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Introduction: A collagen/gelatin scaffold (CGS) can provide a sustained release of basic fibroblast growth factor
(bFGF), which promotes wound healing. However, bFGF is approved for clinical use in Japan and China only.
One potential alternative to bFGF is platelet lysate (PL), a safe and easily attainable source of a wide range of
growth factors necessary for tissue repair. In the present study, we investigated the use of PL with CGS to repair
wounds and identified the optimal concentration of PL for wound healing.
Materials and Methods: We generated PL from concentrated platelets harvested from individual healthy do-
nors. We measured growth factors in PL. Transforming growth factor (TGF)-b1, platelet-derived growth factor
(PDGF)-BB, vascular endothelial growth factor (VEGF), and bFGF were selected because they were the major
growth factors contained in platelets and showed the greatest ability to enhance the maturation of newly formed
blood vessels. Pieces of CGS impregnated with PL solution ( · 1, · 2, · 3, or · 4 concentrated) or normal saline
solution (NSS) were implanted into full-thickness skin defects on the backs of mice. We evaluated the wound
area, neoepithelium length, and total area of newly formed capillaries in the implanted CGS.
Results: Our release experiments revealed that PDGF-BB and TGF-b1 were released from CGS incubated with
collagenase in a sustained manner. CGS impregnated with concentrated PL was more effective than CGS
impregnated with NSS in all evaluated items. The · 2 concentrated PL accelerated wound healing and enhanced
cell proliferation and vessel growth in granulation tissue.
Conclusion: Our findings indicate that CGS can bind to TGF-b1 and PDGF-BB and release these growth factors
in a sustained manner. · 2 concentrated PL-impregnated CGS accelerates the formation of dermis-like tissue.

Introduction

Using a modifying version of the technique proposed
by Yannas and Burke,1–3 we developed a novel collagen/

gelatin scaffold (CGS) for open wound repair that can
provide a sustained release of basic fibroblast growth factor
(bFGF), which promotes neoepithelium growth. The CGS
we developed contains a mass percentage of 10% nega-
tively charged concentration of acidic gelatin that is able to
bind to positively charged growth factors such as bFGF
and later release these growth factors in a sustained man-
ner. In a previous study, we found that the biodegradation
of CGS caused the scaffold to release bFGF and that bFGF-
impregnated CGS implanted in full-thickness skin defects
accelerated the formation dermal tissue.4,5 However, bFGF
is currently approved for clinical use in Japan and China
only.

One alternative to bFGF is platelet lysate (PL), which can
be generated from common platelet units using a simple
freeze–thaw procedure. PL can provide a substitute for cell
culture supplement6,7 and is a safe and easily attainable
source of a wide range of the growth factors that interact
with cells during the wound-healing cascade and support the
diverse processes that promote tissue revascularization and
repair. Platelet aggregation initiates coagulation in bleeding
vessels and releases growth factors that regulate wound
healing events,8,9 and depending on the complexity of the
wound, platelets can employ the body’s inherent capacities
to boost healing and regenerative processes.10 PL has been
used clinically in a wide variety of surgical treatments for soft
and hard tissue defects,11 including intractable wounds,12

calvaria,7 maxillofacial bone defects,6 cosmetic surgery,13,14

spinal problems,15 and neovascularization.16 However, the
clinical application of PL is limited because of its short half-life
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and the variability of growth factor profiles among different
donors.11,17,18 Because PL and the growth factors dissolve into
blood stream within days after their injection, it is difficult to
maintain their presence in the tissue long enough to promote
effective tissue regeneration.

The purpose of the present study was to investigate the
efficacy of PL-impregnated CGS in promoting dermis-like
tissue formation. To conduct this investigation, we used a
freeze-dry procedure to generate concentrated PL that would
offset the variability in growth factor profiles as well as a
controlled-release system utilizing biodegradable CGS that
facilitates concentrated PL’s sustained release of major
growth factors to maintain their effect.

Materials and Methods

Animals

Eight-week-old C57BL/6JJcl mice (CLEA Japan, Inc.,
Osaka Japan) were maintained in the Institute of Laboratory
Animals, Graduate School of Medicine, Kyoto University, in
compliance with protocols established by the university’s
Animal Research Committee.

Preparation of CGS

We used gelatin isolated from pig dermis with an isoelectric
point (IEP) of 5.0 and molecular weight of 99,000 (Nippi,
Osaka, Japan) and atelocollagen isolated from pig tendons with
an IEP of 8.5 and molecular weight of 300,000 (Nitta Gelatin,
Osaka, Japan) to create the CGS. We prepared CGS as de-
scribed previously.1–3 Briefly, CGS with gelatin concentrations
of a mass percentage of 10% of the total solute was prepared by
mixing a mass percentage of 3% gelatin solution into a mass
percentage of 0.3% collagen solution. The foaming solution was
poured into a mold, frozen rapidly, and freeze-dried. The re-
sulting collagen-gelatin sheet was stabilized by immersing it in
a crosslinking agent (0.2% glutaraldehyde) for 24 h at 4�C and
then freeze-drying it. We used silicone solution (Shin-Etsu
Chemical, Tokyo, Japan) to make 200-mm-thick silicone sheets
that would be used to protect the implanted CGS.

Generation of human supplements

PLs were generated from concentrated platelets that had
been harvested from 6 healthy humans. The concentrated
platelets were frozen at - 80�C and thawed at 37�C twice to
lysate the platelets for release of growth factors. To remove
the membrane fragments, we centrifuged the lysates at 3000
g for 30 min and filtered the supernatant through a 0.2-mm
Steradisc (Kurabo, Osaka, Japan). To prevent gelatinization,
we added 2 U/mL heparin to the media, which was then
stored at - 80�C until use.

Concentrated PLs were prepared using a freeze-dryer (VD-
250R; TAITEC Co., Saitama, Japan) according to the manu-
facturer’s instructions and stored at 4�C until use. To create a
· 4 concentration of PLs, we reconstituted freeze-dried PLs
with an amount of normal saline solution (NSS; Otsuka
Pharmaceutical, Tokyo, Japan) that was one-fourth the origi-
nal volume of the PL media. To create a · 3 concentration of
PLs, we added NSS to the · 4 concentration to produce a 4/3-
fold dilution of the · 4 concentration. To create a · 2 con-
centration of PLs, we added NSS to the · 4 concentration to
produce a two-fold dilution of · 4 concentration.

Measurement of growth factors in PL

The platelets contained in a-granules release the following
factors: angiopoietin-2, calcium, coagulation factors, epithe-
lial cell growth factor, epidermal growth factor,19–24 fibro-
nectin, fibrinogen, bFGF of FGF2, fibronectin, histamine,
insulin-like growth factor-1,21 interleukin-1, platelet-derived
angiogenesis factor,19,22,24,25 platelet-derived endothelial cell
growth factor,19 PDGF (AA, BB, and AB isomers),11,19–22,26,27

platelet factor 4,22,24,25 serotonin, TGF-b,11,13,19–22,24–27 TSP-
1,24 VEGF,11,24,26 and von Willebrand factor.28 Based on the
profile of the growth factors released by the platelets that are
involved in wound healing and processes that culminate in
parenchymal cell proliferation and tissue regeneration, we
selected TGF-b1, PDGF-BB, VEGF, and bFGF as representa-
tive platelet growth factors because they were produced in
the largest amounts7,29,30 and showed greatest ability to en-
hance the maturation of newly formed blood vessels.16,31–34

To quantify the amounts of the growth factors in the PLs, we
used enzyme-linked immunosorbent assay (ELISA) and
transforming growth factor (TGF)-b1, platelet-derived
growth factor (PDGF)-BB, vascular endothelial growth factor
(VEGF), and bFGF kits (R&D Systems, Minneapolis, MN)
according to the manufacturer’s instructions. Samples of PL
from six humans were added to 96-well plates coated with
anti–growth factor antibodies. After incubating the plates
and removing the unbound substances, we added an en-
zyme-coupled secondary antibody to the well plates. After
the color reactions occurred, we used a spectrophotometer to
measure the optical densities of each product at the appro-
priate wavelength.

Release test of PL from CGS

To evaluate the release of PL from CGS, pieces of CGS
(1.0 · 1.5 · 0.3 cm) were added to 250mL of phosphate-buffered
saline (PBS; Invitrogen, Tokyo, Japan) and stored in a CO2

incubator at 37�C. For 24 h, we removed 200mL of the PBS
release media for sampling at different times and replaced the
media with 200mL of fresh PBS. At 24 h, we removed 200mL of
the PBS release media for sampling and replaced it with
200mL of 2 U/mL collagenase type A1 (Sigma Chemical, St.
Louis, MO). We continued to remove 200mL of the PBS release
media and replace it with 200mL of 2 U/mL collagenase type
A1 at different times for the next 24 h. The experiment was
performed independently for three samples and three controls
(NSS) at every sampling time.

To quantify the amounts of TGF-b1 and PDGF-BB in the
samples, we used ELISA and TGF-b1 and PDGF-BB ELISA
kits (R&D Systems, Minneapolis, MN) according to the
manufacturer’s instructions. The samples (n = 3) and controls
(NSS, n = 3) were added to 96-well plates coated with anti–
growth factor antibodies. After incubating the plates and
removing the unbound substances, we added an enzyme-
coupled secondary antibody to the well plates. After the
color reactions occurred, we used a spectrophotometer to
measure the optical densities of each product at the appro-
priate wavelength.

Impregnation of CGS with PL

Pieces of CGS (8-mm diameter, 1.5 mm thick) were placed
in 10-cm tissue culture dishes (Falcon; Falcon, NY). We
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applied 50mL of NSS (control), PL, or · 2, · 3, or · 4 con-
centrated PL to the CGS and then incubated the impregnated
CGS overnight at 4�C.

Implantation of CGS

To determine the concentration of PL in CGS that is most
effective in promoting wound healing, we first implanted
pieces of CGS impregnated with different concentrations
of PL into full-thickness skin defects on the backs of mice.
Eight-week-old C57BL/6JJcl mice were anesthetized by in-
traperitoneal injection of 26.3 mg pentobarbital (Abbott
Laboratories, North Chicago, IL). After depilating the mice,
we used an 8-mm-diameter skin punch biopsy tool (Kai In-
dustries, Gifu, Japan) to create a full-thickness skin defect
(including the panniculus carnosus) on the back of each
mouse. After dividing the mice into five groups of six mice
each, we implanted pieces of CGS impregnated with NSS
(control), PL, or · 2, · 3, or · 4 concentrated PL into the de-
fects and sutured the CGS to the margins of the skin wound
with 5-0 nylon sutures ( Johnson & Johnson, Tokyo, Japan).
The silicone sheets were then placed over the defects to keep
the inner sponge layer wet and prevent bacterial infection.

Assessment of the wound area and histologic
assessment of neoepithelization

Mice were killed by carbon dioxide inhalation 1, 2, or 3
weeks after CGS implantation. The silicone sheets were re-
moved, and each treated wound area, which was expressed
as a percentage of the area of the original 8-mm wound, was
photographed and measured using ImageJ software (version
1.38; Wayne Rasband, NIH, Maryland). We used a scalpel
and scissors to harvest the implanted CGS. The CGS speci-
mens were fixed with 20% formalin, embedded in paraffin,
cut axially into 4-mm-thick sections, and then stained with
hematoxylin and eosin. We then used a light microscope to
measure the length of each specimen’s neoepithelium from
the outermost hair root of the marginal skin on each side of
each cross section.

Immunohistological staining of newly formed
capillaries and evaluation of capillary area

To detect newly formed capillaries in the implanted CGS,
we performed immunohistological staining of von Will-
ebrand factor. After the harvested CGS sections had been
deparaffinized and rehydrated, they were incubated in PBS
with 0.1% trypsin (Vector Laboratories, Inc., Burlingame,
CA) for 15 min at 37�C. Anti–von Willebrand factor rabbit
polyclonal antibody (Dako Japan, Tokyo, Japan) was used as
the primary antibody (1:250 dilution), and En Vision
+ Rabbit/HRP (Dako Japan) was used as the secondary an-
tibody. The sections were exposed to 3-3¢-diaminobenzidine-
4HCl (Dako Japan) for 2 min at room temperature and then
counterstained with hematoxylin.

Digital light micrographs of sections beyond the muscle
layers were taken at 100 · magnification. The cross-sectioned
area of stained capillaries beyond the muscle layer in each
wound was measured using the NIS-Elements D imaging
software program (version 2. 20; Nikon, Tokyo, Japan).
Measurements were performed in the central region of a 500-
mm diameter in each section.

Statistical analysis

We used an analysis of variance and a Fisher protected
least significant difference test to compare differences be-
tween groups. All data are expressed as means – standard
errors. p values < 0.05 were considered statistically signifi-
cant. The Microsoft Excel software program with the Statcel
software add-in (Oms publishing, Inc., Tokyo, Japan) was
used for all statistical analyses.

Results

Growth factors in PL

The concentrations of the principal growth factors released
from PL are shown in Table 1. Various growth factors were
released from PL after the freeze–thaw activation. The
amounts of growth factors in concentrated PL are shown in
Figure 1.

PL release from CGS

Our growth factor release experiments revealed that CGS
could bind to and release TGF-b1 and PDGF-BB in vivo and
that this release depended on the biodegradation of colla-
genase (Fig. 2). During the initial 24-h incubation period,
CGS incubated with PBS without collagenase did not release
TGF-b1 or PDGF-BB in a sustained manner but did release
initial bursts of small amounts of the growth factors. In
contrast, during the second 24-h incubation period, CGS in-
cubated with collagenase-containing PBS released TGF-b1
and PDGF-BB in a sustained manner. During the first 24-h
period, the CGS incubated with PBS without collagenase
released up to 50% of the growth factors; during the second
24-h period, collagenase degradation caused the CGS to re-
lease the remaining 50% of the growth factors. A similar
addition effect of collagenase occurred on the time profile of
CGS degradation. The time profiles of TGF-b1, PDGF-BB,
and CGS degradations had good correlation.

Wound area

The gross appearances of wounds 2 weeks after the im-
plantation of CGS are shown in Figure 3A. Three weeks after
CGS implantation, the wounds treated with PL-impregnated
CGS had almost completely epithelized. The percentage of
original wound area remaining over time is shown in Figure
3B. One, two, and three weeks after CGS implantation, the
areas of the wounds in the mice treated with PL-impregnated

Table 1. Concentration of Growth Factors

in Platelet Lysate

Growth factor Concentration (pg/mL)

TGF-b1 103449 – 7137
PDGF-BB 5112 – 1200
VEGF 1568 – 521
bFGF 75.1 – 11.1

The concentrations of TGF-b1, PDGF-BB, VEGF, and bFGF
released from PL. Samples of PL (n = 6) were measured using
enzyme-linked immunosorbent assay.

TGF, transforming growth factor; PDGF, platelet-derived growth
factor; VEGF, vascular endothelial growth factor; bFGF, basic
fibroblast growth factor; PL, platelet lysate.
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CGS were significantly smaller than those in the control
group. Two weeks after CGS implantation, the areas of the
wounds treated with CGS impregnated with · 2 concen-
trated PL were significantly smaller than those of the
wounds treated with CGS impregnated with · 3 or · 4
concentrated PL.

Histologic assessment of neoepithelium length

We observed newly formed epithelia in wounds treated
with PL-impregnated CGS 2 weeks after CGS implantation
(Fig. 4A). One and two weeks after CGS implantation, the

lengths of neoepithelium in wounds treated with CGS im-
pregnated with · 2 concentrated PL were significantly longer
than those in the control group (Fig. 4B).

Evaluation of newly formed capillaries in wounds

CGS that had been immunohistologically stained for von
Willebrand factor is shown in Figure 5A. Matrices of CGS
were present in wounds treated with NSS-impregnated CGS
but not those treated with PL-impregnated CGS. The gross
area of the capillaries in the group treated with CGS im-
pregnated with · 2 concentrated PL was significantly larger
than those in the control group and groups treated with CGS
impregnated with · 3 or · 4 concentrated PL (Fig. 5B).

Discussion

In the present study, we found that CGS can bind to TGF-
b1 and PDGF-BB and release these growth factors in a

FIG. 1. The mean amounts of growth factors – standard
deviations in different concentrations of platelet lysate (PL).
Samples of PL (n = 6) were measured using enzyme-linked
immunosorbent assay.

FIG. 2. The time course of the mean percentages of trans-
forming growth factor (TGF)-b1 and platelet-derived growth
factor (PDGF)-BB release – standard deviations from CGS
treated with · 2 concentrated PL. The arrow indicates the
time at which the addition of PBS solution was stopped and
the addition of collagenase begun. The experiment was
performed independently for three samples and three con-
trols (NSS) at each sampling time. B; TGF-b1, ,; PDGF-BB

FIG. 3. (A) The gross appearances of wounds treated with
NSS (a), · 1 concentrated PL (b), · 2 concentrated PL (c), · 3
concentrated PL (d), or · 4 concentrated PL (e) 2 weeks after
the implantation of CGS. The dashed lines indicate the
original wound area. (B) The mean remaining wound ar-
eas – standard deviations of groups of six mice treated with
NSS (a), · 1 concentrated PL (b), · 2 concentrated PL (c), · 3
concentrated PL (d), or · 4 concentrated PL (e). *p < 0.01
versus NSS, · 1 concentrated PL; {p < 0.01 versus NSS,
p < 0.05 versus · 1 concentrated PL; xp < 0.05 versus · 4 con-
centrated PL; {p < 0.01 versus NSS. Color images available
online at www.liebertpub.com/tea
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sustained manner. Both growth factors were released ac-
cording to the degradation of CGS, even when concentrated
PL was applied. These results suggest that the release of
multiple growth factors in concentrated PL from CGS helps
heal wounds.

Although freeze-dried platelets have been reported to be
effective for tissue regeneration,26,35 no study has investi-
gated the efficacy of concentrated PL for wound healing. In
living tissue, various growth factors interact with compo-
nents of the extracellular matrix, such as acidic polysaccha-
rides and collagen, through various intermolecular forces.36

On the basis of this natural physicochemical interaction, we
developed biodegradable CGS impregnated with bFGF to be
used for full-thickness skin or mucosal defects.4,5,37

CGS can release concentrated PL in a sustained manner and
facilitate the release of growth factors, which results in better
angiogenesis and dermis-like tissue formation. In the present
study, we found that · 2 concentrated PL effectively acceler-
ated wound healing, enhancing the proliferation of cell and
vessel growth in granulation tissue without obvious inflam-
matory reactions. Moreover, the use of · 2 concentrated PL

FIG. 4. (A) Hematoxylin and eosin staining micrographs of
wounds treated with NSS (a), · 1 concentrated PL (b), · 2
concentrated PL (c), · 3 concentrated PL (d), or · 4 concen-
trated PL (e) 2 weeks after CGS implantation. Scale bar:
100 mm. The black arrows indicate the neoepithelium. (B) The
time course of the change in the mean neoepithelium lengths
(mm) – standard deviations of groups of six mice treated with
NSS (a), · 1 concentrated PL (b), · 2 concentrated PL (c), · 3
concentrated PL (d), or · 4 concentrated PL (e) 2 weeks af-
ter CGS implantation. {p < 0.05 versus NSS; xp < 0.01 versus
NSS, · 1 concentrated PL; {p < 0.01 versus NSS. Color images
available online at www.liebertpub.com/tea

FIG. 5. (A) Immunohistological staining of the newly
formed capillaries beyond the muscle layer in wounds trea-
ted with NSS (a), · 1 concentrated PL (b), · 2 concentrated
PL (c), · 3 concentrated PL (d), or · 4 concentrated PL (e).
The black arrows indicate newly formed capillaries. Scale
bar: 100mm. (B) The mean gross areas of capillaries – stan-
dard deviations of groups of six mice treated with CGS im-
pregnated with NSS (a), · 1 concentrated PL (b), · 2
concentrated PL (c), · 3 concentrated PL (d), or · 4 concen-
trated PL (e). Scale bar: 100 mm. {p < 0.01 versus NSS; {p < 0.01
versus · 1PL, · 3PL, · 4PL. Color images available online at
www.liebertpub.com/tea
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elicited results that were not significantly different from those
of our previous study, in which we used bFGF.5

In the present study, our finding that high concentrations of
PL have not accelerated wound healing is consistent with
those of previous studies, which showed that very high con-
centrations of PL have an inhibitory effect on the proliferation
and viability of different cell types.38,39 For example, one
study found that PL significantly enhanced the wound closure
of keratinocyte-based tissue in a dose-dependent manner;
however, this healing effect was retarded at concentrations 2.5
times the physiological level and higher.40 Furthermore, in
wounded cell monolayers, optimal concentrations of PL have
been found to induce a rapid actin cytoskeletal reorganization
in agreement with the cells assuming an active cell migratory
phenotype.41,42

Our findings regarding PL were not dissimilar from those
of earlier studies of bFGF. For example, bFGF treatment has
been reported to elicit a bell-shaped dose response5,43–45; an
excess amount of bFGF over the optimal range decreased
the proliferation of keratinocytes43 and prolonged wound
closure in vivo.44,45 Similarly, the results of the present
study indicated that PL elicited a bell-shaped dose-response
pattern with a peak at · 2 concentrated PL, and the excess
amount of platelet growth factors such as TGF-b and PDGF-
BB over the optimal range reduced cell proliferation and
prolonged wound closure in a manner similar to that of
bFGF. The reduction in cell proliferation may have been due
to the PL’s release of thrombospondin (TSP)-1, which exists
in significant quantities in PL and has been reported to be
an important angiogenesis inhibitor. High concentrations of
TSP-1 have been found to markedly inhibit cell prolifera-
tion.39 Therefore, platelets’ abundant secretion of TSP-1
might contribute to the antiproliferative effect via cell apo-
ptosis.39 Moreover, several growth factors become intricately
involved in angiogenesis. PDGF-BB has a potent arteriogenic
effect that promotes differentiation of endothelial cells,46

VEGF is known to stimulate angiogenesis after ischemia,47

and TGF-b promotes cell mitosis.31 However, other studies
indicated that several growth factors, such as PDGF-BB and
TGF-b, inhibit the angiogenic effect of bFGF.48–51 More studies
are needed to determine what is responsible for the anti-
proliferative effect of high concentrations of PL.

On the other hand, different growth factors act in synergy
to enhance tissue regeneration.52–54 For example, Hao et al.
reported that the release of both VEGF and PDGF enhanced
the maturation of newly formed blood vessels more than the
release of only VEGF did.55 PL can release any drug capable
of promoting the regeneration of various tissues. Thus, the
findings of the present study could point the way to using
platelets instead of bFGF in CGS for wound treatment. In
addition, because CGS can simultaneously release agents in a
sustained manner, the combination of concentrated PL- and
bFGF-impregnated CGS could 1 day be used to further ac-
celerate dermis-like tissue formation in wounds.

Conclusion

Our findings indicate that CGS can release these growth
factors in a sustained manner. The · 2 concentrated PL-
impregnated CGS accelerates the formation of dermis-like
tissue.
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