int_{ $\Omega$}uvd\mathrm{x}\leq\Vert u\Vert_{p, $\Omega$}\Vert v\Vert_{q, $\Omega$}.
It is worth recalling the following result of Temam [33, Theorem 1.2]: there

exists a continuous linear operator $\gamma$_{\mathrm{n}} mapping the space \mathrm{E}( $\Omega$) :=\{\mathrm{v}\in \mathrm{L}^{2} :

divv \in L^{2}( $\Omega$) } into \mathrm{H}^{-1/2}(\partial $\Omega$) ,
the dual space \mathrm{H}^{1/2}(\partial $\Omega$) ,

such that $\gamma$_{\mathrm{n}}(\mathrm{v}) is

the restriction to \partial $\Omega$ of every compact supported function \mathrm{v}\in \mathrm{C}^{\infty}( $\Omega$) . Also,
the following divergence theorem holds

\displaystyle \int_{ $\Omega$}\mathrm{v}\cdot\nabla hd\mathrm{x}=\int_{\partial $\Omega$}$\gamma$_{\mathrm{n}}(\mathrm{v})\cdot$\gamma$_{0}(h)dS-\int_{ $\Omega$}\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{v}h dx,

for every \mathrm{v}\in \mathrm{E}( $\Omega$) and h\in H^{1}( $\Omega$) . In the sequel we always suppress the trace

function $\gamma$_{0} and write \mathrm{v}\cdot \mathrm{n} in place of $\gamma$_{\mathrm{n}}(\mathrm{v}) .

For the main properties we will prove in this article, play important roles two

known results. The first is related with the famous Gagliardo‐NirenUerg in‐

equality and the second with the trace theorem.

Lemma 3.1 Let  $\Omega$ be a domain of \mathbb{R}^{N}, N\geq 1 ,
with a compact boundary \partial $\Omega$.

Assume that u\in W^{1,p}( $\Omega$) ,
\partial $\Omega$ is locally Lipschitz and \displaystyle \int_{ $\Omega$}udx=0 . For every

fixed number r\geq 1 there exists a constant C_{GN} depending only on N, p, r and

 $\Omega$ such that

\Vert u\Vert_{q, $\Omega$}\leq C_{GN}\Vert\nabla u\Vert_{L^{p}( $\Omega$)}^{ $\theta$}\Vert u\Vert_{L^{r}( $\Omega$)}^{1- $\theta$} , (3.12)

where  $\theta$\in[0 ,
1 ], p, q\geq 1 ,

are linked by  $\theta$=(\displaystyle \frac{1}{r}-\frac{1}{q})(\frac{1}{N}-\frac{1}{p}+\frac{1}{r})^{-1} ,
and their

admissible range is:

(1) If N=1, q\in[r, \infty],  $\theta$\in[0, \displaystyle \frac{p}{p+r(p-1)}] ;

(2) If p<N, q\displaystyle \in[\frac{Np}{N-p}, r] if r\displaystyle \geq\frac{Np}{N-p} and q\in[r, \displaystyle \frac{Np}{N-p}] if r\displaystyle \leq\frac{Np}{N-p} ;
(3) If p\geq N>1, q\in[r, \infty) and  $\theta$\in[0, \displaystyle \frac{Np}{Np+r(p-N)}].
See the proof of this result in Ladyzhenskaya et al. [24, p. 62] (see also Niren‐

berg [27, p. 125 A precise definition of locally Lipschitz boundary is given in

Galdi [16, p. 36], which turns out to be equivalent to the definition of piecewise‐
smooth boundary (with nonzero interior angles) given in [24, p. 9]. If  $\Omega$ is

unbounded, or if  $\Omega$ is bounded and  u\in W_{0}^{1,p}( $\Omega$) ,
than the assumptions on the

boundary are not needed, as well the zero average of u in  $\Omega$
,

and the constant

 C_{GN} does not depend on  $\Omega$ (see [27]).
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Lemma 3.2 Let  $\Omega$ be a domain of \mathbb{R}^{N}, N\geq 2 ,
with a compact boundary \partial $\Omega$.

Assume that u\in W^{1,p}( $\Omega$) ,
\partial $\Omega$ is locally Lipschitz and \displaystyle \int_{ $\Omega$}udx=0 . There exists

a constant C_{tr} depending only on N, q and  $\Omega$ such that

\Vert u\Vert_{L^{q}(\partial $\Omega$)}\leq C_{tr}\Vert\nabla u\Vert_{L^{2}( $\Omega$)}^{ $\alpha$}\Vert u\Vert_{L^{2}( $\Omega$)}^{1- $\alpha$} , (3.13)

where  $\alpha$=\displaystyle \frac{N}{2}-\frac{N-1}{q} and q\displaystyle \in[\frac{2(N-1)}{N}, \displaystyle \frac{2(N-1)}{N-2}] if N\geq 3 ,
or  q\in[1, \infty ) for

 N=2.

This inequality is established in [24, p. 69] (see also [16, p. 43 In the two

previous results the dependence of constants C_{GN} and C_{tr} on  $\Omega$ is understood

in the sense that it depends on the structure of \partial $\Omega$ . However, it does not depend
on the size of  $\Omega$

,
i. e., it does not change under dilatations of  $\Omega$ . Sometimes, in

the sequel, we will denote this situation by writing  C=C(\partial $\Omega$) .

Under the assumption that \partial $\Omega$ is locally Lipschitz, we obtain, as a straightfor‐
ward consequence of (2.5) and (2.9), that every component  u_{i}, i=1

,
. . .

,
N

,
of

a velocity field \mathrm{u}\in \mathrm{E}( $\Omega$) satisfies

\displaystyle \int_{ $\Omega$}u_{i}d\mathrm{x}=\int_{ $\Omega$}\mathrm{d}\mathrm{i}\mathrm{v}(\mathrm{u}x_{i})d\mathrm{x}=\int_{\partial $\Omega$}x_{i}(\mathrm{u}\cdot \mathrm{n})dS=0 . (3.14)

We will also make use of an important inequality often used in Continuum

Mechanics.

Lemma 3.3 Let  $\Omega$ be a domain of \mathbb{R}^{N}, N\geq 2 ,
with a locally Lipschitz compact

boundary \partial $\Omega$ . If \mathrm{u} is in \mathrm{H}^{1}( $\Omega$) and satisfies to (2.9)1, then

\Vert\nabla \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\leq\Vert \mathrm{u}\Vert_{\mathrm{H}^{1}( $\Omega$)}^{2}\leq C_{K}\Vert \mathrm{D}(\mathrm{u})\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2} , (3.15)

where C_{K} is a positive constant depending on  $\Omega$.

This is the so‐called second Korn�s inequality and it extends for suitable un‐

bounded domains. See Oleinik and Yosifian [30] for the proof and related ques‐

tions (see also Solonnikov and Ščadilov [28, Lemma 2

4 On the existence and uniqueness
In this section, we assume the forces field is given by

\mathrm{f}(\mathrm{x}, t, \mathrm{u})=- $\alpha$|\mathrm{u}|^{ $\sigma$-2}\mathrm{u}+\mathrm{g}(\mathrm{x}, t) , (4.16)

where  $\alpha$ is a non‐negative constant and \mathrm{g} is a prescribed function. Note that

such forces field satisfies to (2.10) with  $\alpha$=C_{\mathrm{f}} and only if \mathrm{g}\equiv 0 . As a

consequence, we obtain the following modified Navier‐Stokes problem

divu =0, \mathrm{u}_{t}+(\mathrm{u}\cdot\nabla)\mathrm{u}+ $\alpha$|\mathrm{u}|^{ $\sigma$-2}\mathrm{u}=\mathrm{g}+\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{S} in Q_{T} , (4.17)
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\mathrm{u}(\mathrm{x}, 0)=\mathrm{u}_{0}(\mathrm{x}) \mathrm{i}\mathrm{n}  $\Omega$
, (4.18)

\mathrm{u}\cdot \mathrm{n}=0 and \mathrm{u}\cdot $\tau$=$\beta$^{-1}\mathrm{t}\cdot $\tau$ on \partial $\Omega$\times(0, T) . (4.19)
If  $\alpha$=0

,
then we fall in the usual Navier‐Stokes problem. For the weak for‐

mulation of (4.17)-(4.19) ,
we start by noting that the no‐penetration condition

\mathrm{v}\cdot \mathrm{n}=0 on the boundary allows us to write \displaystyle \mathrm{v}=\sum_{i=1}^{N-1}(\mathrm{v}\cdot$\tau$_{\mathrm{i}})$\tau$_{\mathrm{i}} for every

N\geq 2 ,
where \{$\tau$_{1}, . . . , $\tau$_{\mathrm{N}-1}, \mathrm{n}\} forms an orthonormal system of vectors in \mathbb{R}^{N}.

Then, using the slip boundary condition (4.19), we can write

( \mathrm{S}\mathrm{v}). \mathrm{n}=\mathrm{v}\cdot \mathrm{S} \displaystyle \mathrm{n}=\sum_{i=1}^{N-1}(\mathrm{v}\cdot$\tau$_{\mathrm{i}})$\tau$_{\mathrm{i}}\cdot \mathrm{S}\mathrm{n}= $\beta$ \mathrm{u}\cdot \mathrm{v},
which is valid on the boundary \partial $\Omega$\times(0, T) . In consequence, using (2.5) and

(2.7), we obtain for every \mathrm{u}\in \mathcal{W} and \mathrm{v}\in \mathrm{V}

\displaystyle \int_{ $\Omega$}\mathrm{d}\mathrm{i}\mathrm{v} Svdx =-v\displaystyle \int_{ $\Omega$}\mathrm{D}(\mathrm{u}) : \displaystyle \mathrm{D}(\mathrm{v})d\mathrm{x}+ $\beta$\int_{\partial $\Omega$}\mathrm{u}\cdot \mathrm{v}dS . (4.20)

This motivates us for the following definition of weak solution for the problem
(4.17)-(4.19) .

Definition 4.1 We say that \mathrm{u} is a weak solution to the problem (4.17)‐(4.19),
if:
1. \mathrm{u}\in \mathrm{L}^{2}(0, T;\mathrm{V})\cap \mathrm{L}^{\infty}(0, T;\mathrm{H}) ;
2. \mathrm{u}(\mathrm{x}, 0)=\mathrm{u}_{0} ;
3. For every \mathrm{v}\in \mathrm{V}

\displaystyle \frac{d}{dt}\int_{ $\Omega$}\mathrm{u}(t)\cdot \mathrm{v}d\mathrm{x}+v\int_{ $\Omega$}\mathrm{D}(\mathrm{u}(t)):\mathrm{D}(\mathrm{v})d\mathrm{x}+\int_{ $\Omega$}(\mathrm{u}(t)\cdot\nabla)\mathrm{u}(t)\cdot \mathrm{v}d\mathrm{x}+ (4.21)

 $\alpha$\displaystyle \int_{ $\Omega$}|\mathrm{u}(t)|^{ $\sigma$-2}\mathrm{u}(t) . \mathrm{v}\mathrm{d}\mathrm{x} =\displaystyle \int_{ $\Omega$}\mathrm{g}(t)\cdot \mathrm{v}d\mathrm{x}+ $\beta$\int_{\partial $\Omega$}\mathrm{u}(t)\mathrm{v}dS.
This definition is silent about the initial data \mathrm{u}_{0} and the forces field \mathrm{g} . But, this

will be clear when we bellow establish the existence result. The existence of such

a weak solution is proved on the basis of the same results with prescribed forces

field, i. e., when one considers the problem (4.17)-(4.19) with  $\alpha$=0 . However,
for this problem (with  $\alpha$=0 in (4.17)), and, to the best of our knowledge, the

global in time existence result is only proved [14, Theorem 2.3] for the 2‐D case

(see also Mucha and Sadowski [26, Theorem 2.1]). For the 3‐D case, we only
know existence results but locally in time (see Tani et al. [20,31 However,
these results are inadequate for the localization in time effects we will establish

in the next section. The main problem we face when we try to carry out the

global in time existence result of the no‐slip boundary conditions case to the

slip conditions case, is because the space \mathcal{V}= { v\in C_{0}^{\infty}( $\Omega$) : \mathrm{d}\mathrm{i}\mathrm{v}v=0 in  $\Omega$ } is

not dense in  V . This brings us problems when taking an orthonormal basis of

V to form the approximate solutions in the Galerkin method. For N=2
,

the

following auxiliary result replaces the density of \mathcal{V} in the corresponding subspace
of \mathrm{H}_{0}^{1}( $\Omega$) from the no‐slip boundary conditions case.
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Lemma 4.1 Assume N=2 . There exists a basis \{\mathrm{w}_{1}, . . . , \mathrm{w}_{m}, . . . \} \subset \mathrm{H}^{3}( $\Omega$)
for V, which satisfies

\mathrm{w}_{m}\cdot $\tau$=$\beta$^{-1} (Sn).  $\tau$  on \partial $\Omega$\times(0, T) . (4.22)

The basis \{\mathrm{w}_{1}, . . . , \mathrm{w}_{m}, . . . \} is also an orthonormal basis for H.

This result is proved in [14, Lemma 2.2] with 2(\mathrm{D}(\mathrm{w}_{m})\mathrm{n})\cdot $\tau$+ $\alpha$ \mathrm{w}_{m}\cdot $\tau$=0 ,
and

 $\alpha$>0 ,
instead of (4.22). But, mathematically the case  $\alpha$\leq 0 does not offer any

difficulty. If we had  $\alpha$=0 (and N=2), then the problem could be overcame

by choosing a basis for V such that their vectors have compact supports in  $\Omega$.

That can be done by prescribing any function from V as \nabla^{\perp} $\phi$= (- \displaystyle \frac{\partial $\phi$}{\partial x_{2}}, \frac{\partial $\phi$}{\partial x_{1}})
for a scalar function  $\phi$ such that  $\phi$=0 on \partial $\Omega$ (see [26, p. 1872 However, for

 N=3
,
this is no longer possible and, to the best of our knowledge, an analogous

result to Lemma 4.1 is yet not established. Therefore, at the moment, we are

only able to establish the existence result for N=2 . The proof is an adaptation
of the corresponding proof for the no‐slip boundary conditions case. For this,
see Theorem 2.3 in Clopeau et al. [14], §6.3 in Ladyzhenskaya [23] and §III.3 in

Temam [33].

Theorem 4.1 Assume N=2 and let \mathrm{u}_{0}\in \mathcal{W} and \mathrm{g}\in \mathrm{L}^{2}(0, T;\mathrm{V}^{\ovalbox{\tt\small REJECT}}) . Then,
there exists, at least, a global in time weak solution to the problem (4·17)‐(4.19)
in the sense of Definition 4.1.

PROOF. 1. Existence of approximate solutions. We consider an \mathrm{H}^{2}( $\Omega$) ortho‐

normal basis \{\mathrm{w}_{1}, . . . , \mathrm{w}_{m}, . . . \} for \mathcal{W} , which, from Lemma 4.1, is also a basis

for V. For each m
,

we search an approximate solution \mathrm{w}_{m} of (4.21) in the form

\displaystyle \mathrm{w}_{m}=\sum_{i=1}^{m}c_{im}(t)\mathrm{w}_{i} , (4.23)

where c_{im}(t) are the functions we look for. These functions are founded by
solving the following system of ordinary differential equations obtained from

(4.21):

\displaystyle \frac{d}{dt}c_{jm}(t)+v\int_{ $\Omega$}\mathrm{D}(\mathrm{u}_{m}(t)):\mathrm{D}(\mathrm{w}_{j})d\mathrm{x}+\int_{ $\Omega$}(\mathrm{u}_{m}(t)\cdot\nabla)\mathrm{u}_{m}(t)\cdot \mathrm{w}_{j}d\mathrm{x}+ (4.24)

 $\alpha$\displaystyle \int_{ $\Omega$}|\mathrm{u}_{m}(t)|^{ $\sigma$-2}\mathrm{u}_{m}(t)\cdot \mathrm{w}_{j}d\mathrm{x}=\int_{ $\Omega$}\mathrm{g}(t)\cdot \mathrm{w}_{j}d\mathrm{x}+ $\beta$\int_{\partial $\Omega$}\mathrm{u}_{m}(t)\cdot \mathrm{w}_{j}dS ;

c_{jm}(0)=\displaystyle \int_{ $\Omega$}\mathrm{u}_{0}.w_{j}dx ; (4.25)

for j=1 ,
. . .

,
m . This problem has a unique solution c_{jm}\in C^{1}([0, T_{m} for

some small interval of time [0, T_{m} ) \subset[0, T].
2. A priori estimates. After some calculations, we get the following inequality,
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where we have used Cauchy�s inequality with  $\epsilon$=v/(2C_{K}) , C_{K} is the Korn�s

inequality constant (3.15),

\displaystyle \Vert \mathrm{u}_{m}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+2v\int_{0}^{t}\Vert \mathrm{D}(\mathrm{u}_{m}(\mathcal{S}))\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}d_{\mathcal{S}}+2 $\alpha$\int_{0}^{t}\Vert \mathrm{u}_{m}(\mathcal{S})\Vert_{\mathrm{L}^{ $\sigma$}( $\Omega$)}^{ $\sigma$}d_{\mathcal{S}}\leq (4.26)

\displaystyle \Vert \mathrm{u}_{0}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+\frac{v}{C_{K}}\int_{0}^{t}\Vert \mathrm{u}_{m}(s)\Vert_{\mathrm{H}^{1}( $\Omega$)}^{2}+\frac{C_{K}}{v}\int_{0}^{t}\Vert \mathrm{g}(s)\Vert_{V'}^{2}ds+2 $\beta$\int_{0}^{t}\Vert \mathrm{u}_{m}(s)\Vert_{\mathrm{L}^{2}(\partial $\Omega$)}^{2}ds
for t<T_{m} . If  $\beta$\leq 0 and once that  $\alpha$\geq 0 ,

one can readily obtains, after using
Korn�s inequality (3.15),

\displaystyle \Vert \mathrm{u}_{m}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+v\int_{0}^{t}\Vert \mathrm{D}(\mathrm{u}_{m}(s))\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}d_{S}\leq\Vert \mathrm{u}_{0}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+\frac{C_{K}}{v}\int_{0}^{t}\Vert \mathrm{g}(s)\Vert_{V'}^{2}ds
(4.27)

for t<T_{m} . If  $\beta$>0 ,
then we use, before all, the trace inequality (3.13) with

q=2 ,
in the last right‐hand term of (4.26), as it is done in (5.45)−(5.46) . Then,

we use twice Cauchy�s inequality: first as it was done in (4.26), but with $\epsilon$_{1}>0 ;

then with $\epsilon$_{2}>0 in the term resulting from the application of trace inequality
‐ both 61 and 62 are to be defined later on. After this, we use Korn�s inequality
(3.15) to obtain the following inequality

\displaystyle \Vert \mathrm{u}_{m}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+2v\int_{0}^{t}\Vert \mathrm{D}(\mathrm{u}_{m}(s))\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}ds\leq (4.28)

\displaystyle \Vert \mathrm{u}_{0}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+C($\epsilon$_{1}, $\epsilon$_{2})\int_{0}^{t}\Vert \mathrm{D}(\mathrm{u}_{m}(s))\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}ds+C($\epsilon$_{1})\int_{0}^{t}\Vert \mathrm{g}(s)\Vert_{V'}^{2}ds,
for t<T_{m} ,

and where C($\epsilon$_{1}, $\epsilon$_{2})=2[$\epsilon$_{1}+$\epsilon$_{2}\displaystyle \max(1, $\epsilon$_{2}/4) $\beta$ C_{tr}]C_{K}, C_{tr} is

the constant from trace inequality (3.13). Then, we choose 61 and $\epsilon$_{2}:$\epsilon$_{1}=

v/(2C_{K})-$\epsilon$_{2}\displaystyle \max(1, $\epsilon$_{2}/4) $\beta$ C_{tr} ; and $\epsilon$_{2}>0 such that $\epsilon$_{1}>0 . Finally, we ob‐

tain (4.28) with different positive constants depending on v,  $\beta$, C_{K} and C_{tr}.
Hence

\displaystyle \sup_{t\in[0,T]}\Vert \mathrm{u}_{m}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\leq\Vert \mathrm{u}_{0}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+C($\epsilon$_{1})\Vert \mathrm{g}\Vert_{\mathrm{L}^{2}(0,T,\mathrm{V}')}^{2} (4.29)

which implies that the element \mathrm{u}_{m}\in \mathrm{L}^{\infty}(0, T;\mathrm{H}) and the sequence \mathrm{u}_{m} remains

bounded in \mathrm{L}^{\infty}(0, T;\mathrm{H}) .

On the other hand, if we replace t by T in (4.26), we obtain

\displaystyle \Vert \mathrm{u}_{m}(T)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+2v\int_{0}^{T}\Vert \mathrm{D}(\mathrm{u}_{m}(\mathcal{S}))\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}d_{\mathcal{S}}+2 $\alpha$\int_{0}^{T}\Vert \mathrm{u}_{m}(\mathcal{S})\Vert_{\mathrm{L}^{ $\sigma$}( $\Omega$)}^{ $\sigma$}d_{\mathcal{S}}\leq (4.30)

\displaystyle \Vert \mathrm{u}_{0}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+\frac{v}{C_{K}}\int_{0}^{T}\Vert \mathrm{u}_{m}(\mathcal{S})\Vert_{\mathrm{H}^{1}( $\Omega$)}^{2}+\frac{C_{K}}{v}\int_{0}^{T}\Vert \mathrm{g}(\mathcal{S})\Vert_{V'}^{2}d_{\mathcal{S}}+2 $\beta$\int_{0}^{T}\Vert \mathrm{u}_{m}(\mathcal{S})\Vert_{\mathrm{L}^{2}(\partial $\Omega$)}^{2}d_{\mathcal{S}}
Proceeding as before, we obtain (4.27) if  $\beta$\leq 0 ,

and (4.28) if  $\beta$>0 ,
both with

t replaced by T . Then, using here once more Korn�s inequality (3.15), we get

\displaystyle \Vert \mathrm{u}_{m}(T)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+\frac{v}{C_{K}}\int_{0}^{T}\Vert \mathrm{u}_{m}(s)\Vert_{\mathrm{H}^{1}( $\Omega$)}^{2}d_{S}\leq\Vert \mathrm{u}_{0}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+C\Vert \mathrm{g}\Vert_{\mathrm{L}^{2}(0,T,\mathrm{V}')}^{2} , (4.31)
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where C=C_{K}/v or C=C($\epsilon$_{1}) ,
when considering (4.27) or (4.28), respectively.

This estimate enables us to say \mathrm{u}_{m}\in \mathrm{L}^{2}(0, T;\mathrm{V}) and the sequence \mathrm{u}_{m} remains

bounded in \mathrm{L}^{2}(0, T;\mathrm{V}) .

3. Passing to the limit. In complete analogy with the no‐slip case for the

Navier‐Stokes problem (with  $\alpha$=0 in (4.17)), we can pass to the limit in the

equations satisfied by approximate solutions and the proof follows in a standard

manner. Note that the limit solution \mathrm{u} satisfies also to (4.31). \square 

Remark 4.1 Justifying as in [33, p. 282], we can say that the weak solutions

proved above are weakly continuous from [0, T] onto H. Moreover, if we assume

more regularity on the data, we can obtain more regular solutions (N=2) : if
\mathrm{f}\in \mathrm{H}^{1}(0, T;\mathrm{H}) and \mathrm{u}_{0}\in \mathcal{W}\cap \mathrm{H}^{2}( $\Omega$) ,

then the solutions proved above satisfy
\mathrm{u}^{\ovalbox{\tt\small REJECT}}\in \mathrm{L}^{2}(0, T;\mathrm{V})\cap \mathrm{L}^{\infty}(0, T;\mathrm{H}) (see [14, Theorem 2.3] and [33, Theorem 3.5]).

In the next result, we establish the uniqueness of weak solutions for the

problem (4.17)-(4.19) in the 2‐D case.

Theorem 4.2 Assume N=2 and let \mathrm{u}_{0}\in \mathcal{W} and \mathrm{g}\in \mathrm{L}^{2}(0, T;\mathrm{V}^{\ovalbox{\tt\small REJECT}}) . Then,
a weak solution of the problem (4\cdot 17) ‐(4.19) in the sense of Definition 4.1 is

unique.

PROOF. Let \mathrm{v} and \mathrm{w} be two weak solutions in the sense of Definition 4.1.

Then, from (4.21), and arguing as in [33, Theorem 3.2], we get the following
relation for \mathrm{u}=\mathrm{v}-\mathrm{w} :

\displaystyle \frac{d}{dt}\Vert \mathrm{u}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+2v\Vert \mathrm{D}(\mathrm{u}(t))\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+I_{1}=I_{2}+I_{3} , (4.32)

where

I_{1} :=2 $\alpha$\displaystyle \int_{ $\Omega$}(|\mathrm{v}(t)|^{ $\sigma$-2}\mathrm{v}(t)-|\mathrm{w}(t)|^{ $\sigma$-2}\mathrm{w}(t))\cdot \mathrm{u}(t) d\mathrm{x} .

I_{2}:=2\displaystyle \int_{ $\Omega$}[(\mathrm{w}(t)\cdot\nabla)\mathrm{w}(t)-(\mathrm{v}(t)\cdot\nabla)\mathrm{v}(t)]\cdot \mathrm{u}(t)d\mathrm{x} and I_{3}:=2 $\beta$\Vert \mathrm{u}(t)\Vert_{\mathrm{L}^{2}(\partial $\Omega$)}^{2}.
We use the following inequality [32] to prove that I_{1}\geq 0 : for every  $\xi$,  $\eta$\in \mathbb{R}^{N},
and 1< $\sigma$<2

(| $\xi$|^{ $\sigma$-2} $\xi$-| $\eta$|^{ $\sigma$-2} $\eta$)\cdot( $\xi$- $\eta$)\geq( $\sigma$-1)| $\xi$- $\eta$|^{2}(| $\xi$|^{ $\sigma$}+| $\eta$|^{ $\sigma$})^{\frac{ $\sigma$-2}{ $\sigma$}}
On the other hand, it can be proved, in a standard manner, that

|I_{2}|=|2\displaystyle \int_{ $\Omega$}(\mathrm{u}(t)\cdot\nabla)\mathrm{w}(t)\cdot \mathrm{u}(t)d\mathrm{x}|\leq (4.33)

\displaystyle \frac{2v}{C_{K}}\Vert \mathrm{u}(t)\Vert_{\mathrm{H}^{1}( $\Omega$)}^{2}+\frac{C_{K}}{v}\Vert \mathrm{u}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\Vert \mathrm{w}(t)\Vert_{\mathrm{H}^{1}( $\Omega$)}^{2}.
Then, using Korn�s inequality (3.15), we obtain, from (4.32), the following re‐

lation if  $\beta$\leq 0

\displaystyle \frac{d}{dt}\Vert \mathrm{u}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\leq\frac{C_{K}}{v}\Vert \mathrm{u}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\Vert \mathrm{w}(t)\Vert_{\mathrm{H}^{1}( $\Omega$)}^{2} . (4.34)
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Integrating (4.34), using (4.31) for \mathrm{w}
,

and known that \mathrm{u}(0)=0 ,
we prove that

\mathrm{v}=\mathrm{w} . If  $\beta$>0 ,
we firstly apply the trace inequality (3.13) to I3 and after

Cauchy�s inequality, to obtain

|I_{3}|\displaystyle \leq\frac{v}{C_{K}}\Vert \mathrm{u}(t)\Vert_{\mathrm{H}^{1}( $\Omega$)}+\frac{C_{K}C_{tr} $\beta$}{2v}\Vert \mathrm{u}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}.
Then proceeding as above, replacing in (4.33) 2v/C_{K} by v/C_{K} and C_{K}/v by
C_{K}/2v ,

we get

\displaystyle \frac{d}{dt}\Vert \mathrm{u}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\leq\frac{C_{K}}{2v}(\Vert \mathrm{w}(t)\Vert_{\mathrm{H}^{1}( $\Omega$)}^{2}+C_{tr} $\beta$)\Vert \mathrm{u}(t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}
and the result follows in the same manner. \square 

Remark 4.2 Arguing as in Ladyzhenskaya [23, g6.3] (see also Galdi [17]), we

can prove that, for N=2
,

the weak solution \mathrm{u} to the problem (4\cdot 17) ‐(4.19)
satisfies the following energy equality:

\displaystyle \frac{d}{dt}\int_{ $\Omega$}|\mathrm{u}(t)|^{2}d\mathrm{x}+v\int_{ $\Omega$}|\mathrm{D}(\mathrm{u}(t))|^{2}d\mathrm{x}+ $\alpha$\int_{ $\Omega$}|\mathrm{u}(t)|^{ $\sigma$}d\mathrm{x} (4.35)

=\displaystyle \int_{ $\Omega$}\mathrm{g}(t)\cdot \mathrm{u}(t)d\mathrm{x}+ $\beta$\int_{\partial $\Omega$}|\mathrm{u}(t)|^{2}dS.
In what concerns to the 3‐D case, we conjecture that it is possible to prove

the existence of, at least, a global in time weak solution in the sense of Def‐

inition 4.1. Indeed, in Busuioc and Ratiu [13, p. 1134] is used the Galerkin

method with a special basis to prove the existence of a weak solution for a

second grade fluid problem with slip boundary conditions. We think that this

method can be applied, with some modifications, for the Navier‐Stokes problem
with slip boundary conditions (2.9). As for uniqueness, we know that, for the

Navier‐Stokes problem with no‐slip boundary conditions and N=3
,

is an open

problem. Therefore, uniqueness of weak solutions for our problem (4.17)-(4.19)
is also an open problem.

The results of this section could have been proved, at least for the 2‐D case,

if we have consider a forces field such that

\mathrm{f}(\mathrm{x}, t, \mathrm{u})=- $\alpha$|\mathrm{u}|^{ $\sigma$-2}\mathrm{u}+\mathrm{h}(\mathrm{x}, t, \mathrm{u}) , \mathrm{h}(\mathrm{x}, t, \mathrm{u})\cdot \mathrm{u}\leq 0,

and \mathrm{h} a Carathéodory function. In this case, the proof would be carried out

by using a truncation and approximation argument together with a fixed point
theorem. To control the convergence of suitable approximations, we would have

to add some extra assumptions on \mathrm{h}(\mathrm{x}, t, \mathrm{u}) for large values of \mathrm{u} . To prove the

uniqueness, we would have to assume a non‐increasing condition on \mathrm{h} . See the

references [3, 4, 5] where this procedure was adopted for stationary problems
with no‐slip boundary conditions.
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5 Extinction in time

The results proved in this section are valid for any dimension N\geq 2 , though we

are not able, at the moment, to prove the existence of, at least, a weak solution

the problem (4.17)−(4.19) if N\geq 3 . In such situations, we have conditional

results, i. e., if the weak solutions exist, then they will satisfy to the properties
proved here. The notion of weak solution considered here is in the sense of

Definition 4.1. For N=2
,

the energy equality (4.35) holds and therefore the

formalism of multiplying the momentum equation (4.17)2 by a weak solution can

be dropped. However, for N=3
,

even for the no‐slip boundary conditions case,

(4.35) is no longer valid. Weak solutions, for the 3-D problem satisfy to an

energy inequality‐ the sign = is replaced by \leq (see Galdi [17]). Nevertheless,
this does not change any of our conclusions. Therefore, we will adopt that

formalism for any dimension  N\geq 2.

Let us first note that replacing \mathrm{v} by \mathrm{u} in (4.20), we obtain

\displaystyle \int_{ $\Omega$}\mathrm{d}\mathrm{i}\mathrm{v} Sudx =-v\displaystyle \int_{ $\Omega$}|\mathrm{D}(\mathrm{u})|^{2}d\mathrm{x}+ $\beta$\int_{\partial $\Omega$}|\mathrm{u}|^{2}dS . (5.36)

for every \mathrm{u}\in \mathcal{W} . Note that this formulae is independent of N.

Theorem 5.1 Let \mathrm{u} be a weak solution of problem (2.5)−(2.9) in the sense of
Definition 4.1 for a general N\geq 2 . Assume that the forces field \mathrm{f} satisfies
(2.10). Then, regardless the sign of  $\beta$ and what was the velocity at the initial

instant of time, there exists a positive finite time  t^{*} such that \mathrm{u}=0 for almost

all t\geq t^{*}

PROOF. We formally multiply (2.6) by \mathrm{u}
,

a weak solution to problem (2.5)−
(2.9), and use the integration by parts formulae (5.36), to obtain the energy

equality:

\displaystyle \frac{1}{2}\frac{d}{dt}\int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x}+v\int_{ $\Omega$}|\mathrm{D}(\mathrm{u})|^{2}d\mathrm{x}= $\beta$\int_{\partial $\Omega$}|\mathrm{u}|^{2}dS+\int_{ $\Omega$}\mathrm{f} . udx. (5.37)

Using (2.10) and Korn�s inequality (3.15), we obtain:

\displaystyle \frac{1}{2}\frac{d}{dt}\int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x}+\frac{v}{C_{K}}\int_{ $\Omega$}|\nabla \mathrm{u}|^{2}d\mathrm{x}+C_{\mathrm{f}}\int_{ $\Omega$}|\mathrm{u}|^{ $\sigma$}d\mathrm{x}\leq $\beta$\int_{\partial $\Omega$}|\mathrm{u}|^{2}dS . (5.38)

Let us first consider the case  $\beta$\leq 0 . In this case, we obtain

\displaystyle \frac{d}{dt}\int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x}+C_{2}\int_{ $\Omega$}(|\nabla \mathrm{u}|^{2}+|\mathrm{u}|^{ $\sigma$})d\mathrm{x}\leq 0, C_{2}=2\displaystyle \min(v/C_{K}, C_{\mathrm{f}}) . (5.39)

Now, we recall that each component u_{i}, i=1
,

. . .

,
N

,
of \mathrm{u} satisfies to (3.14).

Thus, we can use inequality (3.12) with N=2, p=q=2 and  r= $\sigma$
,
to obtain

for each  i=1
,

. . .

,
N

\Vert u_{i}\Vert_{L^{2}( $\Omega$)}^{2}\leq C\Vert\nabla u_{i}\Vert_{L^{2}( $\Omega$)}^{2 $\theta$}\Vert u_{i}\Vert_{L^{ $\sigma$}( $\Omega$)}^{2(1- $\theta$)}, C=C(N,  $\sigma$, \partial $\Omega$) , (5.40)
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where

 $\theta$=1-\displaystyle \frac{2 $\sigma$}{ $\sigma$(N-2)-2N}\in(0,1)\Leftarrow N\geq 2, 1< $\sigma$<2 . (5.41)

In particular, 1< $\sigma$<2 implies

 $\theta$=1-\displaystyle \frac{ $\sigma$}{2}\in(0, \frac{1}{2}) for N=2,  $\theta$=1-\displaystyle \frac{2 $\sigma$}{6- $\sigma$}\in(0, \frac{3}{5}) for N=3.

We use the trivial inequalities |u_{i}|^{2}\leq|\mathrm{u}|^{2} and |\nabla u_{i}|^{2}\leq|\nabla \mathrm{u}|^{2} ,
and sum up,

between i=1 and i=N
,

the resulting relation from (5.40). After that, we use

the algebraic inequality (3.11) to obtain

\Vert \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\leq C(\Vert\nabla \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+\Vert \mathrm{u}\Vert_{\mathrm{L}^{ $\sigma$}( $\Omega$)}^{ $\sigma$})^{ $\mu$} C=C(N,  $\sigma$, \partial $\Omega$) , (5.42)

where, from (5.41),

 $\mu$:= $\theta$+\displaystyle \frac{2}{ $\sigma$}(1- $\theta$)=1+\frac{2(2- $\sigma$)}{ $\sigma$(N-2)-2N}>1\Leftarrow N\geq 2, 1< $\sigma$<2 . (5.43)

In particular,

 $\mu$=2-\displaystyle \frac{ $\sigma$}{2}\in(1, \frac{3}{2}) for N=2,  $\mu$=1+\displaystyle \frac{4-2 $\sigma$}{6- $\sigma$}\in(1, \frac{7}{5}) for N=3.

Then, conjugating (5.39) and (5.42), we obtain the homogeneous ordinary dif‐

ferential inequality

\displaystyle \frac{d}{dt}y(t)+C(y(t))^{\frac{1}{ $\mu$}}\leq 0, C=C(N,  $\sigma$, \partial $\Omega$) , y(t):=\displaystyle \int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x} . (5.44)

The usage of (5.43) and an explicit integration of (5.44) proves the existence of

t^{*}:=\displaystyle \frac{ $\mu$}{C( $\mu$-1)}E(0)^{\frac{ $\mu$-1}{ $\mu$}}>0, C=C(N,  $\sigma$, \partial $\Omega$)
and such that \mathrm{u}=0 for all t\geq t^{*}

Now we consider the case  $\beta$>0 . Keeping in mind that each component u_{i},

i=1
,

. . .

,
N

,
of \mathrm{u} satisfies to (3.14), we use here first the trace inequality (3.13),

with q=2 ,
on the right‐hand term of (5.38), to obtain

\Vert u_{i}\Vert_{L^{2}(\partial $\Omega$)}^{2}\leq C\Vert\nabla u_{i}\Vert_{L^{2}( $\Omega$)}^{2}\Vert u_{i}\Vert_{L^{2}( $\Omega$)}^{2}, C=C(N, \partial $\Omega$) . (5.45)

Then we use, in the following order, Cauchy�s inequality with a suitable  $\epsilon$,

the inequalities |u_{i}|^{2}\leq|\mathrm{u}|^{2} and |\nabla u_{i}|^{2}\leq|\nabla \mathrm{u}|^{2} ,
and sum up, between i=1

and i=N
,

the resulting relation from (5.45). This leads us to the following
inequality

\displaystyle \frac{d}{dt}\int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x}+C_{1}\int_{ $\Omega$}(|\nabla \mathrm{u}|^{2}d\mathrm{x}+|\mathrm{u}|^{ $\sigma$})d\mathrm{x}\leq C_{2}\int_{ $\Omega$}|\mathrm{u}|^{2} dx, (5.46)
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where C_{1} and C_{2} are two different positive constants depending on N, v, \partial $\Omega$ and

 $\beta$ . Now, combining (5.46) and (5.42), we obtain the following nonhomogeneous
ordinary differential inequality

 y^{\ovalbox{\tt\small REJECT}}+C_{1}y^{\frac{1}{ $\mu$}}\displaystyle \leq C_{2}y, y(t)=\int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x},  $\mu$>1,
where now C_{1} depends also on  $\sigma$ . Introducing successively the new variables

 v=ye^{-C_{2}t} and  $\iota$=\displaystyle \frac{ $\mu$}{C_{2}( $\mu$-1)}(1-e^{-\frac{( $\mu$-1)C_{2}}{ $\mu$}t})
we came to the homogeneous ordinary differential inequality (5.44) for v

,
and

the result follows as there. \square 

Remark 5.1 This result can also be established for unbounded domains with

compact boundaries as far the inequalities of Gagliardo‐Nirenberg (3.12), traces

(3.13) and Korn (3.15) hold. For instance, its validity extends to convex un‐

bounded domains, but bounded, at least, in one direction.

Now, we consider in the momentum equation a forces field which exhibits

anisotropic feedback nonlinearities:

-\displaystyle \mathrm{f}(\mathrm{x}, t, \mathrm{u})\cdot \mathrm{u}\geq\sum_{i=1}^{N}C_{\mathrm{f}}^{i}|u_{i}|^{$\sigma$_{i}} \forall \mathrm{u}\in \mathbb{R}^{N}, $\sigma$_{i}\in(1,2) , (5.47)

for some non‐negative constants C_{\mathrm{f}}^{i} ,
with i=1

,
. . .

,
N . Bellow we will prove

that we can obtain the result of Theorem 5.1 if all the constants C_{\mathrm{f}}^{i} are positive.

Theorem 5.2 Let \mathrm{u} be a weak solution of problem (2.5)−(2.9) in the sense of
Definition 4.1 for a general N\geq 2 . Assume that the forces field \mathrm{f} satisfies
(5.47) with C_{\mathrm{f}}^{i}>0 for every i=1

,
. . .

,
N. Then, regardless the sign of  $\beta$ and

what was the velocity at the initial instant of time, there exists a positive finite
time  t^{*} such that \mathrm{u}=0 for almost all t\geq t^{*}

PROOF. Proceeding as in the proof of Theorem 5.1, we obtain the analogous
of (5.38)

\displaystyle \frac{1}{2}\frac{d}{dt}\int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x}+\frac{v}{C_{K}}\int_{ $\Omega$}|\nabla \mathrm{u}|^{2}d\mathrm{x}+\sum_{i=1}^{N}C_{\mathrm{f}}^{i}\int_{ $\Omega$}|\mathrm{u}|^{$\sigma$_{\dot{x}}}d\mathrm{x}\leq $\beta$\int_{\partial $\Omega$}|\mathrm{u}|^{2}dS . (5.48)

Moreover, (5.40) is valid here too and from this relation, using again (3.11), we

can easily obtain, for each i=1
,

. . .

, N,

\displaystyle \Vert u_{i}\Vert_{L^{2}( $\Omega$)}^{2}\leq C(\Vert\nabla \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+\sum_{i=1}^{N}\Vert u_{i}\Vert_{L^{ $\sigma$}( $\Omega$))^{$\mu$_{x}}}^{$\sigma$_{\dot{x}}}i C=C(N, $\sigma$_{i}, \partial $\Omega$) , (5.49)
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where $\mu$_{i} is defined in (5.43) by replacing  $\sigma$ with  $\sigma$_{i} . Now, we assume, with no

loss of generality, that \Vert \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}<1 . Applying this assumption to (5.49) and

adding up, between i=1 and i=N
,

the resulting relations, we obtain

\displaystyle \Vert \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\leq C(\Vert\nabla \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+\sum_{i=1}^{N}\Vert u_{i}\Vert_{L^{$\sigma$_{x'}}( $\Omega$)}^{ $\sigma$}i)^{ $\mu$} C=C(N, $\sigma$_{1}, \ldots, $\sigma$_{N}, \partial $\Omega$) ,

where  $\mu$=\displaystyle \min_{1\leq i\leq N}$\mu$_{i} . The rest of the proof follows as in the proof of Theo‐

rem 5.1 either  $\beta$\leq 0 or  $\beta$>0. \square 

However, if in (5.47) we assume that, at least, one C_{\mathrm{f}}^{i} is zero, we are not

able to establish the same result, unless we improve the assumptions. For the

sake of the exposition, let us assume that, additionally to (5.47), we have

C_{\mathrm{f}}^{N}=0 and C_{\mathrm{f}}^{i}>0 for all i\neq N . (5.50)

In this case, proceeding as in the proof of Theorem 5.2, we can get

\displaystyle \frac{1}{2}\frac{d}{dt}\int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x}+v\int_{ $\Omega$}|\nabla \mathrm{u}|^{2}d\mathrm{x}+\sum_{i=1}^{N-1}C_{\mathrm{f}}^{i}\int_{ $\Omega$}|\mathrm{u}|^{$\sigma$_{x'}}d\mathrm{x}\leq $\beta$\int_{\partial $\Omega$}|\mathrm{u}|^{2}dS . (5.51)

And, for each i=1
,

. . .

, N-1,

\displaystyle \Vert u_{i}\Vert_{L^{2}( $\Omega$)}^{2}\leq C(\Vert\nabla \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+\sum_{i=1}^{N-1}\Vert u_{i}\Vert_{L^{$\sigma$_{\dot{\mathrm{t}}}}( $\Omega$))^{$\mu$_{*}}}^{$\sigma$_{\dot{x}}} (5.52)

where C=C(N, $\sigma$_{1}, \ldots, $\sigma$_{N-1}, \partial $\Omega$) , $\mu$_{*}=\displaystyle \min_{1\leq$\mu$_{i}\leq N-1} and $\mu$_{i} are defined

also as in (5.43) replacing  $\sigma$ by  $\sigma$_{i} . To estimate \Vert u_{N}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2} ,
we use the same

arguments we have used in [2]. We introduce the hyperplane

 $\Omega$(z)= $\Omega$\cap { \mathrm{x}=(\mathrm{x}^{\ovalbox{\tt\small REJECT}}, x_{N})\in \mathbb{R}^{N}:\mathrm{x}^{\ovalbox{\tt\small REJECT}}=(x_{1}, \ldots, x_{N-1}) and x_{N}=z } \subseteq \mathbb{R}^{N-1}

and we, additionally, assume that

the domain  $\Omega$ is convex, at least, in the  x_{N} direction. (5.53)

Then, we formally multiply (2.5) by a weakly free divergence vector \mathrm{u} and

integrate by parts over  $\Omega$(z) ,
where we use (2.9), to obtain

-\displaystyle \frac{1}{2}\frac{\partial}{\partial z}\int_{ $\Omega$(z)}u_{N}^{2}d\mathrm{x}^{\ovalbox{\tt\small REJECT}}=\int_{ $\Omega$(z)}\sum_{i=1}^{N-1}\frac{\partial u_{N}}{\partial x_{i}}u_{i}d\mathrm{x}^{\ovalbox{\tt\small REJECT}} . (5.54)

Next, the integration of (5.54) between x_{N}^{0} ,
chosen such that (x_{\mathrm{l}}, . . . , x_{N-1},  x_{N}^{0})\in

\partial $\Omega$
,

and  x_{N}\leq x_{N}^{1} ,
with x_{N}^{1} also chosen such that (x_{\mathrm{l}}, . . . , x_{N-1}, x_{N}^{1})\in\partial $\Omega$ ,

lead

us to

\displaystyle \int_{ $\Omega$(z)}u_{N}^{2}d\mathrm{x}^{\ovalbox{\tt\small REJECT}}-\int_{ $\Omega$(x_{N}^{0})}u_{N}^{2}d\mathrm{x}^{\ovalbox{\tt\small REJECT}}=-2\int_{x_{N}^{0}}^{xN}\int_{ $\Omega$(z)}\sum_{i=1}^{N-1}\frac{\partial u_{N}}{\partial x_{i}}u_{i}d\mathrm{x}^{\ovalbox{\tt\small REJECT}}dz . (5.55)
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To proceed with the same kind of arguments, we need that the second term of

the left‐hand member of (5.55) vanishes. This is equivalent to assume

\partial$\Omega$_{N} is orthogonal to the x_{N} axis, (5.56)

where \partial$\Omega$_{N}=\partial $\Omega$\cap $\Omega$(z) . Note that \mathrm{u}\cdot \mathrm{n}=0 and condition (5.56) imply that

u_{N}=0 on \partial$\Omega$_{N}\times(0, T) . In this case, we apply Hölder�s inequality to the

resulting equation of (5.55), to obtain

\displaystyle \Vert u_{N}\Vert_{2, $\Omega$(z)}^{2}\leq C\Vert\nabla u_{N}\Vert_{2, $\Omega$(z)}\sum_{i=1}^{N-1}\Vert u_{i}\Vert_{2, $\Omega$(z)}, C=C(N) .

Integrating the last inequality with respect to z and using, again, Hölder�s in‐

equality, we achieve to the estimate

\displaystyle \Vert u_{N}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\leq C\Vert\nabla u_{N}\Vert_{\mathrm{L}^{2}( $\Omega$)}\sum_{i=1}^{N-1}\Vert u_{i}\Vert_{\mathrm{L}^{2}( $\Omega$)}, C=C(N) .

Now, applying, for each i=1
,

. . .

,
N-1

, (5.52) and then (3.11), we came to

the inequality

\displaystyle \Vert u_{N}\Vert_{L^{2}( $\Omega$)}^{2}\leq C(\Vert\nabla \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+\sum_{i=1}^{N-1}\Vert u_{i}\Vert_{L^{$\sigma$_{x'}}( $\Omega$)}^{$\sigma$_{x'}})^{$\mu$_{N}} (5.57)

where C=C(N, $\sigma$_{1}, \ldots, $\sigma$_{N-1}, \partial $\Omega$) and

$\mu$_{N}=\displaystyle \frac{1}{2}+\frac{$\mu$_{*}}{2}>1\Leftarrow$\mu$_{*}=\min_{i=1,\ldots,N-1}$\mu$_{i}>1 . (5.58)

Again, assuming, with no loss of generality, that \Vert \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}<1 ,
we obtain, from

(5.52) and (5.57),

\Vert \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\leq C(i
where C=C(N, $\sigma$_{1}, \ldots, $\sigma$_{N-1}, \partial $\Omega$) and  $\mu$=\displaystyle \min($\mu$_{*}, $\mu$_{N})\equiv\min_{1\leq i\leq N}$\mu$_{i}>1.
Therefore, proceeding as in the proof of Theorem 5.1, we are able to establish

the following result.

Theorem 5.3 Let \mathrm{u} be a weak solution of problem (2.5)-(2.9) in the sense of
Definition 4.1 for a general N\geq 2 . Assume also that (5.53) and (5.56) are

fulfilled. If the forces field \mathrm{f} satisfies (5.47) and (5.50), then, regardless the

sign of  $\beta$ and what was the velocity at the initial instant of time, there exists a

positive finite time  t^{*} such that \mathrm{u}=0 for almost all t\geq t^{*}

Remark 5.2 The extra conditions (5.53) and (5.56) restrict the validity of the

aforementioned result to domains with flat boundaries \partial$\Omega$_{N} perpendicular to

the x_{N} axis, being x_{N} the direction where the absorption forces field is absent.

Examples of such domains are parallelepipeds and cylinders ‐ in the last case, is

on the basis where condition (5.56) must be fulfilled.

17



Remark 5.3 We are not able to prove the same result if, in (5.47) ,
more than

one C_{\mathrm{f}}^{i} is zero. One justification for that is because the problem is stated by
only two equations: (2.5) and (2.6). The momentum equation (2.6) is used to

establish, for each i=1
,

. . .

,
N-1

,
the estimates (5.52). And the continuity

equation (2.5) is fundamental to establish the analogous estimate (5.57) for
i=N.

In the limit, if, in (5.47), all C_{\mathrm{f}}^{i} are zero, we know that the best we can get
is an exponential decay. See, e.g. , [22, Theorem 6.1], where this is proved for

N=2 . Interesting is the fact that, in such situation, for certain positive values

of  $\beta$ , we nor can even expect an exponential decay. In fact, from (5.49), with

the assumption that all  C_{\mathrm{f}}^{i} in (5.47) are zero, we obtain

\displaystyle \frac{d}{dt}\int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x}+2v\int_{ $\Omega$}|\nabla \mathrm{u}|^{2}d\mathrm{x}\leq 2 $\beta$\int_{\partial $\Omega$}|\mathrm{u}|^{2}dS . (5.59)

We apply a vector version of (3.13), with q=2 and  $\alpha$=1/2 ,
to the right‐hand

term of (5.59) and then we apply Cauchy�s inequality with  $\epsilon$>0 . Finally, we

apply (3.12), with p=q=2 and  $\theta$=1
,

to the resulting second left‐hand term

of (5.59), and we obtain

\displaystyle \frac{d}{dt}\Vert \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}+C_{GN}^{-2}(2v-2C_{tr} $\beta \epsilon$)\Vert \mathrm{u}|_{\mathrm{L}^{2}( $\Omega$)}^{2}\leq C_{tr}\frac{ $\beta$}{2 $\epsilon$}\Vert \mathrm{u}|_{\mathrm{L}^{2}( $\Omega$)}^{2} (5.60)

where C_{GN} and C_{tr} are the constants resulting from applying (3.12) and (3.13),
respectively. Therefore, for positive values of  $\beta$ such that

 $\beta$>\displaystyle \frac{2vC_{GN}^{-2}}{2C_{tr}C_{GN}^{-2} $\epsilon$+C_{tr}/ $\epsilon$},
the solution of (5.60) does not have exponential decay. Note that this is inde‐

pendent of  $\epsilon$
,

which must be chosen such that  v-C_{tr} $\beta \epsilon$>0.

We can gather the results of Theorems 5.1, 5.2 and 5.3 to give them a general
presentation, but adding to the forces field a suitable field which vanishes in a

short time. We consider a forces field which satisfies to

\mathrm{f}(\mathrm{x}, t, \mathrm{u})=\mathrm{h}(\mathrm{x}, t, \mathrm{u})+\mathrm{g}(\mathrm{x}, t) , (5.61)

where \mathrm{h} stands for one of the following fields

\mathrm{h}(\mathrm{x}, t, \mathrm{u})=-C_{\mathrm{f}}|\mathrm{u}|^{ $\sigma$-2}\mathrm{u},  $\sigma$\in(1,2) , C_{\mathrm{f}}>0 ; (5.62)

\mathrm{h}(\mathrm{x}, t, \mathrm{u})=-(C_{\mathrm{f}}^{1}|u_{1}|^{$\sigma$_{1}-2}u_{1}, \ldots, C_{\mathrm{f}}^{1}|u_{N}|^{ $\sigma$-2}Nu_{N}) , $\sigma$_{i}\in(1,2) , C_{\mathrm{f}}^{i}\geq 0 , (5.63)

and, at most, only one C_{\mathrm{f}}^{i} is zero, i=1
,

. . .

,
N . The extra field \mathrm{g} satisfies to

\Vert \mathrm{g}(\cdot, t)\Vert_{\mathrm{L}^{2}( $\Omega$)}^{2}\leq $\epsilon$(1-t/t_{\mathrm{g}})^{\frac{1}{+ $\mu$-1}}  $\mu$>1 , (5.64)

for some positive constants  $\epsilon$ and  t_{\mathrm{g}} ,
and where u_{+}=\displaystyle \max(0, u) .
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Theorem 5.4 Let \mathrm{u} be a weak solution of problem (2.5)−(2.9) in the sense of
Definition 4.1 for a general N\geq 2 . Assume that the forces field \mathrm{f} satisfies one

of the following items:

1. (5.61), (5. 62) and (5. 64);
2. (5.61), (5.63) with C_{\mathrm{f}}^{i}>0 for all i=1

,
. . .

,
N

,
and (5.64); or

3. (5.61), (5.63) with (5.50), and (5.64). In this case assume moreover that

(5.53) and (5.56) are fulfilled.
Then, regardless the sign of  $\beta$ and what was the velocity at the initial instant

of time, there exist constants  $\epsilon$_{0}>0 and t^{*}\geq 0 such that \mathrm{u}=0 for almost all

t\geq t_{\mathrm{g}}, if $\epsilon$_{0}\geq $\epsilon$>0 and tg\geq t^{*}

PROOF. Proceeding, correspondingly for each item, as in the proofs of The‐

orems 5.1, 5.2 and 5.3, and using (5.64), we obtain the ordinary differential

inequality if  $\beta$\leq 0 :

\displaystyle \frac{d}{dt}y(t)+C_{1}(y(t))^{\frac{1}{ $\mu$}}\leq C_{2}(1-t/t_{\mathrm{g}})^{\frac{1}{+ $\mu$-1}}  $\mu$>1, y(t):=\displaystyle \int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x} , (5.65)

where C_{1}=C_{1}(N,  $\sigma$, \partial $\Omega$) and C_{2}=C_{2}(N,  $\sigma$, \partial $\Omega,\ \epsilon$_{0}) . The only difference is the

estimate of the term involving \mathrm{g} . In that term, we use first Young�s inequality
with a suitable  $\epsilon$ . And then, the resulting term \Vert \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)} is estimated in terms

of \Vert\nabla \mathrm{u}\Vert_{\mathrm{L}^{2}( $\Omega$)} by using Gagliardo‐Nirenberg�s inequality with p=q=2 and

 $\theta$=1 . The analysis of (5.65) made in Lemma 2.3 and Remark 2.4 of [7] proves

the theorem if  $\beta$\leq O. The choice of $\epsilon$_{0} and t^{*} can be done, mutatis mutandis,
as it was in the proof of Theorem 7.1 in [7], p. 229. Proceeding analogously, we

obtain for  $\beta$>0 :

\displaystyle \frac{d}{dt}y(t)+C_{1}(y(t))^{\frac{1}{ $\mu$}}\leq C_{2}y(t)+C_{3}(1-t/t_{\mathrm{g}})^{\frac{1}{+ $\mu$-1}} y(t) :=\displaystyle \int_{ $\Omega$}|\mathrm{u}|^{2}d\mathrm{x}, (5.66)

where  $\mu$>1, C_{1}=C_{1}(N,  $\sigma$, \partial $\Omega$) , C_{2}=C_{2}(N,  $\sigma$, \partial $\Omega$) and C_{3}=C_{3}(N,  $\sigma$, \partial $\Omega,\ \epsilon$_{0}) .

The same arguments we have used in the proof of Theorems 5.1 allow us to

recover (5.65) and the result follows. \square 

Remark 5.4 Note that t^{*} depends on y(0)=\Vert \mathrm{u}_{0}\Vert_{\mathrm{L}^{2}( $\Omega$)} and therefore we need

the assumption that \Vert \mathrm{u}_{0}\Vert_{\mathrm{L}^{2}( $\Omega$)} is finite.

In what concerns to the analogous effects in space, i. e., the existence of a

subdomain  $\Omega$_{0}\subset $\Omega$ where \mathrm{u}=0
,

is a delicate problem. So far we expect to

publish elsewhere these results but for 2‐D stationary problems.
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