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Bifurcation analysis to Swift‐Hohenberg equation
with perturbed boundary conditions
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Abstract

We consider the Swift‐Hohenberg equation with perturbed boundary conditions. We

don�t a priori know the eigenfunctions for the linearized problem since the SO(2) symmetry of

the problem is broken by perturbation. We show that how the neutral stability curves change
and, as a result, how the bifurcation diagrams change by the perturbation of the boundary
conditions.

§1. Introduction

When we study mathematical models which are derived from physical phe‐

nomena, we usually consider these models with natural boundary conditions, such as

Neumann or periodic boundary conditions. If mathematical models are considered with

periodic boundary conditions, then the solutions to these problem automatically have

SO(2) symmetry, namely, the solutions are invariant under parallel displacement with

respect to spacial variables. In addition, if these models are considered with Neumann

boundary conditions, then the solutions to these problem can be extended to the so‐

lutions on the whole line which are periodic in space, and in this sense, the problem
also has SO(2) symmetry. It is known that the symmetry of the solution restricts its

bifurcation structure to certain types. In fact, non‐uniform stationary solutions bifur‐

cate from the uniform state as pitchfork generically in the case when they have SO(2)
symmetry.

On the other hand, there are also important problems in which boundary con‐

ditions are not SO(2) symmetric, and we are interested in influence of the boundary
conditions to the bifurcation structures. For instance, Dillon, Maini and Othmer [2]
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analyzed activator‐inhibitor systems with boundary conditions which is not SO(2) sym‐

metric in their study of biological pattern formation. Namely, they analyze the system
of two component reaction‐diffusion equations, where each equation satisfies different

boundary conditions with each other. And they obtained the stationary solutions and

bifurcation structures which are qualitatively different to those in SO(2) symmetric case

by controlling the boundary conditions. In addition, we can also find the similar kind

of studies in thermal convection problems. Mizushima and Nakamura [8] studied a con‐

vection problem with partially nonslip boundary conditions (which is also not SO(2)
symmetric), and they found that the neutral stability curves are qualitatively different

to those obtained in the case of SO(2) symmetry. They observed that the neutral stabil‐

ity curves avoid crossing at multiple critical points for different modes which have same

parity. The same problem was studied further by Kato and Fujimura [6]. They also

examined the avoided‐crossing phenomena of the neutral stability curves, and more‐

over, they analyze the local bifurcation structures by deriving the amplitude equation.

They observed that the local bifurcation structure is obtained as the imperfection of

the pitchfork bifurcation from two pure mode solutions which have same parity.
In this paper, we consider the Swift‐Hohenberg equation:

(1.1) \displaystyle \frac{\partial w}{\partial t}=\{v-(1+\frac{\partial^{2}}{\partial x^{2}})^{2}\}w-w^{3}, t>0, x\in(0, L/2)
with the following boundary conditions.

w(t, 0)=w(t, L/2)=0,

 $\delta$ w_{x}(t, 0)-w_{xx}(t, 0)=0,

(1.2)  $\delta$ w_{x}(t, L/2)+w_{xx}(t, L/2)=0.

Where w=w(t, x) is real valued function, v, L>0 and  $\delta$\geq 0 are parameters. Swift‐

Hohenberg equation (1.1) is known to be a phenomenological model of the thermal

convection problem. Moreover, the problem (1.1) with (1.2) is SO(2) symmetric when

 $\delta$=0 , however, it is not when  $\delta$>0.

Here, we show the global bifurcation structure of stationary solutions to (1.1) with

(1.2) based on the numerical simulation by AUTO, the software package for continuation

and bifurcation in finite dimensional ordinary differential equations in Fig.1. We can

see that several solution branches are folded with loops when  $\delta$=0.05 . When  $\delta$=0

the mixed mode branch bifurcates from pure mode branch as pitchfork bifurcation.

On the other hand, when  $\delta$>0 ,
some of the pitchfork bifurcations disappear since

the problem losses SO(2) symmetry, and as a result, imperfections of the pitchfork
bifurcation take place close to the intersection points between m‐th and n‐th branches.

These imperfections are observed only when the sum m+n is even.
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Figure 1. Bifurcation diagrams of (1.1) with (1.2) for v=0.37 . The horizontal and the

vertical axis denote L and ||w|| , respectively. [Top left:  $\delta$=0], [Top right:  $\delta$=0.05],
[Middle: Close up around the interaction point between third and fifth branches (Left:
 $\delta$=0 , Right:  $\delta$=0.05 )], [Bottom: Close up around the interaction point between

fourth and sixth branches (Left:  $\delta$=0 , Right :  $\delta$=0.05 )].

Motivated by these numerical results, we analyze the linearized eigenvalue problem,
and moreover, we study the local bifurcation structures of stationary solutions to (1.1)
with (1.2) by using the cubic normal forms which govern the dynamics of the critical

modes.
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Figure 2. Schematic pictures of the bifurcation structures. [Above: The case m+n is

odd], [Below: The case m+n is even].

§2. The symmetry and Linear stability analysis

In this section, we study the linear stability of the problem (1.1) with (1.2) around

the trivial solution w\equiv 0 . Namely, we examine how the neutral stability curves are

modified by the perturbation of the boundary conditions with small parameter  $\delta$.

Let us first examine the case when  $\delta$=0 , namely, we consider the linearized problem
of (1.1) with the following boundary conditions:

(2.1) w=w_{xx}=0 at x=0, L/2.

If w is a smooth solution of (1.1) with (2.1), then we can extend the solution in

(-L/2, L/2) by the following:

\hat{w}(t, x):=\left\{\begin{array}{l}
w(t, x) x\in(0, L/2) ,\\
-w(t, -x)x\in(-L/2,0) .
\end{array}\right.
Moreover, the solution can be extended as an L‐periodic and smooth function. To be

more precise, the solution w to (1.1) with (1.2) can be extended to the solution to (1.1)
in \mathrm{R} which satisfies:

w(t, x)=-w(t, -x) , w(t, x)=w(t, x+L) .

This implies that linearized eigenfunctions and eigenvalues around the trivial solution
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(w\equiv 0) are given by

(2.2) w_{m}:=\displaystyle \sin(\frac{2 $\pi$}{L}mx) , $\sigma$_{m}:=v-(1-\frac{4$\pi$^{2}}{L^{2}}m^{2})^{2}, m\in \mathrm{Z}.
Thus, we can conclude that neutral stability curves are given by the following:

C_{m}= \displaystyle \{ (L, v);v=(1-\frac{4$\pi$^{2}}{L^{2}}m^{2})^{2}\},  m\in Z.

Figure 3. Neutral stability curves drawn in (L, v) ‐plane. [Left: They correspond to the

critical curves for C_{1}, C_{2}, C_{6} respectively from the left], [Right: The critical curves

drown based on the numerical simulation when  $\delta$=0.02 . The m‐th and n‐th curve

avoid crossing when m+n is even].

Let us consider that how the neutral stability curves are modified when  $\delta$>0 . It

should be noted that when  $\delta$>0 ,
we can not extend the solutions as an L‐periodic

function. However, the problem is invariant under the mapping:

w(t, x)\rightarrow-w(t, x) , w(t, x)\rightarrow w(t, L/2-x)

independent of  $\delta$ . Let (L^{m,n}, v^{m,n}) be the intersection point of two neutral stability
curves C_{m} and C_{n},(m\neq n) ,

and let B(r) be a ball in the parameter space B(r) :=

\{(L, v);(\hat{L}^{m,n})^{2}+(\hat{v}^{m,n})^{2}<r^{2}\} ,
where \hat{L}^{m,n}:=L-L^{m,n} and \hat{v}^{m,n}:=v-v^{m,n}.

Theorem 2.1. Let m, n\in \mathrm{N}, (m\neq n) . For sufficiently small  $\delta$>0 ,
there exist

a positive constant s such that the neutral stability curves \mathfrak{N}^{m,n} in B(s) are given as

follows.

\mathfrak{N}^{m,n}=\{(L, v)\in B(s);$\sigma$_{1}$\xi$_{1}^{2}+$\sigma$_{2}$\xi$_{2}^{2}+$\sigma$_{3}$\xi$_{3}^{2}+O(s^{3})=0\}.

Here, $\xi$_{j}=\vec{v}_{j} (\hat{v}^{m,n},\hat{L}^{m,n},  $\delta$) , forj=1,2,3, \vec{v}_{j} and $\sigma$_{j} are eigenvectors and eigenvalues

of the matrix H_{m,n} :

(2.3) H_{m,n}=\left(\begin{array}{lll}
a_{m,n} & d_{m,n} & f_{m,n}\\
d_{m,n} & b_{m,n} & 0\\
f_{m,n} & 0 & c_{m,n}
\end{array}\right)
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where

a_{m,n}=\displaystyle \frac{-(-1)^{7m+n}(n^{2}+m^{2})^{2}$\pi$^{2}}{2mn}, b_{m,n}=\frac{16(-1)^{m+n}mn(n^{2}-m^{2})^{2}}{(n^{2}+m^{2})^{3}},
c_{m,n} =\displaystyle \frac{32mn\{1-(-1)^{n+7m}\}}{(m^{2}+n^{2})}, d_{m,n}=\frac{-(-1)^{m+n}\sqrt{2}(n^{2}-m^{2})^{2} $\pi$}{mn\sqrt{n^{2}+m^{2}}},
f_{m,n}=\displaystyle \frac{2\sqrt{2}(-1)^{m+n}(n^{2}+m^{2})^{\frac{3}{2}} $\pi$}{mn}.

Moreover, if m+n is odd, it holds that $\sigma$_{1}$\sigma$_{2}<0 and $\sigma$_{3}=0 . And if m+n is even, it

holds that $\sigma$_{1}, $\sigma$_{2}>0 and $\sigma$_{3}<0.

Proof. The linearized eigenvalue problem of (1.1) with (1.2) is written as follows.

(2.4) \left\{\begin{array}{l}
 $\lambda$ w=Lw,\\
w= $\delta$ w_{x}\pm w_{xx}=0 at x=0, L/2. '
\end{array}\right.
Here, L denotes the linearized operator of the equation (1.1) around w\equiv 0 , namely, it

is defined as follows.

L:=\displaystyle \{v-(1+\frac{\partial^{2}}{\partial x^{2}})^{2}\}.
We notice that problem (2.4) is self adjoint, that is, the following holds.

<Lu, v>_{L^{2}}=<u, Lv>_{L^{2}}

Here, <f, g>_{L^{2}} denotes the standard L^{2} inner pruduct for real valued functions

f(x) , g(x)\in L^{2}(0, L/2) :

<f, g>_{L^{2}}:=\displaystyle \int_{0}^{L/2}f(x)g(x)dx.
Therefore, all eigenvalues of the problem (2.4) are real. (The mathematical framework

for a linear operator L is given in Section3.)
We rewrite the linearized eigenvalue problem (2.4) as follows.

(2.5) \displaystyle \frac{d}{dx}W=M( $\lambda$)W,
where,

(2.6) W:=\displaystyle \left(\begin{array}{l}
w\\
w_{1}\\
w_{2}\\
w_{3}
\end{array}\right), w_{j}=\frac{\partial^{j}w}{\partial x^{j}}, (j=1,2,3)
and

(2.7) M( $\lambda$)=\left(\begin{array}{lllll}
 & - $\lambda$ & 1 & 0 & 0\\
 & 0 & - $\lambda$ & 1 & 0\\
 & 0 & 0 & - $\lambda$ & 1\\
v & -1 &  & 0-2- $\lambda$ & 
\end{array}\right) .
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Since we are interested in the parameter region which gives 0‐eigenvalue, we set  $\lambda$=0.

The eigenvalues of M(0) are given by

$\Lambda$_{\pm}:=\sqrt{1\pm\sqrt{v}}i, (i=\sqrt{-1}) .

Let \vec{$\zeta$_{j}} (j=1, 4) be the eigenvectors of M(0) . Then, we obtain the general solution

of (2.5) as follows.

(2.8) W=c_{1}\vec{ $\zeta$}_{1}e^{$\Lambda$_{+}x}+c_{2}\vec{$\zeta$_{2}}e^{-$\Lambda$_{+}x}+c_{3}\vec{ $\zeta$}_{3}e^{$\Lambda$_{-}x}+c_{4}\vec{ $\zeta$}_{4}e^{-$\Lambda$_{-}x} .

Here, c_{j}(j=1,2,3,4) are arbitrary constants. We denote C=(c_{1}, c_{2}, C3, c_{4})^{t} . Then,
from boundary conditions (1.2), we obtain the system of linear equations about \mathrm{C} as

follows.

(2.9) P(L, v,  $\delta$)C=0,

where

P(L,  $\mu$,  $\delta$)=(e^{s}+e^{-s}+e^{s}-e^{-s}-1111) .

Here,  $\gamma$\pm,\pm:= $\delta$\pm $\Lambda$\pm and  s_{\pm}:=L$\lambda$_{\pm}/2 . Thus, the neutral stability curves are given as

the set of parameters at which (2.9) has nontrivial solutions as follows.

(2.10)  $\Sigma$:=\{(L, v,  $\delta$)\in \mathrm{R}^{3};g(L, v,  $\delta$)=0\}

Here,

g(L, v,  $\delta$) :=\det P(L, v,  $\delta$)

Let 1\gg $\delta$>0 and m, n\in \mathrm{Z} . Without loss of generality, we assume m>n . Then,
we obtain the Taylor expansion of g(L, v,  $\delta$) near (L, v,  $\delta$)=(L^{m,n}, v^{m,n}, 0) as follows.

g(L, v,  $\delta$)=(\hat{L}^{m,n},\hat{v}^{m,n},  $\delta$)H_{m,n}(\hat{L}^{m,n},\hat{v}^{m,n},  $\delta$)^{t}
+O(|(\hat{L}^{m,n})+(\hat{v}^{m,n})+ $\delta$|^{3}) .

(2.11)

It should be noted that H_{m,n} is Hesse matrix of g(L, v,  $\delta$) at (L^{m,n}, v^{m,n}, 0) . Let us

examine the eigenvalues of H_{m,n} . For simplicity, we will omit the subscripts m,n

�

(For
instance, a=a_{m,n} ). If m+n is even, we obtain the characteristic polynomial of H_{m,n}
as follows.

F( $\sigma$) :=-$\sigma$^{3}+(a+b)$\sigma$^{2}-(ab-f^{2}-d^{2}) $\sigma$-bf^{2}
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Figure 4. [Left : Neutral stability curves near (L^{1,2}, v^{1,2}) ], [Right : Neutral stability
curves near (L^{1,3}, v^{1,3}) ]. The horizontal and vertical axis denote L and v

, respectively.

Gray and black lines correspond to the case when  $\delta$=0 and  $\delta$=0.05 , respectively.

We can see that -bf2<0 . And we have

\displaystyle \frac{dF}{d $\sigma$}=-3$\sigma$^{2}+2(a+b) $\sigma$-(ab-f^{2}-d^{2})=0,
\displaystyle \frac{df}{d $\sigma$}(0)=-(ab-f^{2}-d^{2})>0.

Thus, there exist a positive constant  $\sigma$* and a negative constant $\sigma$^{*} such that

\displaystyle \frac{dF}{d $\sigma$}($\sigma$_{*})=\frac{dF}{d $\sigma$}($\sigma$^{*})=0.
Therefore, it follows that H_{m,n} has two positive eigenvalues and third one is negative.
On the other hand, if m+n is odd, we have \det H_{m,n}=0 and

F( $\sigma$)=- $\sigma$\{$\sigma$^{2}-(a+b+c) $\sigma$+ab+bc+ca-f^{2}-d^{2}\}

Here we notice that a, c>0 and b<0 , therefore, it follows that ca—f2 <0 . Thus,
there exist a positive constant  $\sigma$** and a negative constant $\sigma$^{**} such that

\displaystyle \frac{dF}{d $\sigma$}($\sigma$_{**})=\frac{dF}{d $\sigma$}($\sigma$^{**})=0.
Therefore, it follows that H_{m,n} has a 0‐eigenvalue and other two eigenvalues are opposite

sign.
Let $\sigma$_{j} and \vec{v}_{j}, j=1 , 2, 3. are eigenvalues and eigenvectors of H_{m,n} . Then, for small

 $\delta$
,

there exist a positive constant  s such that g(L, v,  $\delta$) is approximated as

g(L, v,  $\delta$)=$\sigma$_{1}$\xi$_{1}^{2}+$\sigma$_{2}$\xi$_{2}^{2}+$\sigma$_{3}$\xi$_{3}^{2}+O((s+ $\delta$)^{3}) ,

for (L, v)\in B(s) . Here, $\xi$_{j}=\vec{v}_{j} (\hat{L}^{m,n},\hat{v}^{m,n},  $\delta$) . This completes the proof. \square 
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Theorem2.1 tells us that the neutral stability curves are characterized around the

multiple critical points (L^{m,n}, v^{m,n}) as follows. The neutral stability curves are homeo‐

morphic to the set of two crossing lines in the case when the sum m+n is odd. On the

other hand, the neutral stability curves are homeomorphic to the set of two hyperbolae
in the case when the sum m+n is even(see Fig.4).
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§3. Normal forms and Bifurcation Analysis

We shall study the local bifurcation structures around the degenerate critical points
to understand the qualitative change of the bifurcation diagram which we saw in the

section1.

As in Section2, L : X\rightarrow L^{2}(0, L/2) denotes a linearized operator of the equation

(1.1) with the boundary conditions (1.2), where the functional space X is defined as

follows.

X:=\{w\in H^{4}(0, L/2) ; w(0)=w(L/2)= $\delta$ w_{x}(0)-w_{xx}(0)= $\delta$ w_{x}(L/2)+w_{xx}(L/2)=0\}

It should be noted that L is a sectorial operator, namely, L generates an analytic

semigroup. Moreover, for each (L, v,  $\delta$)\not\in $\Sigma$ (  $\Sigma$ is defined in (2.10)), the operator

 L^{-1} : L^{2}(0, L/2)\rightarrow L^{2}(0, L/2) is a bounded, linear, compact operator (see [4], [3] and

[7] for the detail).
Let $\sigma$_{l, $\delta$} and $\phi$_{l, $\delta$}(x) , l\in \mathrm{N} be the linearized eigenvalues and eigenfuncions of (1.1)

with (1.2). More precisely,  $\phi$=$\phi$_{l, $\delta$}(x) solves

 $\sigma \phi$=-$\phi$_{xxxx}-2$\phi$_{xx}-(1-v) $\phi$,

(3.1)  $\phi$= $\delta \phi$_{x}\pm$\phi$_{xx}=0 at x=0, L/2

with eigenvalues  $\sigma$=$\sigma$_{l, $\delta$} for l\in \mathrm{N} . We note that the eigenvalues $\sigma$_{l, $\delta$} and eigenfunctions

$\phi$_{l, $\delta$} are numbered so that they coincide with those of their leading terms $\sigma$_{l} and w_{l} for

1\gg $\delta$>0, l\in \mathrm{N} . Substituting the eigenfunction expansion:

w(t, x)=\displaystyle \sum_{l\in N}a_{l}(t)$\phi$_{l, $\delta$}(x)
into (1. 1), we have

(3.2) \displaystyle \dot{a}_{j}=$\sigma$_{j, $\delta$}a_{j}-\langle(\sum_{l\in N}a_{l}$\phi$_{l, $\delta$})^{3} , $\phi$_{j, $\delta$}\rangle_{L^{2}}/||$\phi$_{j, $\delta$}||_{L^{2}}^{2} ,  j\in N.

To study the local bifurcation structures around the degenerate critical point, we apply
the center manifold theory.

Theorem 3.1. Let  m, n\in \mathrm{N}(n\neq m) . There exist a positive constant  $\epsilon$ such

that foor  $\delta$<O($\epsilon$^{3}) ,
the cubic normal fo rm of (1.1) with (1.2) on the center manifo ld are

given as follows if (L, v)\in B( $\epsilon$)\backslash B($\epsilon$^{2}) .
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(3.3) \{ \dot{a}_{m}=($\sigma$_{m, $\delta$}+Aa_{m}^{2}+Ba_{n}^{2})a_{m}

(3.4) \{ \dot{a}_{m}=($\sigma$_{m, $\delta$}+Aa_{m}^{2}+Ba_{n}^{2})a_{m}+Ea_{n}^{3}+Fa_{n}a_{m}^{2}

\dot{a}_{n}=($\sigma$_{n, $\delta$}+Ca_{m}^{2}+Da_{n}^{2})a_{n} (if m+n is odd).

\dot{a}_{n}=($\sigma$_{n, $\delta$}+Ca_{m}^{2}+Da_{n}^{2})a_{n}+Ga_{m}^{3}+Ha_{n}^{2}a_{m} (if m+n is even).

Moreover, the normal forms (3.3) and (3.4) are robust against perturbations in higher
order terms.

Remark: We can not extend the result for a parameter region which is mush

closer to the original degenerate critical point for m and n modes (L^{m,n}, v^{m,n}) ,
since

the eigenfunctions loose their regularity with respect to  $\delta$ there. (See the proof for the

detail.) Notice, however, that it is sufficient to understand the loop of the bifurcation

diagram as we see below.

(\mathrm{a}\mathrm{n}+\mathrm{a}-)^{1/2}

Figure 5. Left: Phase portraits of normal form (3.3). The horizontal and vertical axis

denote a_{m} and a_{n} , respectively. Right: The bifurcation diagram of equilibriums of the

normal form (3.3). The vertical axis denote \sqrt{a_{n}^{2}+a_{m}^{2}} . Both figures correspond to the

case when m+n is odd.
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(\mathrm{a}\mathrm{n}+\mathrm{a}-)^{1/2}

Figure 6. Left: Phase portraits of normal forms (3.4). The horizontal and vertical axis

denote a_{m} and a_{n} , respectively. Right: The bifurcation diagram of equilibriums of the

normal form (3.4). The vertical axis denote \sqrt{a_{n}^{2}+a_{m}^{2}} . Both figures correspond to the

case when m+n is even.

By the normal form analysis, we can understand the local bifurcation structure

of stationary solutions to (1.1) with (1.2). More precisely, when m+n is odd, the

bifurcation structure of the equilibrium to (3.3) is robust for small perturbation  $\delta$>0.

On the other hand, if m+n is even, the bifurcation structure of the equilibrium to (3.4)
is modified under the perturbation with small  $\delta$>0 . That is, when m+n is even, we

can see that the imperfection of the pitchfork bifurcation occur at secondary bifurcation

points.
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§4. Proof of Theorem3.1

We enumerate the lemmas to prove Theorem3.1.

Lemma 4.1. Let j, l\in \mathrm{N} and j+l be even. Then, following equality holds.

(4.1) $\sigma$_{j, $\delta$}<$\phi$_{j, $\delta$}, $\phi$_{l,0}>_{L^{2}}=$\sigma$_{l,0}<$\phi$_{j, $\delta$}, $\phi$_{l,0}>_{L^{2}}+k_{0}l\{(-1)^{l}$\phi$_{j, $\delta$}''(L/2)-$\phi$_{j, $\delta$}(0)''\}.

Here, k_{0}=2 $\pi$/L.

Proof. It holds that

(4.2) $\sigma$_{j, $\delta$}<$\phi$_{j, $\delta$}, $\phi$_{l,0}>_{L^{2}}=<L$\phi$_{j, $\delta$}, $\phi$_{l,0}>_{L^{2}},

where L is a linearized operator of (1.1). We have

<L$\phi$_{j, $\delta$}, $\phi$_{l,0}>_{L^{2}}=-\displaystyle \int_{0}^{L/2}$\phi$_{j, $\delta$}^{(4)}\sin (klx)  dx-2\displaystyle \int_{0}^{L/2}$\phi$_{j, $\delta$}''sin ( k_{0} lx) dx

-(1-v)\displaystyle \int_{0}^{L/2}$\phi$_{j, $\delta$}$\phi$_{l,0}dx.

\displaystyle \int_{0}^{L/2}$\phi$_{j, $\delta$}^{(4)}\sin (klx)  dx=[$\phi$_{j, $\delta$}'''\sin (klx) ]0L/2-k_{0}l\displaystyle \int_{0}^{L/2}$\phi$_{j, $\delta$}'''\cos (klx)  dx

=-k_{0}l[$\phi$_{j, $\delta$}''\displaystyle \cos(k_{0}lx)]_{0}^{L/2}-k_{0}^{2}l^{2}\int_{0}^{L/2}$\phi$_{j, $\delta$}''\sin(k_{0}lx)dx
=-k_{0}l\{(-1)^{l}$\phi$_{j, $\delta$}''(L/2)-$\phi$_{j, $\delta$}''(0)\}-k_{0}^{2}l^{2}[$\phi$_{j, $\delta$}'\sin(k_{0}lx)]_{0}^{L/2}

+k_{0}^{3}l^{3}\displaystyle \int_{0}^{L/2}$\phi$_{j, $\delta$}'\cos(k_{0}lx)dx
=k_{0}^{4}l^{4}\displaystyle \int_{0}^{L/2}$\phi$_{j, $\delta$}\sin (klx)  dx-k_{0}l\{(-1)^{l}$\phi$_{j, $\delta$}''(L/2)-$\phi$_{j, $\delta$}''(0)\}

\displaystyle \int_{0}^{L/2}$\phi$_{j, $\delta$}''\sin (klx)  dx=[$\phi$_{j, $\delta$}'\sin (klx) ]0L/2-k_{0}l\displaystyle \int_{0}^{L/2}$\phi$_{j, $\delta$}'\cos (klx)  dx

=-k_{0}l[$\phi$_{j, $\delta$}\displaystyle \cos(k_{0}lx)]_{0}^{L/2}-k_{0}^{2}l^{2}\int_{0}^{L/2}$\phi$_{j, $\delta$}\sin(k_{0}lx)dx
=-k_{0}^{2}l^{2}\displaystyle \int_{0}^{L/2}$\phi$_{j, $\delta$}\sin (  k_{0} lx) dx.

It is clear that (4.1) holds.
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Lemma 4.2. For l\in \mathrm{N} , eigenfunctions $\phi$_{j, $\delta$}, j=1 , 2, 3 satisfy the following

properties.

$\phi$_{2l-1, $\delta$}(x)=$\phi$_{2l-1, $\delta$}(L/2-x) , $\phi$_{2l, $\delta$}(x)=-$\phi$_{2l, $\delta$}(L/2-x) .

Proof. Let j\in \mathrm{N} is even, then we have

(4.3) $\sigma$_{j, $\delta$}<$\phi$_{j, $\delta$}, $\phi$_{j,0}>_{L^{2}}=$\sigma$_{j,0}<$\phi$_{j, $\delta$}, $\phi$_{j,0}>_{L^{2}}+k_{0}j\{$\phi$_{j, $\delta$}''(L/2)-$\phi$_{j, $\delta$}''(0)\}.

And it is clear that <$\phi$_{j, $\delta$}, $\phi$_{j,0}>_{L^{2}}\neq 0. (3.1) is invariant under the mappings:

 $\phi$\rightarrow- $\phi$ and  $\phi$(x)\rightarrow $\phi$(L/2-x) .

Thus, for j\in 2\mathrm{N}, $\phi$_{j, $\delta$} must satisfy

(A) :$\phi$_{j, $\delta$}(x)=$\phi$_{j, $\delta$}(L/2-x) ,

or

(B) :$\phi$_{j, $\delta$}(x)=-$\phi$_{j, $\delta$}(L/2-x) ,

If $\phi$_{j, $\delta$} satisfies (A), it follows that $\sigma$_{j, $\delta$}=$\sigma$_{j,0} . This contradics to Theorem2.1. Thus,

$\phi$_{j, $\delta$} must satisfy (B). Similarly, it holds that

$\phi$_{2l-1, $\delta$}(x)=$\phi$_{2l-1, $\delta$}(L/2-x)

for l\in \mathrm{N}. \square 

Here, we give a proof of Theorem3.1.

Proof. First, we construct the center manifolds for (3.2) which are expressed as

a_{l}=h_{l}(a_{m}, a_{n}) , l\neq m, n for |a_{m}|, |a_{n}|<O( $\epsilon$) , |$\sigma$_{m, $\delta$}|, |$\sigma$_{n, $\delta$}|<O($\epsilon$^{2}) ,  $\delta$<O($\epsilon$^{3}) . Let

l\in \mathrm{N}, l\neq m, n . Then h_{l}(a_{n}(t), a(t)) solves the following equation.

\displaystyle \frac{\partial h_{l}}{\partial a_{m}}\dot{a}_{m}+\frac{\partial h_{l}}{\partial a_{n}}\dot{a}_{n}=$\sigma$_{l, $\delta$}h_{l}(a_{n}, a_{m})

-\displaystyle \{(\sum_{j\in \mathrm{N}}a_{j}$\phi$_{j, $\delta$})^{3}, $\phi$_{l, $\delta$}\}_{L^{2}}/||$\phi$_{l, $\delta$}||_{L^{2}}^{2}.
And h_{l}(a_{n}, a_{m}) satisfies

\displaystyle \frac{\partial h_{l}}{\partial a_{m}}(0,0)=\frac{\partial h_{l}}{\partial a_{n}}(0,0)=0.
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Thus, for |a_{m}|, |a_{n}|<O( $\epsilon$) , |$\sigma$_{m, $\delta$}|, |$\sigma$_{n, $\delta$}|<O($\epsilon$^{2}) ,  $\delta$<O($\epsilon$^{3}) ,
we obtain

h_{l}(a_{n}, a_{m})=\displaystyle \langle(\sum_{j\in \mathrm{N}}a_{j}$\phi$_{j, $\delta$})^{3}, $\phi$_{l, $\delta$}\rangle_{L^{2}}/($\sigma$_{l, $\delta$}||$\phi$_{l, $\delta$}||_{L^{2}}^{2})
+O($\epsilon$^{4}) .

It follows that the equation (3.2) is reduced to

\left\{\begin{array}{l}
\dot{a}_{m}=$\sigma$_{m, $\delta$}a_{m}-\langle(a_{m}$\phi$_{m, $\delta$}+a_{n}$\phi$_{n, $\delta$})^{3}, $\phi$_{m, $\delta$}\rangle_{L^{2}}/||$\phi$_{m, $\delta$}||_{L^{2}}^{2}+O($\epsilon$^{4})\\
\dot{a}_{n}=$\sigma$_{n, $\delta$}a_{n}-\langle(a_{m}$\phi$_{m, $\delta$}+a_{n}$\phi$_{n, $\delta$})^{3}, $\phi$_{n, $\delta$}\rangle_{L^{2}}/||$\phi$_{n, $\delta$}||_{L^{2}}^{2}+O($\epsilon$^{4})
\end{array}\right.
for |a_{m}|, |a_{n}|<O( $\epsilon$) , |$\sigma$_{m, $\delta$}|, |$\sigma$_{n, $\delta$}|<O($\epsilon$^{2}) ,  $\delta$<O($\epsilon$^{3}) . Moreover, it holds that the

normal form of (3.2) are invariant under the mapping (a_{m}, a_{n})\rightarrow(-a_{m}, -a_{n}) since

(1.1) with (1.2) is invariant under the mapping w(t, x)\rightarrow-w(t, x) . More precisely, the

nonlinear terms of the normal form are expressed as

pq,j\displaystyle \in \mathrm{N}\dotplus_{q=2j+1}\sum_{p}C^{(p,q)}a_{n}^{p}a_{m}^{q}
Now we divide the proof into two parts.

Part1: We prove Theorem3.1 in the case when m+n is odd. Without loss of generality,
we assume that m is odd and n is even. We represent the eigenfunction expansion as

follows:

\displaystyle \sum_{j\in \mathrm{N}}a_{j}$\phi$_{j, $\delta$}=\sum_{j_{i}\in \mathrm{N}}a_{2j_{1}-1}$\phi$_{2j_{1}-1, $\delta$}+\sum_{j_{2}\in \mathrm{N}}a_{2j_{2}}$\phi$_{2j_{2}, $\delta$}.
By the change of variable x\rightarrow L/2-x ,

and using symmetry properties:

(4.4) $\phi$_{2j, $\delta$}(x)=-$\phi$_{2j, $\delta$}(L/2-x) , $\phi$_{2l-1, $\delta$}(x)=$\phi$_{2l-1, $\delta$}(L/2-x) ,

for j, l\in \mathrm{N} ,
we have

\displaystyle \sum_{j_{i}\in \mathrm{N}}a_{2j_{1}-1}$\phi$_{2j_{1}-1, $\delta$}(L/2-x)+\sum_{j_{2}\in \mathrm{N}}a_{2j_{2}}$\phi$_{2j_{2}, $\delta$}(L/2-x)
=\displaystyle \sum_{j_{i}\in \mathrm{N}}a_{2j_{1}-1}$\phi$_{2j_{1}-1, $\delta$}(x)+\sum_{j_{2}\in \mathrm{N}}(-a_{2j_{2}})$\phi$_{2j_{2}, $\delta$}(x) .

The equation (1.1) with (1.2) is invariant under the change of variable: x\rightarrow L/2-x.
It follows that the normal form is invariant under the mappings: (a_{m}, a_{n})\rightarrow(a_{m}, -a_{n})
and (a_{m}, a_{n})\rightarrow(-a_{m}, a_{n}) . Thus, we obtain the normal form to (3.2) as follows.

\displaystyle \dot{a}_{m}=$\sigma$_{m, $\delta$}a_{m}+Aa_{m}^{3}+Ba_{n}^{2}a_{m}+ \sum_{p_{1}q_{1},j_{1}\in \mathrm{N},p_{1}\dotplus_{q_{1}=2j_{1}+1}}C_{1}^{(p_{1},q_{1})}a_{n}^{2p_{1}}a_{m}^{2q_{1}-1},
(4.5) \displaystyle \dot{a}_{n}=$\sigma$_{n, $\delta$}a_{n}+Ca_{m}^{2}a_{n}+Da_{n}^{3}+ \sum_{p_{2},q_{2},j_{2}\in \mathrm{N},p_{2}+q_{2}=2j_{2}+1}C_{2}^{(p_{2},q_{2})}a_{m}^{2p_{2}}a_{n}^{2q_{2}-1}
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Thus, we obtain the leading terms of A, B, C and D as follows:

A=D=-\displaystyle \frac{3}{4}+O( $\delta$) ,

(4.6) B=C=-\displaystyle \frac{3}{2}+O( $\delta$) .

It is clear that A, B, C, D<0 and AD—BC <0 for 0< $\delta$\ll 1 . Moreover, we can see

that (3.3) is robust against the higher order terms since they are expressed as shown in

(4.5).
Part2 In this part, we prove Theorem3.1 in the case when m+n is even. Without loss

of generality, we assume m>n . Then, the cubic normal form is given as follows:

(4.7) \left\{\begin{array}{l}
\dot{a}_{m}=$\sigma$_{m, $\delta$}a_{m}+Aa_{m}^{3}+Ba_{n}^{2}a_{m}+Ea_{n}^{3}+Fa_{m}^{2}a_{n},\\
\dot{a}_{n}=$\sigma$_{n, $\delta$}a_{n}+Ca_{m}^{2}a_{n}+Da_{n}^{3}+Ga_{m}^{3}+Ha_{n}^{2}a_{m}.
\end{array}\right.
We notice that the coefficients A, B, C and D are also given as (4.6). In addition, E,

F, G and H are given as follows:

(4.8) E=-<$\phi$_{n, $\delta$}^{3}, $\phi$_{m, $\delta$}>_{L^{2}}/||$\phi$_{m, $\delta$}||_{L^{2}}^{2},
(4.9) F=-3<$\phi$_{m, $\delta$}^{2}$\phi$_{n, $\delta$}, $\phi$_{m, $\delta$}>_{L^{2}}/||$\phi$_{m, $\delta$}||_{L^{2}}^{2},
(4.10) G=-<$\phi$_{m, $\delta$}^{3}, $\phi$_{n, $\delta$}>_{L^{2}}/||$\phi$_{n, $\delta$}||_{L^{2}}^{2},
(4.11) H=-3<$\phi$_{n, $\delta$}^{2}$\phi$_{m, $\delta$}, $\phi$_{n, $\delta$}>_{L^{2}}/||$\phi$_{n, $\delta$}||_{L^{2}}^{2} .

We can find that H=3E and F=3G . And it holds that E=G=F=H=0 for

m\neq 3n,  $\delta$=0 (if m=3n ,
then E=-1/4+O( $\delta$) ). \square 

Finally, we derive the coefficients E, G formally. The problem (3.1) is equivalent
to the following:

 $\sigma \phi$=-k_{0}^{4}$\phi$_{xxxx}-2k_{0}^{2}$\phi$_{xx}-(1-v) $\phi$,
 $\phi$= $\delta \phi$_{x}\pm k_{0}$\phi$_{xx}=0 at x=0,  $\pi$.

For 1\gg $\delta$>0 ,
we set

(4.12)  $\sigma$=$\sigma$_{0}+ $\delta \sigma$_{1}, v=v_{0}+ $\delta$ v_{1}.

Here, $\sigma$_{0}, v_{0} satisfy following:

$\sigma$_{0}=v_{0}-(1-m^{2}k_{0}^{2})^{2}

We expand an unknown function  $\phi$ as follows.

(4.13)  $\phi$=$\phi$_{0}+ $\delta \phi$_{1}+$\delta$^{2}$\phi$_{2}+\cdot \cdot.
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Here, $\phi$_{0}=\sin(mx) . By substituting (4.12) and (4.13) into (4.12), we obtain the

eigenvalue problem in O( $\delta$) . And the solution to these problem is given as follows.

$\phi$_{1}=\displaystyle \frac{mk_{0}}{ $\pi$(m^{2}k_{0}^{2}-1)}(x-\frac{ $\pi$}{2})\cos(mx)+\frac{-k_{0}(3m^{2}k_{0}^{2}-1)}{2 $\pi$(m^{2}k_{0}^{2}-1)^{2}}\sin(mx)
-\displaystyle \frac{mk_{0}\{(-1)^{m}+\cos( $\lambda \pi$)\}}{2(m^{2}k_{0}^{2}-1)\sin( $\lambda \pi$)}\sin( $\lambda$ x)+\frac{mk_{0}}{2(m^{2}k_{0}^{2}-1)}\cos( $\lambda$ x)

where  $\lambda$=\sqrt{2-m^{2}k_{0}^{2}}/k_{0} . As we remarked in Section3, $\phi$_{1} is undefined at the degen‐
erate point: k_{0}=k_{0}^{*}:=\sqrt{2/(m^{2}+n^{2})} since \sin( $\lambda \pi$)|_{k_{0}=k_{0}^{*}}=0 . To avoid this difficulty,
we introduce a small parameter  $\epsilon$ as  $\epsilon$^{2}=|k_{0}-2 $\pi$/L^{m,n}| ,

and set  $\delta$=$\epsilon$^{3} ,
then we have

(4.14)  $\phi$=\displaystyle \sin(mx)+ $\epsilon$\frac{mn|m^{2}-n^{2}|\{(-1)^{m+n}+1\}}{ $\pi$(m^{2}+n^{2})^{3}}\sin(nx)+O($\epsilon$^{2}) .

Using (4.14), we can find that EG>0 for m+n is even.
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